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Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide.
Due to the lack of early diagnosis methods and warning signals of CRC and its strong
heterogeneity, the determination of accurate treatments for CRC and the identification
of specific early warning signals are still urgent problems for researchers. In this study,
the expression profiles of cancer tissues and the expression profiles of tumor-adjacent
tissues in 28 CRC patients were combined into a human protein–protein interaction
(PPI) network to construct a specific network for each patient. A network propagation
method was used to obtain a mutant giant cluster (GC) containing more than 90% of
the mutation information of one patient. Next, mutation selection rules were applied
to the GC to mine the mutation sequence of driver genes in each CRC patient. The
mutation sequences from patients with the same type CRC were integrated to obtain
the mutation sequences of driver genes of different types of CRC, which provide a
reference for the diagnosis of clinical CRC disease progression. Finally, dynamic network
analysis was used to mine dynamic network biomarkers (DNBs) in CRC patients. These
DNBs were verified by clinical staging data to identify the critical transition point between
the pre-disease state and the disease state in tumor progression. Twelve known drug
targets were found in the DNBs, and 6 of them have been used as targets for anticancer
drugs for clinical treatment. This study provides important information for the prognosis,
diagnosis and treatment of CRC, especially for pre-emptive treatments. It is of great
significance for reducing the incidence and mortality of CRC.

Keywords: early warning signal, personalized treatment, dynamic network biomarker, colorectal cancer, critical
transition point

INTRODUCTION

Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide
(Dienstmann et al., 2017). CRC is mostly asymptomatic until its advanced stages, which contributes
to the difficulties of treatment (Aghagolzadeh and Radpour, 2016). Doctors cannot perform routine
and effective treatment precisely on patients, such as surgery, radiotherapy and chemotherapy, thus
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affecting patients’ survival time and quality of life. Therefore,
using effective screening methods for cancer is becoming
increasingly important for the prevention and inhibition of CRC.

The occurrence and development of cancer are accompanied
by the gradual accumulation of somatic mutations. The
accumulation of mutations in some critical genes that affect
cell proliferation, differentiation and death will eventually
lead to cancer. Therefore, finding the mutation order of
critical genes in CRC patients and blocking the process in
time can effectively prevent the development of cancer and
even achieve the goal of pre-emptive treatment. On the
other hand, tumor-adjacent tissues are most susceptible to
transforming into cancer tissue and will eventually develop
into cancer tissue, as the transcriptomes of tumor-adjacent
tissue samples often approximate a gene expression signature of
invasive cancer, which can be predictive of disease progression
in early premalignant lesions (Finak et al., 2008; Graham
et al., 2011; Chatterjee et al., 2018). Therefore, this study
intends to analyze the process from the level of tumor-
adjacent tissues and cancer tissues to find the critical point
at which tumor-adjacent tissue transitions to cancer in the
process of CRC development, which can serve as an early
warning of cancer.

Disease biomarkers are used to diagnose various phases of
disease and to monitor severity of disease and response to
therapies and can be used to predict prognosis and which
patients are likely to respond to therapy (Wang and Ward,
2012). There are already some molecular tumor biomarkers
for clinical research, but these biomarkers have limitations in
sensitivity and specificity (Kim et al., 2010). CRC patients often
show different therapeutic effects and prognoses (Shin et al.,
2017). The same biomarker is not effective for all patients
with CRC and cancer type and individual differences need
to be considered. Therefore, it is necessary to develop CRC-
specific, personalized biomarkers for different molecular types
and tumor stages, taking the heterogeneity of CRC into account.
In this way, the biomarkers being untargetable or producing
a poor or no effect due to low sensitivity and specificity
will be resolved.

Recently, many studies have found that a sudden change
in the state of a system exists in clinical medicine. Such a
change often occurs at a critical threshold, or the so-called
“tipping point,” at which the system shifts abruptly from one
state to another (Chen et al., 2012). During the progression
of many complex diseases, the deterioration is not necessarily
smooth but abrupt (Chen et al., 2012; Li et al., 2014, 2017;
Liu et al., 2014; Mojtahedi et al., 2016; Richard et al., 2016;
Lesterhuis et al., 2017). This transformation qualitatively changes
the state of the biological system and therefore plays a key
role in biological processes. It usually occurs in pre-disease
states (or critical states) in the development of complex diseases.
The pre-disease state (Achiron et al., 2010) is the limit the
normal state can reach before the critical point. At this
stage, if properly treated, the disease can be reversed back to
normal. Therefore, it is important to determine the critical
point before the transition and detect the pre-disease state to
prevent the disease with appropriate interventions. The new

concept of dynamic network biomarkers (DNBs) is applicable
in this type of scenario. It is different from the traditional
static method, which was developed on the basis of non-
linear dynamics and complex network theory (Chen et al.,
2012; Liu et al., 2012). The concept of DNBs fundamentally
distinguishes not only normal samples from disease samples
but also pre-disease samples from disease samples and thus has
great potential to achieve a true warning of cancer. Researchers
have applied the DNB method in lung, kidney and thyroid
cancers (Liu et al., 2017, 2019) to identify preventative and
prognostic biomarkers, but there is no relevant research in
CRC. In contrast with Liu and colleagues, we chose the human
protein interaction network as the background network for
our study, which can reflect the biological functions of the
individuals as a whole and has more biological significance.
Second, as did Liu and colleagues, we all applied the three
basic rules of the DNB method, but the research purpose
and research methods were different. The transition point
of cancer found by Liu and colleagues fell on a specific
clinical stage, while we focused more on genes contributing
to the disease transition, which will facilitate the detection
of targeted drugs in the future. In addition, before using
the DNB method to find DNBs, we explored the mutation
sequences of genes in patients during cancer development,
created mutation propagation modules based on the mutation
sequences of genes, and then detected the critical transition
points before disease.

In this study, we used multiomics data of CRC to obtain
a specific mutant giant cluster (GC) featuring the identified
mutant genes by a network propagation method. The biological
significance of GCs and a high degree of consistency between
GC and cancer-related pathways were confirmed by functional
enrichment analysis of GCs. Subsequently, we used mutation
selection rules to determine the mutation sequences of the
mutant genes and used a dynamic network method to mine
each patient’s specific DNBs. These DNBs can identify the
transition point from normal to cancer in tumor progression.
Clinical data verification showed that the transition point we
obtained is in line with clinical staging. Due to the high
tumor heterogeneity of CRC, we comprehensively considered
the driver gene mutation sequences and DNBs of patients
with the same type of disease and identified drug targets
that could block the cancer process related to DNBs. This
strategy provides important reference value for the diagnosis
and treatment of CRC, especially for pre-emptive treatments,
and is of great significance for reducing the incidence and
mortality of CRC. Recently, there have been many studies
identifying CRC biomarkers, but these studies have limitations
in experimental data and experimental methods as well as in the
accuracy, sensitivity and specificity of the identified biomarkers.
In our study, each cancer sample had a tumor-adjacent sample
compared with it. Under the premise of ensuring accuracy, the
heterogeneity of CRC was considered. Using the concept of DNBs
to explore the dynamic characteristics of CRC, we can better
identify the early warning signals of sudden cancerous changes
in the pre-disease state and achieve a true early cancer warning to
prevent disease.
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MATERIALS AND METHODS

Data Collection
In this study, the expression profiles of 41 CRC patients were
downloaded from The Cancer Genome Atlas (TCGA1). Each
patient had a pair of cancer tissue and tumor-adjacent tissue
expression data. The mutation profiles of 399 CRC patients
were also obtained from TCGA. A total of 28 patients had
both expression and mutation data, which were used in this
study. Clinical information such as tumor staging and consensus
molecular subtype (CMS) classification of these 28 patients
was obtained from the cBioPortal website (Gao et al., 2013)
and the CRC Subtype Consortium (CRCSC) website (Guinney
et al., 2015). At the same time, 699 driver genes of CRC were
obtained from DriverDB (Chung et al., 2016). A total of 39,240
experimentally confirmed human protein–protein interactions
(PPI) were downloaded from the HPRD (Keshava Prasad et al.,
2009). After preprocessing of the data, such as de-duplication,
removal of isolated nodes, removal of self-interactions and
loopback interactions, 36,867 pairs of 9,453 genes were used to
construct a human PPI network for subsequent study.

