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As a top predator, the endangered Australian sea lion (Neophoca cinerea) is a sentinel

of ecosystem change, where population trends can reflect broader shifts in the marine

environment. The population of this endemic pinniped was historically diminished by

commercial sealing, and recovery has been slowed by fishery interactions, disease and,

potentially, pollutants. Hookworm infects 100% of neonatal pups and has been identified

as a contributor to population decline. Here, a multivariable approach using traditional

serological and novel molecular tools such as qPCR and ddPCR was used to examine

immune phenotypes of developing Australian sea lion pups infected with the endemic

hookworm (Uncinaria sanguinis) from two South Australian colonies. Results show

changing immunophenotypes throughout the patent period of infection represented by

pro-inflammatory cytokines (IL-6), IgG and acute-phase proteins. Although cytokines

may prove useful as markers of resistance, in this study, IL-6 is determined to be an

early biomarker of inflammation in Australian sea lion pups, excluding the alternative

hypothesis. Additionally, immunological differences between animals from high- and low-

intensity hookworm seasons, as well as ivermectin-treated animals, indicate hookworm

infection modulation of the host immune response, as evidenced by a lower IL-6 mRNA

expression in the non-treated groups. This study of the Australian sea lion is an example

of an ecoimmunological approach to disease investigation, which can be applied to

evaluate the impact of environmental and anthropogenic factors on susceptibility to

infectious diseases in free-ranging species

Keywords: Australian sea lion, ecoimmunology, hookworm, acute-phase proteins, IgG, PCR

INTRODUCTION

Infectious wildlife disease, emerging or endemic, can play a beneficial or neutral role as a
component of species ecology or can have detrimental impacts, either directly or as an additive
pressure or amplifier of other threats. As such, understanding mechanisms of disease susceptibility
can inform conservation management of threatened species (1, 2). Measuring variation in innate
and adaptive immune parameters offers an additional perspective for health assessment and
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evaluation of susceptibility to environmental pressures in wildlife
populations (3). For example, impaired innate and humoral
immune responses have been reported in California sea lions
(Zalophus californianus) exposed to climatic abnormalities (4)
and Galapagos sea lions (Zalophus wollebaeki) exposed to
anthropogenic stressors (5). The ecoimmunology approach used
in these and similar studies has emerged as a valuable means to
assess immunocompetence in wild populations in the context of
diseases, pollution or environmental threats (6, 7).

Understanding host-pathogen relationships and the
environmental factors that influence them is fundamental
to predicting and managing disease outcomes in animals
(6, 8). The Australian sea lion (Neophoca cinerea) is endemic,
listed as “Endangered” under the IUCN and the Australian
Environment Protection and Biodiversity Conservation Act
1999 (9, 10), and experiences high pup mortality rates largely
associated with conspecific trauma and hookworm infection
(Uncinaria sanguinis) (11, 12). Two aspects of hookworm disease
in Australian sea lions suggest that changing environmental
factors could predispose animals to disease. Firstly, the host-
pathogen relationship is longstanding (13, 14), and although
the historical impact of this disease is unknown, its current
prevalence and impact are currently high. Secondly, disease
outcomes vary markedly among individuals despite a 100%
prevalence of infection (15). In the South American fur seal
(Arctocephalus australis), climate conditions influenced the
cellular and humoral immune response to hookworm (Uncinaria
sp.) infection in pups (16). It is also possible that host traits such
as sex, genetics and age play a role as sources of variation on
the host immune response (17). For example, wild male wood
mice (Apodemus sylvaticus) have higher local and systemic TNFα
expression during parasitic infections compared to females (18).
In California sea lions, heterozygosity was described to be a
helpful predictor of the immune response against hookworm
infection (19). Although the epidemiology, clinical evaluation
and impact of hookworm infection have been described in two
of the largest Australian sea lion colonies in South Australia
(Seal Bay and Dangerous Reef) (11, 15, 20), the immunological
host responses and the factors that can influence them are not
yet understood.

Immunological studies to understand drivers of disease
in free-range Australian sea lions could prove helpful for
the conservation management of populations. For example,
understanding the effect of ecotoxicological biomarkers
recently described for Australian pinnipeds (21, 22) on
health and immunity could inform management regulations.
Immunological studies have highlighted the role of pollutants,
tourism and co-infections as stressors for Galapagos sea lions
(5) and bottlenose dolphins (23, 24) and contributed toward
the informed design of management actions (23–25). However,
in free-ranging Australian sea lion pups, our understanding
of immunity is limited to the description of a lymphocytic-
eosinophilic response with hypoproteinemia in association with
hookworm (11). Immunological mechanisms associated with
hookworm infections have been mostly inferred from humans
[Reviewed in (26)], mouse and hamster models (27–29), dogs
(30) and other otariids (16).

