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Abstract: Drug repurposing in the context of neuroimmunological (NI) investigations is still in its
primary stages. Drug repurposing is an important method that bypasses lengthy drug discovery proce-
dures and focuses on discovering new usages for known medications. Neuroimmunological diseases,
such as Alzheimer’s, Parkinson’s, multiple sclerosis, and depression, include various pathologies that
result from the interaction between the central nervous system and the immune system. However, the
repurposing of NI medications is hindered by the vast amount of information that needs mining. We
previously presented Adera1.0, which was capable of text mining PubMed for answering query-based
questions. However, Adera1.0 was not able to automatically identify chemical compounds within
relevant sentences. To challenge the need for repurposing known medications for neuroimmunological
diseases, we built a deep neural network named Adera2.0 to perform drug repurposing. The workflow
uses three deep learning networks. The first network is an encoder and its main task is to embed text
into matrices. The second network uses a mean squared error (MSE) loss function to predict answers in
the form of embedded matrices. The third network, which constitutes the main novelty in our updated
workflow, also uses a MSE loss function. Its main usage is to extract compound names from relevant
sentences resulting from the previous network. To optimize the network function, we compared eight
different designs. We found that a deep neural network consisting of an RNN neural network and a
leaky ReLU could achieve 0.0001 loss and 67% sensitivity. Additionally, we validated Adera2.0’s ability
to predict NI drug usage against the DRUG Repurposing Hub database. These results establish the
ability of Adera2.0 to repurpose drug candidates that can shorten the development of the drug cycle.
The workflow could be download online.

Keywords: drug repurposing; neuro-immunology; deep neural network

1. Introduction

Drug repurposing represents a lifeline for the neuroimmunological drug industry.
The rate of development of new drugs has dramatically slowed in recent years [1]. This
phenomenon was accompanied by a significant increase in the cost of drug development [1].
A single novel drug might cost 1 billion USD to produce [2]. Drug repurposing constitutes
a viable alternative to conventional drug development techniques. Repurposing drugs that
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have already been legalized for human usage can substantially reduce the costs accompany-
ing the primary stages of drug discovery [3]. Moreover, repurposing novel drugs eliminates
the delay faced by de novo drug development [4]. At present, numerous repurposed med-
ications are being extensively used, such as azathioprine, which is commonly used for
rheumatoid arthritis; currently, it is used for renal transplants [5]. Minoxidil, originally in-
tended to treat ulcers, was repurposed for the treatment of severe hypertension when early
studies revealed that it was a vasodilator [6]. Another example is thalidomide, which was
initially licensed in the 1950s to treat morning sickness in expectant mothers before being
repurposed in 2006 to treat multiple myeloma [7]. In addition, although chlorpromazine
was initially tested as an antimalarial medication, it was shown to be more effective in the
treatment of mania [8]. We previously repurposed zileuton, which was originally used as
an inhibitor of the 5-lipoxygenase, as an Nrf2 activator to treat depression [4]. Thus, drug
repurposing techniques have proven essential for improving the drug production cycle.

Several computational approaches aim to extract drug information from medical
literature using question–answer drug repurposing systems. These approaches could be
applied separately or as a part of a workflow. These approaches include data mining,
network analysis, and machine learning [9]. (I) The data mining approach is based on text
mining. Text mining is utilized to identify drug names, using part-of-speech tagging or the
bag of words algorithms. Text mining approaches include polysearch [10], DNorm [11],
and MEDIC [12,13]. The main drawback of this approach is the need for a large-sized
dictionary to predict textual relationships. The dictionary used requires various resources
to perform several processing steps, such as normalization, mapping, and maintenance.
An alternative approach is to directly text mine databases (e.g., DrugBank) [14]. However,
many of the chemical compounds currently investigated are not yet accessible through
DrugBank. Another text mining approach is based on the use of semantics technologies.
Semantic text mining substitutes the need for stored vocabulary with a semantic concept
built of multi-word terms (ngrams) [15]. This system could prove useful in filtering out less
relevant documents. However, it suffers from the need to store the semantics database. An
alternative method of text mining is based on ABC occurrence (i.e., if A and B occur together,
B and C occur together, then A and C may occur together) [16]. However, this system suffers
from low sensitivity (a high degree of false positives). (II) Networks analysis techniques are
being widely employed in drug repurposing approaches. These approaches do not only
detect drug compounds but can also mine drug characteristics, such as usages, indications,
actions, and targets [12]. A bipartite graph is a relevant example that demonstrates this
approach. Hu and Agarwal combined the analysis of microarray expression profiles with
CMap data to produce a network of drugs–genes [17]. The drawback of this workflow is
that future investigations are limited to the microarray datasets investigated. Clustering
techniques based on the calculated Jaccard coefficient for Kegg Medicus have also been
utilized [18]. The disadvantage of this system is that it is limited by the Kegg database
annotation [19] (III) Machine learning techniques utilized to extract drug information
from immunological texts could be generically grouped into classification or sequence
labeling while using regression-based approaches is less common [12]. Classification
models employed to recognize drug entities include maximum entropy (ME) and support
vector machine (SVM) [20,21]. One of the drawbacks of these classification methods is that
they are unaware of the order of the tokens (e.g., words).