The expression data and mutation data of each CRC patient
were mapped into the PPI network to obtain a patient-specific
network. The red nodes in the network represent mutant genes,
and the white nodes represent non-mutated genes. Patient-
specific GC mutations were obtained using network propagation
analysis. In each patient, the mutation selection rule was applied
to the GC to obtain the mutation sequences of driver genes. By
this method, the mutated driver genes are sequenced as sequential
changes during tumor development. Dynamic network analysis
was used to find critical transition points through differential
expression analysis, clustering analysis, and calculation of the
criticality index (CI) to obtain patient-specific DNBs. Drug
targets that block cancer progression were further explored in
terms of their ability to recognize the DNBs (The workflow was
shown in Figure 1). In the cluster analysis, we used the function
pamk in the R package fpc for unsupervised clustering and
selected the default optimal number of clusters. When searching
for transition points, for the individual differences of patients, we
only selected the maximum value of each patient’s CI and did not
specifically focus on the range of change of each patient’s CI value.

Construct the Patient-Specific Networks
For each patient with CRC, the expression profile was mapped
to the PPI network. Since each patient’s expression profile had
two expression datasets (one of the cancer tissues and one of the
tumor-adjacent tissues), to ensure the specificity of the patient
network, we selected gene pairs that interacted in the network
with expression values for each gene in the two tissue samples
not both being zero; in this way, the specific network of each
patient was generated.

Network Propagation of Mutation Effects
To simulate the propagation of mutation effects through the
PPI network, we employed the network propagation method

1https://www.cancer.gov/tcga

(Vanunu et al., 2010), which utilizes the random walk with
restart (RWR) approach within a network. PPIs have often been
screened at the proteome scale for many organisms, revealing
1000s of physical interactions between proteins (Valdeolivas
et al., 2019). The availability of large-scale PPI networks led
to the application of graph theory-based approaches for their
exploration, with the ultimate goal of extracting the knowledge
they contained about cellular functioning. These methods exploit
the tendency of functionally related proteins to lie in the same
network neighborhood (Schwikowski et al., 2000; Katsogiannou
et al., 2014; Arroyo et al., 2015; Chapple et al., 2015).

Random walk with restart is the state-of-the-art guilt-by-
association approach (Valdeolivas et al., 2019). A patient-specific
network (undirected network) is defined as G = (V, E). The
adjacency matrix of the network is defined as A, and M denotes
a transition matrix that is the column normalization of A. An
imaginary particle starts a random walk at an initial node v0∈V.
Considering that the time is discrete, t∈N, at the t-th step, the
particle is at node vt. Then, it walks from vt to vt+1, a randomly
selected neighbor of vt following matrix M. In the RWR version,
at each iteration, the particle can also restart by jumping to
any randomly selected node in the graph with a defined restart
probability, r∈(0,1). This prevents the walk from being trapped
in a dead end. Moreover, we can restrict the restart of the particle
to a specific seed, setting each patient’s mutant gene as the seed.
In doing so, the particle will explore the graph focusing on the
neighborhood of the seed and measure the proximity between
the seed and all the other nodes in the graph. Then, the RWR
equation can be defined as follow:

PTt+1 = (1− r)MPTt + rPT0 (1)

The vector P0 is the initial probability distribution. Therefore,
in P0, only the seed has values different from zero. Each random
walk only has one seed node, which is a mutant gene. Random
walks are performed for as many mutations as the current patient
has. After several iterations, the difference between the vectors
Pt+1 and Pt becomes negligible, the stationary state is reached,
and the elements in these vectors represent a proximity measure
from every graph node to the seed. In this work, iterations are
repeated until the difference between Pt and Pt+1 falls below
10−10 (Li and Patra, 2010; Erten et al., 2011; Zhao et al., 2015).
We set the global restart parameter to r = 0.7 (Kohler et al., 2008;
Li and Li, 2012; Smedley et al., 2014).

The above method results in a series of mutation propagation
modules centered on the mutant seed gene in each patient.
The mutation propagation modules overlap each other to form
interconnected clusters, and we maximize the connectivity in
the interconnected clusters in the patient-specific network. The
cluster is called the mutant GC. This GC contains a maximum
of the number of mutant genes and the mutation propagation
module formed by the patient, which can fully reflect the state
of mutation of the patient and has certain biological significance.

Mutation Selection Rules
The development of cancer is accompanied by the gradual
accumulation of somatic mutations. In the process of somatic
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FIGURE 1 | The workflow of cancer warning signal identification. Identification of cancer warning signals using TCGA data via the network propagation method,
mutation selection rules, and DNB analysis.

mutation, finding the sequence of mutations in time is crucial
for blocking the malignant development of cancer. It also has
value for guiding research and understanding the occurrence
and development of tumors. In the development of tumors,
somatic mutations follow certain mutation selection rules. Based
on the existing research results (Shin et al., 2017), we employed
the mutation selection rule to select the next mutated gene
that minimized the size of the connected module between
a mutation candidate and all the previously mutated genes
among mutation candidates overlapping with any previously
mutated ones. The rule describes two opposing drivers of cancer
development, one of which is to reflect the process of promoting
cancer progression by ensuring an intersection with the current
mutation propagation module and the other of which is to reflect
the inhibition of cancer progression by minimizing connective
clusters. These two driving forces simulate the confrontation
process between cancer development and the immune system in
the human body. The specific process is as follows:

Step 1: We selected an initial mutation among all the
mutations except driver mutations.

Step 2: According to the rule, we determined the next mutation
to be added at each evolution time step.

Step 3: We repeated the previous steps starting from all
the available initial mutations and finally obtained as many

mutation sequences as the order of the total number of somatic
mutations of the patient.

Step 4: By investigating the order of a pair of mutations in
the resulting mutation sequences across patients, we constructed
a matrix that exhibits the number of mutation sequences such
that one mutation in a row occurs earlier than the other
mutation in a column.

Step 5: From the mutated gene sequence matrix, the order
of mutations of any mutation gene pair can be obtained,
and then the mutation sequence of all mutation genes in the
patient GC is obtained.