Age and ontogeny must be considered when assessing
the impact of environmental factors and disease on immune
systems. Stage of development influences immune function in
young mammals, suggesting periods of greater susceptibility
to infections (31–33). For example, in pinniped pups, passive
immunity acquired through the transfer of maternal antibodies
in utero or through the ingestion of colostrum, occurs in lower
rates compared to other mammals (34–36). In this way, the
lower plasma IgG concentrations found in New Zealand sea lion
(Phocarctos hookeri) pups <2 weeks of age, compared to older
animals, could mean greater vulnerability to bacterial infections
such as Klebsiella pneumoniae (37), until their innate immunity
starts to develop. Similar age dependencies in serum protein
profiles have been reported in bovine (Bos taurus) calves (38)
and dogs (Canis familiaris) from 6 weeks to adulthood (39). The
development of protective immune responses is highly plastic
and depends largely on the cytokine milieu, the pathogen load at
a specific point in time, and the naïve immune system at the early
stages of life (40). Ideally, these patterns would be understood
before evaluating the impacts of environmental and pathogen
factors on immune function. However, this is impractical for
most species and populations, in particular endangered species
with limited captive populations.

Using a multifactorial approach is essential when examining
immune impacts and disease in general, particularly when
studying heterogeneous populations of relatively unstudied
animals in complex environments. The immune system is a
complex network where components of innate and adaptive
immunity interact to provide hosts with a protective response
(41, 42). Reductionist approaches from previous decades,
imposed mainly by technological restrictions (3, 43), have
therefore evolved into more complex study models involving
multiple approaches and parameters, such as longitudinal
sampling in wild animals and a range of molecular phenotypic
measures (44, 45). Functional assays applicable across species,
such as lysozyme activity, acute phase proteins (APP) or
cutaneous responses to phytohaemagglutinin (PHA) mitogen,
have been supplemented more recently by the significant
advances made in the area of molecular immunology, reducing
the implementation costs of species-specific immune assays and
expanding the ecoimmunologists’ tool kit (46–48). Depending
upon the target chosen, cytokine gene expression can be used
to quantify upregulation of pro-inflammatory cytokines from
activation of the innate response (IL-1, TNFα, IL-6) (49, 50)
and subsequent activation of antigen-presenting cells (APC),
or those involved in modulation of the adaptive response
toward T-helper 1 (Th1, IFNγ; cellular responses to intracellular
pathogens) or T-helper 2 (Th2, IL-4; humoral responses to
extracellular pathogens, parasites and repair) pathways (51, 52).
For example, pro-inflammatory cytokines, such as IL-1, IL-
6, and IL-12, and APP were found in higher concentrations
in harbor seal (Phoca vitulina) pups in the early period of
rehabilitation, with IL-4 dominance occurring at the later stages
(49). Interleukin 10 expression has been associated with chronic
bacterial infections in harbor porpoises (Phocoena phocoena)
(53). Utilizing these novel approaches and knowledge will enable
a more comprehensive understanding of immune phenotypes
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and how they relate to the dynamics of parasitic diseases in
threatened wildlife populations such as the Australian sea lion.

In this study, we examine immune phenotypes of neonatal
Australian sea lion pups sampled at two South Australian
colonies, Seal Bay and Dangerous Reef, where infection with
hookworm is endemic. Previous studies have determined
the intensity of hookworm infection in pups found dead
during summer and winter breeding seasons at both colonies,
identifying colony-specific associations between hookworm
infection intensity and season (i.e., summer associated with high
intensity at Seal Bay and low intensity at Dangerous Reef)
(11). Clinical parameters of health and hookworm infection
status (11, 54) are combined with measures of the innate
and adaptive immune response, including total IgG, lysozyme
activity and constitutive gene expression of cytokines IFNγ, IL-
6, IL-10 and TNFα in order to characterize the immunological
response to hookworm infection in Australian sea lion pups,
and to identify developmental trends in immune parameters.
To identify relevant markers, immune parameters of non-
treated cohorts of pups from Seal Bay (high-intensity hookworm
season) and Dangerous Reef (low-intensity hookworm season)
and anthelmintic (ivermectin) treated pups from Dangerous
Reef are compared. We hypothesize that innate and adaptive
immunity will vary with (1) the developmental age of pups, (2)
differing hookworm infection intensity seasons (colonies), and
(3) between non-treated and an anthelmintic-treated cohort of
pups sampled at Dangerous Reef.