Combining natural language processing (NLP) techniques with machine learning
could be used to increase the awareness of the order and relationships between entities
in any given text [22]. The primary objective of NLP techniques is to recognize concepts
and relationships. A typical NLP workflow includes text tokenization to detect words and
sentence boundaries. Part-of-speech algorithms could be used to tag the type of words using
different tags (e.g., nouns, verbs, and prepositions). Extracted words are then mapped into
a biological category. Finally, a tree is built based on the text syntax [23]. Additional NLP
functionality includes several methods, such as (i) assertion status detection, which classifies
a medical term according to its status into one of four groups, namely “present”, “absent”,
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“conditional”, or “associated with someone else” [24]. Assertion status detection methods
have been combined with AI methods, such as convolutional neural networks (CNNs)
and long-short-term memory networks (LSTMs) [23]. (ii) Entity resolution is an intriguing
concept that attempts to comprehend the relationships between words within a sentence
(e.g., links possessive articles to the correct nouns) [25]. This method is used with LTSM and
achieves high accuracy. However, it does not extract compound names. (iii) Relationship
extraction techniques aim to extract semantic associations between two or more entities
(e.g., drug–disease relationships) [26]. (iv) Named entity recognition (NER) techniques
implemented using the hidden Markov model (HMM) or conditional random field(s) (CRF)
are aware of the sentence order and have been shown to outperform classification methods
on a variety of tasks [27]. (v) Recently, word-representation features seemed to show the
highest efficiency [28]. Word representation features are generated through unsupervised
machine learning algorithms on unstructured texts. One of the advantages of using word
representation is that this method takes into account the semantic information of the words.
Currently, Word2VEC is one of the most widely used methods [29]. However, embedding
for the whole sentence has achieved higher performance. In the case of query–answer
scenarios, the distance between the embedded matrices of the question and the answers is
used as an indication of the relevance between the question and the answer. However, the
performances of sentence embedding-based systems in this context are limited [4].

In the current study, we developed a question–answer system based on AI, we call
it Adera2.0. The input to the system is a user query (i.e., a question). The system is
composed of several phases. In the first phase, the PubMed IDs relevant to the question
posed by the user are retrieved from PubMed using a Python function. The downloaded
PDFs are then parsed using Tika and stored in JSON format [30]. In the next phase, we
utilized the universal autoencoder to embed each sentence in each parsed PDF into a
1 × 512 matrix. Following that, we use our relevance network to classify sentences within
each PDF based on their relevance to the given question [4]. This network input is the
512 × 1 matrix embedding of the posed question. The output is a matrix embedding of a
predicted answer based on an optimized loss regression function. Embedding matrices are
sorted based on their distance from the predicted answer matrix. In the next phase, we
built an extraction network. Its primary function is to extract drug names from relevant
sentences identified in the previous phase. To achieve this output, each sentence is parsed
into words and embedded using the universal encoder. After that, we used the extraction
network to predict a generic compound embedding. Parsed words were sorted based
on their distance from the predicted embedded matrix. We compared the performance
of eight network designs to achieve the task of extracting compound names. We cross-
validated Adera2.0’s performance against a gold standard dataset (Drug Repurposing
Hub, Broad Institute dataset) and the current literature [31]. We investigated repurposing
anti-oxidant compounds that could be used to regulate Th17 cells in depression. Previously,
we found that Th17 infiltrates the blood–brain barrier through a paracellular route causing
depression-like behavior [32,33]. The main objective of the in silico validation step was to
find anti-oxidant drugs that could be used to reduce the effect of Th17 in depression and
score at least four out of five on Lipinski’s score. Out of the top ten compounds generated
by our software, two were shown to be true candidates.

2. Methods
2.1. Overview of the Workflow

The workflow consists of four main phases: (i) building a JSON database, (ii) sentence
embedding, (iii) computation of relevance, and (iv) extraction of compound names.