Dynamic Network Biomarker (DNB)
Analysis
To identify predictive biomarkers for early diagnosis and
prevention, and to understand the mechanism of disease
development, we introduce DNB method. These DNBs can
detect early warning signals that warn of sudden deterioration
before the critical transition occurs with only a small number of
samples. As Supplementary Figures S1, S2 show, as mutations
accumulate, at one specific point, DNBs will be expressed
differently from other genes and exert a significant influence on
the following processes. Based on non-linear dynamic theory
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and the measured data, we theoretically and numerically showed
(Chen et al., 2012; Li et al., 2017) that if there is a dominant group
of molecules or genes satisfying the following three criteria from
the observed data, then the system is near the critical state or
tipping point, and the dominant group contains the DNBs we are
looking for:

(1) Each member of the dominant group fluctuates violently;
(2) The correlation between any pair of members in the

dominant group becomes very strong;
(3) The correlation between members of the dominant group

and other non-dominant group members becomes very
weak.

The following quantification index (CI: criticality index)
approximately considering all three criteria can be used as the
numerical signal of the DNB method:

CI =
√
size

PCCi

PCCo
SDi (2)

where size is the number of molecules in the dominant group or
DNB, SDi is the average standard deviation of all molecules in the
dominant group, PCCi is the average PCC of all molecule-pairs
in the dominant group (absolute value), and PCCo is the average
PCC of molecule-pairs between the dominant group and others
(absolute value). That is, from the measured data, the appearance
of a group of genes (or proteins) with strongly collective
fluctuations indicates an imminent critical transition (i.e., the
system is near the critical state). Thus, the group members are
the predictive/dynamic biomarkers for this critical (generally
irreversible) transition. When the CI reaches a peak or increases
markedly during the measured periods, the biological system is
at the critical period or tipping point (Yang et al., 2018). The
DNB distinguishes not only normal samples from disease samples
but also pre-disease samples from disease samples using both
molecular fluctuation information (i.e., dynamic information)
and network information (i.e., correlation information among
molecules), in contrast to traditional static biomarkers.

RESULTS

Basic Information of Patients
In this study, data from patients with CRC, including cancer
sample expression data, tumor-adjacent sample expression data,
and mutation data, were extracting. A total of 28 patients, 3
patients had clinical stage 1 tumors, 14 patients had clinical
stage 2 tumors, 5 patients had clinical stage 3 tumors, and
5 patients had clinical stage 4 tumors, and the other 1
patient had no clinical staging information. According to
the CRCSC, 4 patients had CMS1, 8 patients had CMS2,
3 patients had CMS3, and 9 patients had CMS4, and the
other 4 patients had no CMS typing information. In addition
to CMS typing information, we also analyzed microsatellite
instability/microsatellite stability (MSI/MSS) typing information
for the CRC patients. Details of the 28 patients with CRC can be
found in Supplementary Table S1.

Patient-Specific Networks
Based on the expression data from the cancer sample and the
control sample of each CRC patient, a specific network for
each patient was constructed. The genes in the network were
expressed in at least one of the cancer samples and the control
sample. The node is completely dependent on the patient’s
own gene expression and has strong specificity, providing an
accurate and highly personalized basis for subsequent research.
The basic information of the patient-specific networks is shown
in Supplementary Table S1. From the statistical results, we
found that the number of genes in each patient’s specific
network and the number of interactions between genes were very
similar; however, the number of mutations in each patient was
significantly different. These networks fully reflect the differences
between patients and reflect the necessity of personalized
treatment. By visualizing the patient-specific networks, we
found that the mutated genes and the non-mutated genes
were closely associated in the network, and there were one-to-
many and many-to-many interaction relationships. Therefore,
in each patient, studying a certain mutant gene alone would
not reflect the overall situation of the patient. The mutation
function module consisting of mutant genes and non-mutant
genes was selected as the research object. We mined the mutation
propagation module in the patient-specific network to explore the
mutation information of the patient.

Mutation Propagation Module
Using the network propagation method, the mutation genes of
each CRC patient were used as the seeds, and the patient-specific
network was used as the background network to obtain many
mutation propagation modules centered on the mutant seeds. As
one seed migrates through the network, its own mutational effect
will decrease as the number of walking steps increases. That is,
the closer the gene is to the seed, the higher influence the seed
will have, and the higher the degree of correlation with the seed
is, the higher the final score will be; on the contrary, nodes with
low scores are not included in the mutation propagation module
composed of the mutant genes. To ensure high correlation
between each node in the mutation propagation module and
the seed gene, we compared multiple thresholds (0.0001, 0.0005,
0.001, and 0.005). The score threshold for mutation propagation
was finally determined to be 0.001, which means that the nodes
affected by the seed genes with a score greater than 0.001
were retained to form a mutation propagation module. This
threshold value also satisfies that the size (number of genes) of
the minimum mutation propagation module is not zero under
the premise of ensuring high correlations between each node in
the mutation propagation module and the seed genes. Among
the mutation propagation modules of all patients, the size of the
largest propagation module was 205, and the size of the smallest
mutation propagation module was 1. The module size is shown
in Supplementary Table S1.

Giant Clusters (GCs)
When all the seeds of the patient form mutation propagation
modules, which are scattered in the patient-specific network,
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FIGURE 2 | Relationship between the number of seeds and the size of the GC. The abscissa shows the NO. of each of 28 patients, and the ordinate shows the
number of genes. The blue line is the number of genes contained in the GC, and the orange line is the number of seeds contained in the GC.

some genes are shared by multiple propagation modules.
Multiple modules are connected to each other to form a module
cluster by sharing the same gene. The module cluster is a
subnetwork formed by two or more mutant seeds. We choose the
largest connected module cluster, called the giant cluster (GC).
The GC is the largest subnet formed by the interconnection of
mutation propagation modules dominated by patient mutated
genes that may have a significant impact on patient-specific
networks. The relationship between the number of seeds and
their corresponding GC size for 28 patients is shown in Figure 2.

In Figure 2, the greater the number of seeds, the more
genes are contained in the GC. By counting the proportion
of genes contained in the GCs of 28 patients in their specific
networks, it was found that from the 23rd patient (the 24th
patient begins Figure 2), when the number of seeds was greater
than 1,000, the proportion of GCs in the network increased
from 10% to more than 70% (Supplementary Table S1).
This indicates that the accumulation of mutant genes in CRC
patients leads to changes in the number and function of
genes affected by GC from quantitative to qualitative, which is
consistent with the tumor development process. By calculating
the proportion of seeds in the GC to all seeds, we can conclude
that the GC contains more than 90% of the mutant seeds
in the patient (Supplementary Table S1). It is indicated that
the information contained in the GC is sufficient to reflect
the patient’s mutation state. A subsequent study of the GCs
confirmed our conjecture.

To study the biological processes involved in GC and the
relationship with cancer in patients with CRC, 189 cancer-
related gene sets were downloaded from the Molecular Signature
Database (MSigDB; Subramanian et al., 2005; Liberzon et al.,
2011). Functional enrichment analysis was performed on the

GCs of 28 patients with 189 cancer-related gene sets. We believe
that the GC contains enough information on patient mutations.
Therefore, if the genes in the GC are widely enriched in cancer-
related pathways, they play a significant role in the development
of tumors. The enrichment results are shown in Figure 3. In
the enrichment heatmap, as seen from the large blue color in
the figure, the genes contained in GC are highly correlated with
cancer, participate in cancer-related biological processes, and
play a significant role in the occurrence and development of
tumors. In addition, as shown in the coordinates on the left
side of the figure, the enrichment analysis results can be used
to cluster different CRC patients with CMS. It can be seen
from the figure that the heat maps of patients with different
CMS types are very different. By the Wilcox rank sum test,
the P-value between every two types was less than 0.05, so
the difference was significant. The biological functions of GC
in patients with different CMS classifications are inconsistent.
Therefore, as shown in the figure, GC can distinguish different
types of patients well.