MATERIALS AND METHODS

Study Area and Sample Collection
Samples were collected from Australian sea lion pups during
summer breeding seasons at Seal Bay (35.994◦ S, 137.317◦

E) in 2012 (high-intensity hookworm season) and Dangerous
Reef (34.815◦ S, 136.212◦ E) in 2013 (low-intensity hookworm
season), two of the largest and biogeographically diverse
Australian sea lion colonies. At both colonies, the endemic
occurrence of U. sanguinis in neonatal pups is 100 % (15).
Veterinary observations and assessments recorded at the time
of sample collection did not indicate any clinical suspicion
for the presence of significant systemic microbiological or
other infectious disease (Gray, pers. Comm.). Fecal smears
and formalin-fixed intestinal contents were microscopically
examined, which, together with postmortem (gross necropsy)
observations, ruled out the presence of other macroparasites
(15). A subset of pups sampled at multiple time points by
Marcus et al. (11) was selected for this study using the following
criteria: pups had patent hookworm infection at first capture
(hookworm eggs identified in fecal smears) and the following
were available for analyses from each time point—complete
hematological and host parameters (i.e., age and/or standard
length, sex and disease severity), archived serum and plasma
samples; archived blood samples stored in FACS lysing solution;
and archived RNA samples. Detailed methods for pup handling
and sample collection are given in Marcus et al. (11). From Seal
Bay, a cohort of known-age pups during the patent and post-
patent period of hookworm infection was selected, including

n = 7 pups with three capture events 2–4 weeks apart and
n = 16 pups with two capture events 3–5 weeks apart. The
Dangerous Reef cohort included pups of unknown age with
patent hookworm infection that were likely to be <2 months
old (standard length <70 cm and non-molting status) (15).
From sampling at Dangerous Reef, n = 18 pups were selected
with two capture events 4–5 weeks apart (54). Of these, a
subset of pups (n = 8) were administered 200 µg/kg ivermectin
by subcutaneous injection in the dorsal interscapular region
(10 mg/mL IVOMEC Antiparasitic Injection for Cattle, Merial
Australia, Sydney, Australia), resulting in negative hookworm
status (no eggs on fecal smears based on examination of a
subsequent sample). Control pups (n = 10) were administered
0.02 mL/kg saline (0.9 % sodium chloride, Baxter Healthcare,
Sydney, Australia), subcutaneously in the dorsal interscapular
region (54). For statistical analyses, three treatment groups were
defined: DR treatment (n = 8), DR (low-intensity) control (pups
administered placebo; n = 10) and SB (high-intensity) control
(n= 23).

The hematological data from Marcus et al. (11) used in this
study were: packed cell volume (PCV), total plasma protein
(TPP), and absolute corrected white blood cell (cWBC), absolute
lymphocyte (Lymph), and eosinophil (Eos) counts. Host factors
included standard length (cm), sex and disease severity. Age was
recorded only for pups at Seal Bay (n = 23) (15); therefore,
standard length was used as a proxy for age when analyzing
data from both colonies (55). As eggs per gram of feces is
not a reliable measure of hookworm load (15), the severity of
hookworm disease in pups was classified as “mild” (TPP ≥ 60
g/L and PCV > 35%) or “severe” (TPP < 60 g/L and PCV ≤

35%) based on descriptions of hookworm infection outcomes in
humans (hypoproteinemia and anemia) (56) and hematological
values for Australian sea lions (11, 57).

Sample Preparation and Storage
Blood samples (89 samples from 41 individuals) were collected
from the brachial vein of N. cinerea pups and then transferred to
Ethylene diamine tetra-acetic acid (EDTA) and plain serum tubes
(Sarstedt, Nümbrecht, Germany). For complete hematological
analysis, EDTA anti-coagulated whole blood samples were stored
at 4◦C and processed within 10 hours of collection (11). In
the field, plasma and serum samples for IgG ELISA, serum
protein electrophoresis (SPE) and lysozyme assays were frozen
in cryotubes in a liquid nitrogen dry shipper and later transferred
to a −80◦C freezer for long term storage until analysis. Serum
protein electrophoresis was performed only on pup samples
collected at Seal Bay for which age was known (n = 23
individuals; seven animals with three capture events and 16 with
two capture events).