The first phase of the workflow (phase I) covers the aim of building a database of the
JSON format containing parsed PDFs (Figure 1). This phase consists of five steps. The first
step’s objective is to fetch the PubMed IDs related to the search query. This is accomplished
by using the PubMed fetcher function available through the Metapub python library. This
step uses the input query to search for recent PubMed articles that match the query terms.
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After that, in the second step, the workflow fetches the abstracts and keywords of the
retrieved PubMed IDs. This is achieved through the use of the python library Keybert. The
third step in this phase involves downloading the identified PDFs; this is done using the
fetch_PDFs library. The fourth step of this phase is the parsing of each PDF into separate
sentences and storing all PDFs in a single database using the TIKA library [30]. The fifth
step includes writing all parsed sentences into a single JSON format.

Figure 1. A detailed workflow of our proposal. There are four phases in the workflow. The user first
enters a disease or a primary pathway to be investigated. The search step is done to select relevant
PubMed articles. Then each accepted article is sorted and parsed. The first network converts each
sentence in each PDF to a single embedding matrix. The second neural network sorts each sentence
in each PDF based on its relevance to the query. The third neural network extracts drug names from
each relevant sentence.

The second phase constitutes sentence embedding. This is done by employing the
universal encoder. The main function of this network is to embed each parsed sentence
in the JSON dataset into a 512 × 1 matrix. The universal encoder uses a deep averaging
network as its main architecture. In this system, the word embedding is averaged. The
output of this step is used as the input for a feedforward deep neural network to generate
sentence embedding. The training data for this model include (i) unsupervised training
datasets from Wikipedia, web news, and question and answer websites. (ii) Additionally,
the neural network was trained on the supervised data of the Stanford natural language
inference system [34]. It is important to note that the Pearson correlation was used to
estimate the model’s accuracy. The model was used to predict the similarity between
sentence pairs. The test was validated against human judgment. Overall, the model
accuracy was estimated to be 0.76.

The objective of the third phase is to measure the relevance between the embedding of
the parsed query (i.e., question) and the embedding of each parsed sentence in the JSON
database. This phase is performed through a neural network. The input of the neural
network is the embedding matrix of the query. The network uses a MSE loss function
with an adaptive moment estimation (ADAM) optimizer. The network was trained on the
entries sampled from the SciQ dataset. SciQ is a scientific answer dataset of 13,679 entries
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divided into 3 sub-datasets (training, test, and validation) [35]. The output of this network
is a 512 × 1 matrix that represents the prediction of the answer embedding. Then, all the
sentences in the JSON database are sorted based on the square root of the distance between
the embedding matrix of each of them and the output of the second neural network (i.e.,
the predicted answer).

The fourth phase’s purpose is to extract the compound names from each answer resulting
from the previous step. To achieve that, we designed a deep neural network. The inputs of
this network are the sorted embedding matrices resulting from phase 3. The network was
trained on an in-house-generated database [36]. The database is a collection of one thousand
manually curated entries. The database consists of two columns representing the sentence–
drug relationship. The first column includes sentences retrieved from; PubMed articles, Drug
bank [14], and the n2c2 NLP Research data sets [37]. The second column represents the drug
compounds, which were manually identified in each sentence. The dataset was divided into
three smaller-size datasets as follows: (i) training dataset with 500 entries, (ii) test dataset
with 250 entries, and (iii) validation dataset with 250 entries. It is important to note that
our current trained network can be used for transfer learning when new categories of data
or a larger set of validated drug entries are available. Similar to the relevance network, the
extraction network uses an MSE loss function with an ADAM optimizer. We compared the
performance of eight different architectures for this network (Figure 1, Tables 1 and 2). Given
an embedded sequence in 512 × 1 matrix format, the network predicts a word embedding in a
512 × 1 matrix format. Then the distance between the embedding of each word of each of the
identified sentences and the predicted embedding matrix is calculated. The distance between
the matrices is considered to correlate linearly to the similarity between the predicted answer
and each embedding word. To measure the performance of our extraction network (E), we
performed a sensitivity analysis (Equation (1)). Additionally, we compared the sensitivity
values with random sampling.

sensitivity =
Number of True predictions

Number of True predictions + Number of False predictions
, (1)

2.2. Cross Validation Using Known Drugs

We validated Adera2.0’s abilities by measuring its sensitivity. We compared the
performances of our eight novel networks, focusing on their ability to extract drug names
from sentences (phase 4). We utilized three strategies: (i) posing a question based on a
disease. (ii) posing a question based on a specific type of drug, and (iii) posing a question
pertaining to a specific pathway. Sensitivity (Equation (1)) was estimated for each model.
After that K-means clustering was used to compare the sensitivity levels between various
models investigated.