Through various comparisons and functional analyses, GC
has a high correlation with CRC patients. The seed and non-
seed genes in GC can represent cancer occurrence, development,
CMS typing, etc. Therefore, it is meaningful to detect mutation
sequences in GC.

Mutation Sequence of Mutant Genes in
GC
As the GC can represent the modified biological function of
CRC patients, the mutation sequences of the mutant genes in the
GC can be found to describe the occurrence and development
of tumors in different patients. However, in the process of
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FIGURE 3 | Heatmap of enrichment analyses of 28 patient GCs in 189 cancer-related pathways. The horizontal axis shows 189 cancer-related gene sets, and the
vertical axis shows the GCs of 28 patients. The color gradient in the figure from red to blue represents the corrected P-value of the hypergeometric test. The smaller
the P-value, the more significantly the genes in the GC are enriched in the cancer-related gene set.

tumor development, there are 100s of genetic mutations in
tumor tissues, but most of them are passenger mutations
that represent neutral mutations (Zhang and Wang, 2019).
Only a small portion of them will actually cause cancer and
play a key role in tumor development. These mutations are
driver mutations. According to the set mutation rules, the
mutation sequences of the driver genes in the GC represent
the development of the tumor. The mutation sequence can
be used to define the time at which the tumor state changes
and further to find the critical transition point at which the
tissue transforms from normal to cancer in the process of
cancer development.

Since the mutated genes of each CRC patient are different,
the resulting driver gene mutation sequences are also different
(Supplementary Table S2). To determine a clinically relevant
mutation sequence, we analyzed the mutation order of samples
from patients with the same CMS with the mutation selection
rule, taking the heterogeneity of CRC into account, so that
patients with the same CMS will show a uniform mutation
sequence (Supplementary Table S3). We believe that this

integrated sequence can be used clinically as a reference for
judging the progression of cancer in CRC patients.

DNB Analysis
We used the mutation sequence of the driver genes in each
patient’s GC as the standard. The dynamic network method has
been applied. The change of the CI (criticality index) reflects the
changes of gene expression and biological function during the
development of the disease. By counting the increase of the CI
in different periods of each patient, it was found that the CI will
reach a peak or a significant increase within a certain period.
During this period, the genes of the dominant group showed
strong collective fluctuations. We believe that this period is the
critical point of transition. At the critical transition point in each
patient, the timely use of drugs can prevent CRC occurrence
and development.

Next, the relationship between CI changes and the number
of driver genes in each patient was examined. Figure 4 shows
changes in the CI of the TCGA-AA-3496 (16 driver genes in
the GC) and TCGA-AA-3663 (116 drivers in the GC) samples.
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FIGURE 4 | The curve of the CI. The upper part of the figure is the CI curve of the TCGA-AA-3496 sample, and the lower part is the CI curve of the TCGA-AA-3663
sample. The horizontal axis shows the dominant group dominated by the driver genes in each patient’s GC, and the vertical axis shows the CI of the corresponding
dominant group.

Regardless of the number of driver genes, a period in which the CI
reaches a peak (marked in red) can be found in each patient. After
that point, the CI returns to a relatively stable fluctuation state.
We believe that this period is the turning point of the patient’s
cancer, in which the dominant group genes are the DNBs of the
corresponding patient. See the Supplementary Figure S3 for the
CI curves for all the patients.

Verification of the Clinical Applicability of
the Transition Point
To validate the clinical applicability of the transition points based
on CRC typing, we grouped patients by different clinical stages.

In patients with the same CMS, we determined whether the
driver genes involved in the transition point of patients in early
disease stages were mutated before those of patients in advanced
disease stages. Taking CMS1 patients as an example, there were
4 patients with CMS1, 3 who were in clinical stage 2, and 1
who was in clinical stage 4. By analyzing the mutation order of
each patient and the corresponding transition point, we found
that the driver genes that were mutated before the transition
point (EP300) of patients in stage 4 included a transition point
gene (SPERT) of patients in stage 2. However, in the mutation
sequence of the patients in stage 2, the transition point genes
of the patients in stage 4 were not included, except for in
one patient in whom the transition point gene was EP300.
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Therefore, for patients with CMS1, the order of mutations at
the transition point is consistent with the chronological sequence
of clinical stage. That is, the stage 2 transition point genes
were mutated prior to the stage 4 transition point genes. In
addition to the clinical staging validation results in patients
with CMS1, the same validation results were obtained in other
subtypes (Table 1). This finding confirms the clinical applicability
of the transition point genes we found. It also demonstrates
the credibility of our mutation sequences and the accuracy of
potential anticancer targets.

Finding Drug Targets That Block Cancer
Progression
The mutation sequences in driver genes found in CRC patients
can be used to find drug targets that can block cancer process.
The dominant groups of genes at the transition point for patients
of the same CMS were integrated, called DNB_CMSi, where
i is a different type of CMS, and i = 1, 2, 3, 4; in addition,
we integrated the driver genes at the transition point with the
driver genes at the previous point of the transition point, called
Driver_CMSi. Similarly, i is a different type of CMS, and i = 1, 2,
3, 4. After integrating the data, the relevant functional pathways
were identified in the KEGG database, and the pathways needed
to meet the following conditions:

(1) A pathway must containing at least two driver genes in the
Driver_CMSi gene set;

(2) The anteroposterior regulation sequence of at least two
driver genes in the pathway must be the same as the
sequence of mutations after integration;

(3) Between the two driver genes in condition (2), there are
genes that are not in the Driver_CMSi gene set but are in
the DNB_CMSi gene set. These genes represent candidate
drug target genes.

Through a manual search, CMS1 samples included eight
candidate drug target genes, namely, AKT1, CALM1, CCND1,
CCNE1, CDK2, MDM2, PXN, and RELA. These genes frequently
appeared in the KEGG pathways identified for two driver genes
in the Driver_CMS1 gene set. For example, the candidate drug
target CCND1 is located between the two driver genes in
the pathways hsa05200: pathways in cancer, hsa05220: chronic

TABLE 1 | Clinical staging verification for driver transition points in patients
with the same CMS.

Stage 1 Stage 2 Stage 3 Stage 4

CMS1 SPERT/AR EP300

CMS2 COL6A3 AR

CMS2 LRP1B/FAT4/
ANK2

MAP1B/NFASC/
LRP2/SCN3A/LPA

CMS2 LRP2 AR

CMS3 PCLO/
CREBBP

CACNA1S/
EGFR

CMS4 CTNNB1 SMAD4

CMS4 CTNNB1 PTEN/NFASC/
RUNX1T1

myeloid leukemia, hsa05214: glioma, and hsa05218: melanoma.
The sequence of the two driver genes was consistent with the
order of mutations we found (Figure 5).