For flow cytometry, 150 µL of whole blood was placed in 1 ×
FACS lysing solution (BD Biosciences, San Jose, USA) at a ratio
of 1:10 and held at room temperature in the dark for 15min to
lyse red blood cells and fix peripheral blood leukocytes. Following
this, samples were stored in liquid nitrogen and later transferred
to a −80◦C freezer for long-term storage until flow cytometry
protocol was performed. Analysis of lymphocyte subsets by flow
cytometry (n = 15 individuals) included six animals with three
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capture events and four with two capture events from Seal Bay,
and five animals with two capture events from Dangerous Reef.

Aliquots (0.5mL) of EDTA anti-coagulated whole blood
samples were centrifuged at 5,000 x g for up to 3min. Plasma
was removed using a sterile disposable pipette and the remaining
red blood cells and buffy coat were resuspended in 1,300 µl
RNAlaterTM (Applied Biosystems, Carlsbad, CA, USA), stored
at 4◦C for 2–4 days and then at −20◦C until RNA extraction
for gene expression assays was performed. Gene expression
analysis (n= 33 individuals) was undertaken in samples collected
from six pups with three capture events and ten pups with
two capture events from Seal Bay and from 17 pups with two
capture events from Dangerous Reef. The integrity of isolated
RNA was demonstrated in all blood samples by the amplification
of GAPDHmRNA (Ct 25± 3.1, mean± SD).

The immune parameters used in this study (i.e., constitutive
gene expression of cytokines IFNγ, IL-6, IL-10, and TNFα) were
selected based on their role as markers of key immunological
pathways. Specifics of the laboratory methods used in this study
for the quantification of immune measures are presented in
Appendix A. Table 1 summarizes the immune variables and
methods used in this study.

Statistical Analysis
Preliminary Analysis and Principal Component

Analysis (PCA)
An exploratory analysis was initially performed to examine data
distributions, identify outliers and visualize trends in the data.
Logarithmic data transformations were applied and retained
if improvements in normality were observed in histograms.
Associations of immune parameters with categorical variables
such as sex, treatment group (DR treatment, DR control
and SB control) and disease severity (mild and severe) were
explored using side by side boxplots and associations with
continuous variables were examined using bivariate scatter plots
and Pearson’s correlations. Significant relationships between
continuous variables and collinearity were considered for the
subsequent multivariable analyses and outliers were retained
if no substantially different models were produced when
excluding them.

Principal component analysis on the correlation matrix was
used to explore associations between immune parameters in
the multivariate dataset and to link sets of functionally related
variables. Specifically, clusters related to the three treatment
groups were expected to test the hypothesis that hookworm
infection can modulate the immune response of pups. Principal
component analysis included the following immunological
measurements for which complete sample sets for an individual
pup were available: IgG, lysozyme, delta cycle threshold (1Ct)
IL-6, 1Ct IL-10, 1Ct TNFα, IFNγ (copy number), and health
parameters: PCV, TPP and absolute cWBC, lymphocyte and
eosinophil counts. A linear model was used to assess the
significance of identified clusters in explaining the observed
variance structure of the immunological variables identified in
the PCA.

All analyses were conducted using R software version
4.0.0 (63).

Multivariable Analyses for Host and Environmental

Variables
Following PCA, the hypothesis that immune-related changes
are associated with age and that hookworm infection can
modulate the immune response of pups was subsequently
tested by fitting models on immune variables. Linear mixed
models (LMMs) were used to analyse variation in individual
immunological measurements using treatment group, sex,
disease severity, standard length (proxy for age) and all possible
two-way interactions as fixed effects to model environmental
and host variables. To address the correlation introduced by
repeated measures obtained from the same individual, random
effects were included for each pup. Flow cytometry and SPE
multivariable analyses were restricted to fewer fixed effects (i.e.,
age, sex and disease severity for SPE; standard length, treatment
group and disease severity for flow cytometry) due to the smaller
sample size. The package lme4 in R software was used to fit
LMMs, and spline terms were included to fit predictors with
possible non-linear relationships to the response variables (such
as response evolving over time) (64). All models were constructed
using a backwards stepwise procedure until all remaining
variables had a p-value of <0.1. In the final model, variables with
p ≤ 0.1 were considered suggestive of associations and variables
with p < 0.05 were considered significantly associated with the
outcome variable. The Akaike information criterion (AIC) was
used to distinguish among a set of possible models describing
the relationship between explanatory variables (65). Fitted value
plots and histograms of residuals were used to visually assess the
assumptions of homogeneity of residual variance and normality
of final models. Where necessary, the data were log-transformed.
Post-hoc pairwise comparisons between factor levels were made
using Tukey’s test (66).