In the pathway map of Figure 5, p53 corresponds to the driver
gene TP53, and Rb corresponds to the driver gene RB1. From the
pathway, we can see that the position of TP53 in the pathway is
before RB1. In the mutation sequence in our integrated CMS1
patients, TP53 is also mutated prior to RB1. Moreover, CCND1 is
the gene encoding Cyclin D and is found between TP53 and RB1
in the pathway is in the DNB_CMS1 gene set of the transition
point dominant group of patients with CMS1. Therefore, CCND1
is a candidate drug target for blocking the progression of cancer
in CMS1 patients.

Similarly, CMS2 included four candidate drug target genes,
named PLCG1, PIK3R1, VAV1, and VAV3; CMS3 included six
candidate drug target genes, named PLCG1, MDM2, CALM3,
MAP2K1, MAPK1, and PLD1; and a total of two candidate drug
target genes were found in CMS4, named TGFB1 and SMAD3.
See Supplementary Table S4 for details.

In each type, there are specific candidate drug targets with
high specificity. These drug targets were frequently identified
in patients with the same CMS but not in patients with other
subtypes. For CRC, a cancer with high tumor heterogeneity,
different drugs can be used to target subtype-specific genes, which
could improve the therapeutic efficacy and reduce side effects.
However, at the same time, many aspects need to be considered
before a protein can be used as a drug target, such as molecular
weight, polarity, and tissue distribution in the body (Hopkins and
Groom, 2002; Bakheet and Doig, 2009). Therefore, we further
studied the existing drug target information and candidate drug
targets to explore adaptive anticancer drug targets.

We used the existing drug-target interaction data and our 18
candidate drug target genes to extract specific anticancer targets
and drugs, which might be used in cancer treatment. After we
annotated the 18 candidate drug target genes with the drug-target
information, 12 known drug targets (Table 2) were identified,
of which 6 had been used as anticancer drug targets in clinical
treatment. We hope that using these six drug targets can block the
development of specific cancers in time and achieve the goal of
pre-emptive treatment. In our opinion, the six identified targets,
which are closely related to the occurrence and progression
of cancer, including anti-inflammatory targets and nutritional
factors, will have the potential to become anticancer drug targets
and will be used in anticancer drug repositioning.

DISCUSSION

This study constructed a patient-specific network with patient
expression data. The genes in this network were determined by
patient-specific expression data. We know that the expression
profiles of patients with different tumor stages and different
cancer subtypes are different. Due to tumor heterogeneity, the
expression profiles of patients with the same tumor stage and the
same cancer subtype are not the same. Therefore, we obtained
each patient-specific network based on this theory (a typical
network map can be found in Supplementary Figures S1, S2).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 May 2020 | Volume 8 | Article 530

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00530 May 27, 2020 Time: 21:51 # 10

Liu et al. Precancerous Prevention of Colorectal Cancer

FIGURE 5 | KEGG database pathway hsa05200: pathways in cancer. The green node is the default gene of the pathway map, and the red node is the driver gene of
the Driver_CMSi gene set.

TABLE 2 | Potential anti-colorectal cancer targets in existing drug targets.

Gene Target Target type

AKT1 P31749 Anticancer drug target

CALM1 P0DP23 Anticancer drug target

CCND1 P24385 Anticancer drug target

CDK2 P24941 Anticancer drug target

MAP2K1 Q02750 Anticancer drug target

MAPK1 P28482 Anticancer drug target

PIK3R1 P27986 Anti-inflammatory target

TGFB1 P01137 Anti-inflammatory target

MDM2 Q00987 Nutrition-related target

CALM3 P0DP25 Nutrition-related target

PLD1 Q13393 Nutrition-related target

RELA Q04206 Other

Such networks will aid the development of individualized
treatments and provide more accurate medical guidance for
patients with the same tumor stage and same cancer subtype.
Through network propagation analysis, CRC-specific mutant
GCs were obtained. The GCs covered more than 90% of
the patients’ mutation information. These clusters were highly
correlated with cancer-related gene sets and provide a good

reference for studying mutations in CRC. The mutation selection
rule was used to obtain the mutation sequence of driver
genes in CRC patients. The driver gene mutation sequences of
patients with the same CMS were considered simultaneously.
This analysis not only considered the tumor heterogeneity
of CRC but also provides a reference for the diagnosis of
the clinical CRC stages. Finally, we used dynamic network
analysis to mine DNBs in CRC patients. These DNBs were
able to identify the dynamic progression of the tumors,
representing a critical transition point between normal to
cancer and during cancer progression from one stage to
another. The results obtained were verified by clinical data
and mirrored actual clinical staging. At the same time, the
biological pathways identified by KEGG analyses were further
utilized to exploit drug targeting DNBs that can block the
progression of cancer. These results provide important value for
the diagnosis and treatment of CRC, especially for pre-emptive
treatment. It is of great significance to reduce the incidence and
mortality of CRC.

At present, there are many research results identifying CRC
biomarkers. For example, Shin et al. (2017) studied the mutation
sequence of five key driver genes during the development of CRC,
but no control samples were included in the study. Therefore, the
study could only describe the development of tumors after cancer
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had appeared. In our study, each cancer sample had a tumor-
adjacent sample. Therefore, the critical transition point from
normal to cancer in the development of CRC could be found,
which provides a reference for monitoring high-risk groups of
patients with CRC. Another example is that Linda JW Bosch et al.
(2017) identified the hypermethylation status of decoy receptor 1
(DCR1) as a biomarker for predicting metastatic CRC, but the
accuracy and applicability were slightly lower. In our study, while
ensuring accuracy, we also considered the heterogeneity of CRC.
All patients with CRC were classified according to molecular
subtypes, and a single and comprehensive analysis was performed
for each patient. In the gene function analysis of patients with
GC, it was found that the GCs of patients with the same CMS
had a high degree of consistency, and there was a large difference
between patients with different CMSs (P < 0.05). This also fully
illustrates the necessity of typing analysis for CRC patients.

In recent years, many studies have found that for many
complex diseases, the progress of the disease is not necessarily
smooth but abrupt (Richard et al., 2016; Lesterhuis et al., 2017;
Li et al., 2017). This transformation is the pre-disease state of
disease progression. At this stage, if properly treated, the disease
can usually be reversed back to normal, which means that the pre-
disease state is an unstable state (Achiron et al., 2010). However,
most of the current methods for finding CRC biomarkers focus
on molecular (Chabanais et al., 2018) and network methods (Shin
et al., 2017). They are static and are mainly used to distinguish
between disease samples and normal samples, and it is difficult
to identify pre-disease samples. Therefore, markers identified
from such strategies lack the ability to diagnose disease early
and interfere with the occurrence of disease. In our research, the
concept of DNBs was employed. This dynamic network method
was developed on the basis of non-linear dynamics and complex
network theory (Chen et al., 2012; Liu et al., 2012). We used it
to reflect changes in expression in cancer samples and control
samples in the same patient to reflect changes in biological
function in patients during CRC, which allowed us to explore the
dynamic characteristics of CRC. This strategy can better identify
the early warning signs of sudden cancerous changes in the pre-
disease state and achieve a true early warning to prevent disease.
The recurrence rate of patients after CRC surgery is a serious
complication, considered as a failure of the therapeutic strategy
(Duineveld et al., 2016; Farhat et al., 2019), and the changes in
tissues adjacent to cancer are more susceptible. Therefore, our
research can provide early disease diagnosis methods for patients
with a family history of CRC or patients after CRC surgery.

Currently, it is common to apply network methods to the
research and develop drugs for human diseases. We mapped the
expression and mutation profiles of CRC patients to interaction
networks with human protein interaction network data, creating
a CRC-specific network so that we could reveal the dynamic
changes in human patients in specific networks during the
development of CRC. In recent years, network physiology has
been a good method to study human diseases from a holistic
perspective. The human body is an integrated network in which
complex physiological systems, each with its own regulatory
mechanisms, continuously interact and in which failure of
one system can trigger a breakdown of the entire network

(Bashan et al., 2012; Bartsch et al., 2015; Liu et al., 2015). The
central task of statistical physics is to understand macroscopic
phenomena that result from microscopic interactions among
many individual components often driven by competing forces
and non-linear feedback mechanisms (Ivanov and Bartsch, 2014).
This type of analysis is also applicable to the complex mechanisms
in physiology. The interdisciplinary field of network physiology
bridges two active fields of modern science: (A) the physics
of complex networks and (B) the organization and control
of integrated physiologic organ systems (Ivanov et al., 2016;
Moorman et al., 2016). Network physiology can identify and
quantify the dynamic changes in humans during the development
of diseases. Since our research objects are genes and many genes
are expressed differently in various tissues and organs, there will
be varying degrees of influence in different tissues and organs.
Our results can provide a basis for the study of CRC from the
view of network physiology.

When selecting experimental samples for such analyses,
patient samples are required to have both cancer tissue expression
data and corresponding tumor-adjacent tissue expression data,
as well as mutation data of the patients. Therefore, the number
of eligible samples in this study was small, only 28, and it was
impossible to comprehensively study the genetic mutations and
mutation sequences of CRC patients with different stages. At
the same time, we classified the samples according to different
molecular subtypes and obtained specific results. However, the
result will be affected by the insufficient number of experimental
samples, which might be a shortcoming of this research. We hope
to add more experimental data in follow-up work to improve the
results and provide a further comprehensive analysis.
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FIGURE S1 | Four states in the dynamic cancer processes
of sample TCGA-AA-3496. The network was constructed from the
protein–protein interaction (PPI) network of the patients. (A) The process
begins with a normal state, (B) then mutations accumulate during the
process. (C) The pre-disease state was detected when the expression of
DNBs in sample TCGA-AA-3496 fluctuated strongly, and this moment
is the DNB warning state. (D) After the DNB warning state, the number of
mutations increases dramatically, and patients are defined as having
a disease state.

FIGURE S2 | Four states in the dynamic cancer processes of sample
TCGA-AA-3663. The network was constructed from the PPI network of the
patients. (A) The process begins with a normal state, (B) then mutations
accumulate during the process. (C) The pre-disease state was detected when the

expression of DNBs in sample TCGA-AA-3663 fluctuated strongly, and this
moment is the DNB warning state. (D) After the DNB warning state, the number of
mutations increases dramatically, and patients are defined as having
a disease state.

FIGURE S3 | The CI curves of all the patients. The horizontal axis shows the
dominant group dominated by the driver genes in each patient’s GC, and the
vertical axis shows the CI of the corresponding dominant group.

TABLE S1 | Basic information of 28 CRC patients.

TABLE S2 | The patient’s driver mutation sequence.

TABLE S3 | The driver mutation sequence of patients with the same CMS.

TABLE S4 | Candidate drug target genes of patients with the same CMS.

REFERENCES
Achiron, A., Grotto, I., Balicer, R., Magalashvili, D., Feldman, A., and Gurevich,

M. (2010). Microarray analysis identifies altered regulation of nuclear receptor
family members in the pre-disease state of multiple sclerosis. Neurobiol. Dis. 38,
201–209. doi: 10.1016/j.nbd.2009.12.029

Aghagolzadeh, P., and Radpour, R. (2016). New trends in molecular and cellular
biomarker discovery for colorectal cancer. World J. Gastroenterol. 22, 5678–
5693. doi: 10.3748/wjg.v22.i25.5678

Arroyo, R., Sune, G., Zanzoni, A., Duran-Frigola, M., Alcalde, V., Stracker, T. H.,
et al. (2015). Systematic identification of molecular links between core and
candidate genes in breast cancer. J. Mol. Biol. 427(6 Pt B), 1436–1450. doi:
10.1016/j.jmb.2015.01.014

Bakheet, T. M., and Doig, A. J. (2009). Properties and identification of human
protein drug targets. Bioinformatics 25, 451–457. doi: 10.1093/bioinformatics/
btp002

Bartsch, R. P., Liu, K. K., Bashan, A., and Ivanov, P. (2015). Network physiology:
how organ systems dynamically interact. PLoS One 10:e0142143. doi: 10.1371/
journal.pone.0142143

Bashan, A., Bartsch, R. P., Kantelhardt, J. W., Havlin, S., and Ivanov, P.
(2012). Network physiology reveals relations between network topology and
physiological function. Nat. Commun. 3:702. doi: 10.1038/ncomms1705

Bosch, L. J. W., Trooskens, G., Snaebjornsson, P., Coupe, V. M. H., Mongera, S.,
Haan, J. C., et al. (2017). Decoy receptor 1 (DCR1) promoter hypermethylation
and response to irinotecan in metastatic colorectal cancer. Oncotarget 8, 63140–
63154. doi: 10.18632/oncotarget.18702

Chabanais, J., Labrousse, F., Chaunavel, A., Germot, A., and Maftah, A. (2018).
POFUT1 as a promising novel biomarker of colorectal cancer. Cancers 10:411.
doi: 10.3390/cancers10110411

Chapple, C. E., Robisson, B., Spinelli, L., Guien, C., Becker, E., and Brun, C. (2015).
Extreme multifunctional proteins identified from a human protein interaction
network. Nat. Commun. 6:7412. doi: 10.1038/ncomms8412

Chatterjee, S., Basak, P., Buchel, E., Safneck, J., Murphy, L. C., Mowat, M.,
et al. (2018). Breast cancers activate stromal fibroblast-induced suppression of
progenitors in adjacent normal tissue. Stem Cell Rep. 10, 196–211. doi: 10.1016/
j.stemcr.2017.11.002

Chen, L., Liu, R., Liu, Z. P., Li, M., and Aihara, K. (2012). Detecting early-warning
signals for sudden deterioration of complex diseases by dynamical network
biomarkers. Sci. Rep. 2:342. doi: 10.1038/srep00342

Chung, I. F., Chen, C. Y., Su, S. C., Li, C. Y., Wu, K. J., Wang, H. W., et al. (2016).
DriverDBv2: a database for human cancer driver gene research. Nucleic Acids
Res. 44, D975–D979. doi: 10.1093/nar/gkv1314

Dienstmann, R., Vermeulen, L., Guinney, J., Kopetz, S., Tejpar, S., and Tabernero, J.
(2017). Consensus molecular subtypes and the evolution of precision medicine
in colorectal cancer. Nat. Rev. Cancer 17, 79–92. doi: 10.1038/nrc.2016.126