RESULTS

Principal Component Analysis
Based on PCA analysis, the first two principal components (PC1,
PC2) explained 52.6% of the variance in the data. PC1 accounted
for 31.7% of the samples’ variance, while PC2 accounted for
21.9%. Figure 1 shows a biplot of the scores for the first two PCs,
as well as clusters identifying the treatment groups. Relationships
among parameters of immune function (as shown by vectors
on the biplot) were consistent among treatment groups. PC1 is
comprised of large positive loadings for 1Ct IL-6, 1Ct IL-10,
1Ct TNFα and absolute eosinophil count, and large negative
loadings for TPP and IgG. Likewise, PC2 comprised large positive
loadings for PCV and large negative loadings for cWBC, absolute
lymphocyte count, lysozyme and IFNγ copy numbers. High
PC1 scores separated Seal Bay (high-intensity season) from
Dangerous Reef (low-intensity season) individuals. Ivermectin-
treated pups from Dangerous Reef, although clustered together,
overlapped with the control group, such that there was no
appreciable effect of treatment on pups sampled at Dangerous
Reef (Figure 1).

Colony / hookworm intensity season explained 62% of the
total variance in PC1 [F(2,69) = 57.47, p < 0.001] with a
significant difference [t(69) = 10.09, p < 0.001] in PC1 scores
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TABLE 1 | Summary of samples size (n) and immune measures used in this study.

Colony Treatment group N◦ of pups sampled (n) Capture events Immune Assays References

Seal Bay Control 7 3 (total of 21 time points) IgG ELISA, SPE, Lysozyme

assay, Flow Cytometry (T and B

lymphocytes), RT-qPCR and

ddPCR

Osserman and Lawlor (58),

Bossart et al. (59), Hall et al.

(60), Gray et al. (61), Lau

et al. (62), Meza Cerda

et al. (48)

16 2 (total of 32 time points)

Dangerous Reef Control 10 2 (total of 20 time points) IgG ELISA, Lysozyme assay,

Flow Cytometry (T and B

lymphocytes), RT-qPCR and

ddPCR

Ivermectin 8 2 (total of 16 time points)

Total 41 89

FIGURE 1 | Biplot of immunological and health parameters in Australian sea lion pups (N. cinerea) from Dangerous Reef (DR) First Capture-Control (blue ellipse),

Dangerous Reef Second Capture-Control (green ellipse), Dangerous Reef Second Capture-Treatment (yellow ellipse), Seal Bay (SB) First Capture (red ellipse), Seal

Bay Second Capture (purple ellipse) and Seal Bay Third Capture (brown ellipse). Arrows display PCA loading vectors with the arrow’s length and direction, indicating

strength and increasing variance. Angles between arrows are representative of the strength of the correlation between variables, with small angles showing highly

correlated variables. The dots represent individual pup samples. PCV, Pack cell volume; TPP, Total plasma protein; IgG, Immunoglobulin G; Lys, Lysozyme; cWBC,

White blood cells count; Lymph, Lymphocytes count; Eos, Eosinophils count; IFNγ, Interferon-γ; 1Ct IL-6, 1Ct IL-10, 1Ct TNFα.

when the SB control and the DR control group were compared.
There was no significant difference seen in the comparison
of the DR treatment and the DR control groups [t(69) =

0.40, p = 0.69] when individual levels of the predictor (DR
treatment, DR control and SB control) were further evaluated
(Figure 1).

Multivariable Analysis for Host and
Environmental Variables
Temporal changes in 1Ct IL-6, 1Ct IL-10, derived B and T
lymphocyte numbers, IgG, and lysozyme (Figure 2) were non-
linear. Significant length-related changes were seen for gene
expression of IL-6 [F(3,54) = 4.55, p < 0.01] and IL-10 [F(3,33)
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= 3.93, p < 0.01], and derived T lymphocytes [F(3,32) = 4.36,
p = 0.01], with an overall decreasing trend with pup age
(Figures 2A,B,D). A similar but opposite trend and significant
correlation with length was evidenced for B lymphocytes [F(3,30)
= 2.59, p < 0.05] after adjusting for the significant effect of
treatment group [F(2,30) = 10.80, p < 0.001] (Figure 2C), and
for IgG [F(3,59) = 3.13, p < 0.05], after adjusting for the non-
significant effect of ivermectin treatment and the significant effect
of sex [F(3,59) = 4.47, p = 0.038] (Figure 2E). The expression
of TNFα was not correlated with increasing pup age, but both
TNFα and IL-6 models showed a significant positive correlation
with each other [F(1,49) = 47.70, p < 0.001 and F(1,61) = 10.1630,
p = 0.002, respectively]. Overall, control pups from Seal Bay
and Dangerous Reef showed a decrease in the expression of IL-
6 (that is, higher 1Ct values) followed by a uniform increase in
B lymphocytes and relative IgG concentration over time, arriving
to a peak coinciding with a standard length of 75± 5 cm (60± 5
days estimated age).

The analysis of SPE data in pups sampled at Seal Bay revealed
a significant positive association with age for total serum protein
[F(3,50) = 26.65, p < 0.001], α2 [F(3,50) = 3.24, p < 0.05], β2
[F(3,37) = 13.00 p < 0.001] and γ- globulin fractions [F(3,50) =
22.47, p < 0.001] (Figure 3). The interaction between age and
disease severity was significant for the α1 fraction [F(3,32) = 6.31,
p < 0.001], such that changes across time for the α1 fraction
were greater in animals categorized as having “severe” disease
compared to those categorized as “mild” (Figure 3F). In addition,
albumin concentration varied significantly with age [F(3,33) =

7.36, p < 0.001] (Figure 3B). The β1 fraction, although not
significantly associated with age, was significantly lower [F(1,42) =
7.30, p< 0.001] in severely diseased animals compared to mildly-
diseased pups. Details of all models fitted to acute-phase protein
fractions can be found in Appendix B, Table B. 2. Descriptive
statistics (mean ± SD) for all the serum protein fractions are
provided in Appendix C, Table C. 1.

When comparing hookworm intensity between seasons, the
multivariable analysis demonstrated significant differences in
IgG concentration [F(2,59) = 20.38, p < 0.001], derived B
lymphocyte counts [F(2,30) = 10.80, p < 0.001], and gene
expression of IL-6 [F(2,48) = 57.79, p < 0.001] and IL-10
[F(2,36) = 15.16, p < 0.001] between the high hookworm
intensity season (Seal Bay) and the low hookworm intensity
season (Dangerous Reef, control) (Figure 4). Post-hoc analyses
revealed that Seal Bay (high-intensity season) pups had lower
IgG concentrations (t = 5.82, p < 0.001) and IL-6 (t = 5.02,
p < 0.001) and IL-10 (t = 5.47, p < 0.001) cytokine gene
expression, and greater derived B lymphocyte counts (t = 2.667,
p < 0.05) compared to Dangerous Reef (low-intensity season)
pups (Figures 4A,C,D, Appendix B, Tables B. 1–3). In addition,
the interaction between standard length and colony (SB control
and DR control groups) was significant [F(6,53) = 3.57, p= 0.004]
when modeling lysozyme levels, such that changes in lysozyme
levels with increasing pup age were greater in the DR control
group (Figure 2F).

To further determine the impact of hookworm infection
on pup immune development, the immunophenotypes of DR
treatment and DR control groups were compared. Treated pups
demonstrated greater expression of IL-6 mRNA [lower1Ct IL-6;

F(2,50) = 21.70 p < 0.001] (Figure 4C) compared to the control
group. Although no other immunological measurements where
significantly different between groups, there was a trend of lower
expression of IFNγ and higher expression of TNFα in the treated
group. All models fitted to immunological variables can be found
in Appendix B, Table B. 1.

DISCUSSION

Only a small proportion of wildlife health assessment studies
are carried out on threatened species [reviewed in (67)],
such as the endangered Australian sea lion. Disease and
associated population declines have been reported in some
free-living pinnipeds (10, 11, 68–71). These are likely to
be the outcome of multi-factorial disease, ecological and
anthropogenic impacts, making determination of cause and effect
complex (72). However, investigating factors that can increase
individual disease susceptibility is essential to understanding
the role of disease in regulating wildlife populations (73).
Ecoimmunological studies, that is, those that combine clinical
pathology measures with biological variables such as age,
sex, species ecology and genetic diversity in conjunction with
environmental factors such as pathogens, persistent organic
pollutants (POPs) and seasonality, are important to evaluate
population resilience and potential for disease to impact on
population dynamics (3, 41, 74).