Duineveld, L. A., van Asselt, K. M., Bemelman, W. A., Smits, A. B., Tanis, P. J.,
van Weert, H. C., et al. (2016). Symptomatic and asymptomatic colon cancer
recurrence: a multicenter cohort study. Ann. Fam. Med. 14, 215–220. doi:
10.1370/afm.1919

Erten, S., Bebek, G., Ewing, R. M., and Koyuturk, M. (2011). DADA: degree-aware
algorithms for network-based disease gene prioritization. BioData Min. 4:19.
doi: 10.1186/1756-0381-4-19

Farhat, W., Azzaza, M., Mizouni, A., Ammar, H., Ben Ltaifa, M., Lagha, S., et al.
(2019). Factors predicting recurrence after curative resection for rectal cancer:
a 16-year study. World J. Surg. Oncol. 17:173. doi: 10.1186/s12957-019-1718-1

Finak, G., Bertos, N., Pepin, F., Sadekova, S., Souleimanova, M., Zhao, H., et al.
(2008). Stromal gene expression predicts clinical outcome in breast cancer. Nat.
Med. 14, 518–527. doi: 10.1038/nm1764

Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., et al.
(2013). Integrative analysis of complex cancer genomics and clinical profiles
using the cBioPortal. Sci. Signal. 6:l1. doi: 10.1126/scisignal.2004088

Graham, K., Ge, X., de Las Morenas, A., Tripathi, A., and Rosenberg, C. L.
(2011). Gene expression profiles of estrogen receptor-positive and estrogen
receptor-negative breast cancers are detectable in histologically normal breast
epithelium. Clin Cancer Res. 17, 236–246. doi: 10.1158/1078-0432.CCR-10-
1369

Guinney, J., Dienstmann, R., Wang, X., de Reynies, A., Schlicker, A., Soneson, C.,
et al. (2015). The consensus molecular subtypes of colorectal cancer. Nat. Med.
21, 1350–1356. doi: 10.1038/nm.3967

Hopkins, A. L., and Groom, C. R. (2002). The druggable genome. Nat. Rev. Drug
Discov. 1, 727–730. doi: 10.1038/nrd892

Ivanov, P. C., and Bartsch, R. P. (2014). “Network physiology: mapping interactions
between networks of physiologic networks,” in Networks of Networks: The
Last Frontier of Complexity, eds G. D’Agostino, A. Scala (Cham: Springer),
203–222.

Ivanov, P. C., Liu, K. K. L., and Bartsch, R. P. (2016). Focus on the emerging new
fields of network physiology and network medicine. New J. Phys. 18:100201.
doi: 10.1088/1367-2630/18/10/100201

Katsogiannou, M., Andrieu, C., Baylot, V., Baudot, A., Dusetti, N. J., Gayet, O.,
et al. (2014). The functional landscape of Hsp27 reveals new cellular processes
such as DNA repair and alternative splicing and proposes novel anticancer
targets. Mol. Cell. Proteomics 13, 3585–3601. doi: 10.1074/mcp.M114.
041228

Keshava Prasad, T. S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S.,
Mathivanan, S., et al. (2009). Human protein reference database–2009 update.
Nucleic Acids Res. 37, D767–D772. doi: 10.1093/nar/gkn892

Kim, M. S., Lee, J., and Sidransky, D. (2010). DNA methylation markers in
colorectal cancer.CancerMetastasis Rev. 29, 181–206. doi: 10.1007/s10555-010-
9207-6

Kohler, S., Bauer, S., Horn, D., and Robinson, P. N. (2008). Walking the
interactome for prioritization of candidate disease genes. Am. J. Hum. Genet.
82, 949–958. doi: 10.1016/j.ajhg.2008.02.013

Lesterhuis, W. J., Bosco, A., Millward, M. J., Small, M., Nowak, A. K., and Lake,
R. A. (2017). Dynamic versus static biomarkers in cancer immune checkpoint
blockade: unravelling complexity. Nat. Rev. Drug Discov. 16, 264–272. doi:
10.1038/nrd.2016.233

Li, M., Li, C., Liu, W. X., Liu, C., Cui, J., Li, Q., et al. (2017). Dysfunction of
PLA2G6 and CYP2C44-associated network signals imminent carcinogenesis
from chronic inflammation to hepatocellular carcinoma. J. Mol. Cell. Biol. 9,
489–503. doi: 10.1093/jmcb/mjx021

Li, M., Zeng, T., Liu, R., and Chen, L. (2014). Detecting tissue-specific early warning
signals for complex diseases based on dynamical network biomarkers: study
of type 2 diabetes by cross-tissue analysis. Brief. Bioinform. 15, 229–243. doi:
10.1093/bib/bbt027

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 12 May 2020 | Volume 8 | Article 530

https://doi.org/10.1016/j.nbd.2009.12.029
https://doi.org/10.3748/wjg.v22.i25.5678
https://doi.org/10.1016/j.jmb.2015.01.014
https://doi.org/10.1016/j.jmb.2015.01.014
https://doi.org/10.1093/bioinformatics/btp002
https://doi.org/10.1093/bioinformatics/btp002
https://doi.org/10.1371/journal.pone.0142143
https://doi.org/10.1371/journal.pone.0142143
https://doi.org/10.1038/ncomms1705
https://doi.org/10.18632/oncotarget.18702
https://doi.org/10.3390/cancers10110411
https://doi.org/10.1038/ncomms8412
https://doi.org/10.1016/j.stemcr.2017.11.002
https://doi.org/10.1016/j.stemcr.2017.11.002
https://doi.org/10.1038/srep00342
https://doi.org/10.1093/nar/gkv1314
https://doi.org/10.1038/nrc.2016.126
https://doi.org/10.1370/afm.1919
https://doi.org/10.1370/afm.1919
https://doi.org/10.1186/1756-0381-4-19
https://doi.org/10.1186/s12957-019-1718-1
https://doi.org/10.1038/nm1764
https://doi.org/10.1126/scisignal.2004088
https://doi.org/10.1158/1078-0432.CCR-10-1369
https://doi.org/10.1158/1078-0432.CCR-10-1369
https://doi.org/10.1038/nm.3967
https://doi.org/10.1038/nrd892
https://doi.org/10.1088/1367-2630/18/10/100201
https://doi.org/10.1074/mcp.M114.041228
https://doi.org/10.1074/mcp.M114.041228
https://doi.org/10.1093/nar/gkn892
https://doi.org/10.1007/s10555-010-9207-6
https://doi.org/10.1007/s10555-010-9207-6
https://doi.org/10.1016/j.ajhg.2008.02.013
https://doi.org/10.1038/nrd.2016.233
https://doi.org/10.1038/nrd.2016.233
https://doi.org/10.1093/jmcb/mjx021
https://doi.org/10.1093/bib/bbt027
https://doi.org/10.1093/bib/bbt027
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00530 May 27, 2020 Time: 21:51 # 13

Liu et al. Precancerous Prevention of Colorectal Cancer

Li, Y., and Li, J. (2012). Disease gene identification by random walk on multigraphs
merging heterogeneous genomic and phenotype data. BMCGenomics 13(Suppl.
7):S27. doi: 10.1186/1471-2164-13-S7-S27