This study describes the changes in immune function
in neonatal Australian sea lion pups within the context of
endemic hookworm infection, the only macroparasite identified
in the gastrointestinal tract of pups (15, 75). During the
early patent period, a peak in IL-6 mRNA was observed.
This was followed by a uniform increase in acute phase
proteins, based on lysozyme and SPE, and then B lymphocyte
numbers throughout the patent period. This culminated in a
Th2-promoted anti-helminth inflammatory responses (elevated
B lymphocyte numbers and IgG), around the time where
Australian sea lion pups start to naturally eliminate hookworm
parasites (15) (75 ± 5 cm standard length; 60 ± 5 days
estimated age). Similar trends have been demonstrated in New
Zealand sea lions (37), where IgG levels also increased with
age; however, the present study shows the broader immune
context of these changes. Our results indicate that, as described in
killer whales and bottlenose dolphins (76), IL-6 marks the early
stages of inflammation, stimulating the acute phase response
and activation of B lymphocytes via immunoglobulin class
switching and immunoglobulin production (77). The observed
delay between IL-6 and subsequent B lymphocyte expansion and
IgG production is consistent with the seven to 9 days required
by B lymphocytes to become activated, enhance immunoglobulin
class switching and produce IgG (78, 79). The age-related changes
in SPE profiles are consistent with other findings in canine (C.
familiaris) pups and bovine calves (31, 38). Acute-phase proteins
are a set of non-specific markers from the innate response
and have therefore been used to detect early inflammation in
domestic and wildlife species as they elevate or decline within 1
and 3 days after inflammatory stimulus or reactive processes (49,
80–83). General trends, and what are considered negative and
positive acute-phase proteins (APP) will generally be conserved
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FIGURE 2 | Model estimated relationship between (A) 1Ct IL-6, (B) 1Ct IL-10, (C) B lymphocytes, (D) T lymphocytes, (E) IgG, and (F) Lysozyme and standard

length (cm) of Australian sea lion (N. cinerea) pups. Statistical models for T and B lymphocyte populations and IgG were performed on a log scale, but model-derived

back-transformed means (emmeans package R) are presented. The shaded area represents the 95% confidence interval. Lower 1Ct indicates greater cytokine

expression. Patency periods adapted from Marcus et al. (15).

across species (80), allowing for evaluation and comparisons.
In the present study, consistent with other species, such as the
Northern elephant seal (Mirounga angustirostris) (83), canines
and domestic felids (Felis catus) (31), albumin was identified as
a negative APP, with a declining concentration in the early stages
of the acute phase protein response (APPR) and later increasing
throughout hookworm patency.

In contrast with humans, where hookworm infections can
occur at any stage of life, the timing of hookworm infection in
Australian sea lions in the neonatal period to ∼2–3 months of
age (15, 20) complicates the separation of immunological changes
associated with disease from age-related immune changes.
However, the differences seen among animals in this study
from high- and low-intensity hookworm seasons, and following
treatment with ivermectin, indicate that hookworm infection is
significantly modulating many of these changes. Our study has
demonstrated that lower concentrations of IgG are associated
with greater hookworm disease severity, consistent with a finding
in South American fur seals that surviving pups had greater
IgG concentrations than those pups who died most likely from
hookworm infection (16). Although immunoglobulin E has been

associated with parasitic infection in several mammalian species,
it has not been found inmarinemammals (34, 84) and so IgGwas
chosen in our study as an indicator of plasma cell maturation.
Thus, the potential role of IgE in the elimination of hookworm
infections in pinnipeds aged 2–3 months of age remains unclear.
As hookworm infections are protein-losing enteropathies, it is
possible that the lower IgG concentrations observed in Seal
Bay high-intensity season pups is related at least in part, to a
resource limitation due to greater enteric protein loss associated
with high-intensity hookworm infection. On the other hand, IgG
differences seen between colonies may also be partially associated
with other elements not measured in this study such as lice
and microparasitic infections [e.g., Giardia duodenalis (85)], skin
injuries and abrasions. Unfortunately, due to the limited sample
size, we were unable to meaningfully include the presence and
intensity of lice as additional variables in our statistical models for
this study. However, the broader immunological view provided in
the present study and the ability for treatment to reveal causation
strongly suggest that this is at least partly due to parasite-
induced immune regulation. Lower IgG concentrations were
preceded by reduced IL-6 gene expression and apparent retention
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FIGURE 3 | Model estimated relationship between (A) Total serum protein, (B) Albumin fraction, (C) α2 fraction, (D) β2 fraction, (E) γ- globulin fraction and age, and