Li, Y., and Patra, J. C. (2010). Genome-wide inferring gene-phenotype relationship
by walking on the heterogeneous network. Bioinformatics 26, 1219–1224. doi:
10.1093/bioinformatics/btq108

Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdottir, H., Tamayo,
P., and Mesirov, J. P. (2011). Molecular signatures database (MSigDB) 3.0.
Bioinformatics 27, 1739–1740. doi: 10.1093/bioinformatics/btr260

Liu, K. K. L., Bartsch, R. P., Ma, Q. D. Y., and Ivanov, P. C. (2015). Major
component analysis of dynamic networks of physiologic organ interactions.
J. Phys. Conf. Ser. 640, 11–14. doi: 10.1088/1742-6596/640/1/012013

Liu, R., Li, M., Liu, Z. P., Wu, J., Chen, L., and Aihara, K. (2012). Identifying critical
transitions and their leading biomolecular networks in complex diseases. Sci.
Rep. 2:813. doi: 10.1038/srep00813

Liu, R., Wang, X., Aihara, K., and Chen, L. (2014). Early diagnosis of complex
diseases by molecular biomarkers, network biomarkers, and dynamical network
biomarkers. Med. Res. Rev. 34, 455–478. doi: 10.1002/med.21293

Liu, X., Chang, X., Leng, S., Tang, H., Aihara, K., and Chen, L. (2019). Detection
for disease tipping points by landscape dynamic network biomarkers. Natl. Sci.
Rev. 6, 775–785. doi: 10.1093/nsr/nwy162

Liu, X., Chang, X., Liu, R., Yu, X., Chen, L., and Aihara, K. (2017). Quantifying
critical states of complex diseases using single-sample dynamic network
biomarkers. PLoS Comput. Biol. 13:e1005633. doi: 10.1371/journal.pcbi.
1005633

Mojtahedi, M., Skupin, A., Zhou, J., Castano, I. G., Leong-Quong, R. Y., Chang,
H., et al. (2016). Cell fate decision as high-dimensional critical state transition.
PLoS Biol. 14:e2000640. doi: 10.1371/journal.pbio.2000640

Moorman, J. R., Lake, D. E., and Ivanov, P. (2016). Early detection of sepsis–a
role for network physiology? Crit. Care Med. 44, e312–e313. doi: 10.1097/CCM.
0000000000001548

Richard, A., Boullu, L., Herbach, U., Bonnafoux, A., Morin, V., Vallin, E., et al.
(2016). Single-cell-based analysis highlights a surge in cell-to-cell molecular
variability preceding irreversible commitment in a differentiation process. PLoS
Biol. 14:e1002585. doi: 10.1371/journal.pbio.1002585

Schwikowski, B., Uetz, P., and Fields, S. (2000). A network of protein-protein
interactions in yeast. Nat. Biotechnol. 18, 1257–1261. doi: 10.1038/82360

Shin, D., Lee, J., Gong, J. R., and Cho, K. H. (2017). Percolation transition
of cooperative mutational effects in colorectal tumorigenesis. Nat. Commun.
8:1270. doi: 10.1038/s41467-017-01171-6

Smedley, D., Kohler, S., Czeschik, J. C., Amberger, J., Bocchini, C., Hamosh, A.,
et al. (2014). Walking the interactome for candidate prioritization in exome
sequencing studies of mendelian diseases. Bioinformatics 30, 3215–3222. doi:
10.1093/bioinformatics/btu508

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,
M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach
for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A.
102, 15545–15550. doi: 10.1073/pnas.0506580102

Valdeolivas, A., Tichit, L., Navarro, C., Perrin, S., Odelin, G., Levy, N.,
et al. (2019). Random walk with restart on multiplex and heterogeneous
biological networks. Bioinformatics 35, 497–505. doi: 10.1093/bioinformatics/
bty637

Vanunu, O., Magger, O., Ruppin, E., Shlomi, T., and Sharan, R. (2010). Associating
genes and protein complexes with disease via network propagation. PLoS
Comput. Biol. 6:e1000641. doi: 10.1371/journal.pcbi.1000641

Wang, X., and Ward, P. A. (2012). Opportunities and challenges of disease
biomarkers: a new section in the journal of translational medicine. J. Transl.
Med. 10:240. doi: 10.1186/1479-5876-10-240

Yang, B., Li, M., Tang, W., Liu, W., Zhang, S., Chen, L., et al. (2018). Dynamic
network biomarker indicates pulmonary metastasis at the tipping point of
hepatocellular carcinoma. Nat. Commun. 9:678. doi: 10.1038/s41467-018-
03024-2

Zhang, W., and Wang, S. L. (2019). A novel method for identifying the potential
cancer driver genes based on molecular data integration. Biochem. Genet. 58,
6–39. doi: 10.1007/s10528-019-09924-9922

Zhao, Z. Q., Han, G. S., Yu, Z. G., and Li, J. (2015). Laplacian normalization
and random walk on heterogeneous networks for disease-gene prioritization.
Comput. Biol. Chem. 57, 21–28. doi: 10.1016/j.compbiolchem.2015.02.008

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Liu, Shao, Lv, Xu, Ren, Jin, Yang, Ma, Xie, Zhang and Chen.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 13 May 2020 | Volume 8 | Article 530

https://doi.org/10.1186/1471-2164-13-S7-S27
https://doi.org/10.1093/bioinformatics/btq108
https://doi.org/10.1093/bioinformatics/btq108
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1088/1742-6596/640/1/012013
https://doi.org/10.1038/srep00813
https://doi.org/10.1002/med.21293
https://doi.org/10.1093/nsr/nwy162
https://doi.org/10.1371/journal.pcbi.1005633
https://doi.org/10.1371/journal.pcbi.1005633
https://doi.org/10.1371/journal.pbio.2000640
https://doi.org/10.1097/CCM.0000000000001548
https://doi.org/10.1097/CCM.0000000000001548
https://doi.org/10.1371/journal.pbio.1002585
https://doi.org/10.1038/82360
https://doi.org/10.1038/s41467-017-01171-6
https://doi.org/10.1093/bioinformatics/btu508
https://doi.org/10.1093/bioinformatics/btu508
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1093/bioinformatics/bty637
https://doi.org/10.1093/bioinformatics/bty637
https://doi.org/10.1371/journal.pcbi.1000641
https://doi.org/10.1186/1479-5876-10-240
https://doi.org/10.1038/s41467-018-03024-2
https://doi.org/10.1038/s41467-018-03024-2
https://doi.org/10.1007/s10528-019-09924-9922
https://doi.org/10.1016/j.compbiolchem.2015.02.008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

	Identification of Early Warning Signals at the Critical Transition Point of Colorectal Cancer Based on Dynamic Network Analysis
	Introduction
	Materials and Methods
	Data Collection
	Construct the Patient-Specific Networks
	Network Propagation of Mutation Effects
	Mutation Selection Rules
	Dynamic Network Biomarker (DNB) Analysis

	Results
	Basic Information of Patients
	Patient-Specific Networks
	Mutation Propagation Module
	Giant Clusters (GCs)
	Mutation Sequence of Mutant Genes in GC
	DNB Analysis
	Verification of the Clinical Applicability of the Transition Point
	Finding Drug Targets That Block Cancer Progression

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