(F) α1 fraction with age and disease severity (mild/severe) in Australian sea lion (Neophoca cinerea) pups. Mild: TPP ≥ 60 g/L and PCV > 35%; Severe: TPP < 60 g/L

and PCV ≤ 35%. The statistical models for β2 and γ-globulins were fitted on a log scale, but model derived back-transformed means (emmeans package R) are

presented in figures. The shaded area represents the 95% confidence interval. Patency periods adapted from Marcus et al. (15).

of B lymphocytes in circulation rather than differentiation into
plasma cells in tissue (78, 86) in Seal Bay high-intensity control
pups. There was a concurrent trend toward lower IFNγ (Th1
cytokine inhibited by Th2 responses) levels as an effect of
treatment in pups from Dangerous Reef (78, 86). Although this
immunomodulation could be driven by the presence of other
stressors such as pollutants (87–89) or other concurrent but
undetected infectious disease interfering with the immunological
response and exacerbating a high parasite burden, the effect of
treatment on expression of IL-6 suggests that the suppression
of IL-6 and the subsequent dampening of the anti-parasitic T-
helper 2 response is at least partly hookworm-driven, as is the
case in hookworm infections in humans (90, 91). The suppression
of IL-6 may also be driving the lower lysozyme activity in the
Seal Bay high-intensity season group as IL-6 has a role in the
activation of the APPR (80, 81) of which lysozyme is a part.
Additionally, IL-6 can induce an upregulation of lysozyme in
human polymorphonuclear cells (PMN) (92), which is consistent
with the higher levels of neutrophils reported for Australian
sea lion pups in Dangerous Reef control compared to those of
Seal Bay control (11). The impact of treatment or hookworm
infection intensity on other APP, based on SPE, could not
be evaluated as these were only examined in pups at Seal
Bay. It is likely that the patent stage of hookworm infection

acts as a triggering stimulus for the promotion of the APPR
(80, 83). Thus, the suppression of IL-6 could also impact the
APPR as this cytokine mediates increasing levels of protein
electrophoretic fractions as observed in younger canine pups
with hookworm infection (31, 93, 94). More investigations of
APP are needed, comparing high- and low-intensity seasons to
identify if the changes across time seen in this study are related
to an actively acquired immune system, differing hookworm
infection intensity, or related to other confounding features, for
example, cumulative physiological stress due to repeated capture.
However, capture method was consistent across the groups, and
we therefore don’t expect it to be responsible for the differences
noted between groups.

The higher gene expression of IL-6 in the Dangerous Reef
treatment group suggests that this cytokine might be a more
sensitive marker for immune activation than other parameters
measured in this study, or clinical observation. Apart from
absolute eosinophil counts and red blood cell values, both
the present study and Marcus et al. (54) indicated no other
significant effect of anthelminthic treatment on immune or
clinical parameters, consistent with the administration of the
treatment relatively late in the course of infection. A larger effect
of treatment would likely have been found if animals had been
treated earlier, as shown for clinical parameters in the recent
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FIGURE 4 | Figure Model estimated mean ± standard error for (A) 1Ct IL-6, (B) B lymphocytes, (C) IgG, and (D) 1Ct IL-10. Statistical models for IgG and B

lymphocytes were fitted on a log scale, but model derived back-transformed means (emmeans package, R) are presented in figures. Significance codes (p): “*” 0.05;

“**” 0.01; “***” 0.001. Lower 1Ct indicates greater cytokine expression.

study by Lindsay et al. (20), where ivermectin treatment was
given to Australian sea lion pups <2 weeks old. Interleukin 6 has
been described previously as a sensitive marker of inflammation
in carnivores (49, 95, 96) and other mammalian species of
veterinary importance (97–99).

The ecological context can strongly affect the interpretation
of immune defenses in the wild. Therefore, the use of
a comprehensive multifactorial approach, such as the one
described herein, is vital to better understand the complexity
of host-parasite interactions. This is the first study exploring
cytokine gene expression together with serological measures
of immunity as part of an ecoimmunological approach
in free-ranging Australian sea lion pups. Several factors,
including POPs, have been postulated as metabolic stressors
and immunomodulators in humans and wild animals (87–89).
Recently, per- and poly-fluorinated alkyl substances (PFAS) used
in commercial and industrial applications were identified in the
liver of Australian pinnipeds, including in Australian sea lion
pups (22). However, their potential effect on disease susceptibility
is yet unknown. The identification of sensitive biomarkers
for early stages of inflammation and resilience to hookworm
infections, and the understanding of their context obtained

from this study, will pave the way for future immunological
studies in the species and will serve as tools to address the
potential effect of pollutants and other anthropogenic stressors
on immune responses, to inform management strategies to aid
the conservation of this endangered species.
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