2.3. Case Study

The objective of the case study is to repurpose a compound that could target the
inflammatory process regulated by Th17 infiltration of the brain during depression [32].
The constraints on the characteristics of the repurposed drug include its ability to inhibit
Th17 differentiation, enhance depression prognosis and pass through the blood–brain
barrier as well as being biologically safe [38]. The question used to query the system
is “What are anti-oxidant drugs”. The output from our model was further filtered by
examining the drug’s physicochemical properties. The number of violations of Lipinski’s
rule was calculated using molinspiration server (www.molinspiration.com) accessed on
15 August 2022 [39]. The clogP, solubility, mol-weight, Tpsa, drug-likeness, drug toxicity,
mutagenicity probability, tumorigenicity, irritant-ability, and reproductive effectiveness
drug score, were determined by employing Osiris Property Explorer (OPE; http://www.
organic-chemistry.org/prog/peo/) accessed on 15 August 2022. We utilized the BBB
predictor (http://www.cbligand.org/BBB), accessed on 15 August 2022 to predict the
ability of all the repurposed compounds to cross the blood–brain barrier.

www.molinspiration.com
http://www.organic-chemistry.org/prog/peo/
http://www.organic-chemistry.org/prog/peo/
http://www.cbligand.org/BBB
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2.4. Availability and Implementation

To facilitate the use of Adera2.0, we have developed a Windows©-compatible work-
flow that is quick and reliable. The application with user instruction pages could be found
on the GitHub repository at https://github.com/michel-phylo/ADERA2.0.

3. Results
3.1. Workflow

Adera2.0 is a python-based neural network workflow specially designed to repurpose
drugs pertaining to the field of immunology. Adera2.0 consists of three neural networks.
Its main novelty is its third neural network structure. The first network is a universal
autoencoder. The second structure is a relevance network based on a similar design used in
our previous publication called Adera1.0 [4]. To that end, Adera2.0 receives a user query,
performs a PubMed search, embeds the query, parses, and embeds each sentence in the
retrieved PubMed PDFs. Following that, the distances between the matrices are calculated.
The matrix with the shortest distance to the predicted embedding matrix is considered
to represent the most relevant sentence. The novel-added network’s primary function is
extracting drug compounds from relevant sentences resulting from the previous network
(Figure 2). This is done by feeding the network the embedding matrix of the query. The
network predicts an embedding representing a generic compound. After that, the distance
between each word embedding and the predicted matrix is calculated. The word with the
shortest distance between its matrix embedding and the predicted compound matrices is
hypothesized to represent the compound.

Figure 2. Workflow description. Phase (I&II); After parsing PDFs into single sentences, each sentence
is embedded into A 512 × 1 vector (here reshaped into 32 × 16) using the embedding (E) network.
Phase (III); the relevance (R) network predicts the answer to the embedded question. The form of
the predicted answer is a 512 vector. The distance tween the predicted answer and the embedding of
each sentence is calculated. The most relevant sentences are estimated to possess the shortest distance
from the embedded question matrix. After that, in phase (IV), the extraction (ER) network predicts the
compound embedding for each relevant sentence. The distance between each word embedding and
the predicted answer embedding is calculated. The word with the shortest distance between its matrix
embedding and the predicted compound embedding is estimated to represent the compound name.

3.2. Results of the Novel Neural Network

The third neural network extracts compound names from sentences. The design of
the network layers played a vital role in determining the loss value. We compared the
performance of eight different designs based on their ability to extract compound names
from sentences (Tables 1 and 2, Figures 3 and 4). The core of networks A, EF, G, and H is an
RNN network, while designs B, C, and D only possess dense layers with various activation
functions (Table 1 and Figure 3). Networks A, E, F, G, and H achieved the lowest loss of

https://github.com/michel-phylo/ADERA2.0
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0.0013 and the lowest mean absolute error (0.02). Similar results were achieved on the
test and the validation datasets. Conversely, networks B, C, and D achieved the highest
loss (0.0017, 0.0019, 0.0017 respectively). Their poor performance was mirrored in the high
mean absolute error on the validation network of 0.0377, 0.0348, and 0.0339 respectively
(Table 2). It is noticeable that networks A, B, C, and G reached their maximum performance
with lower than 20 epochs. The difference between training and validation network D
seems to be increasing after 50 epochs, suggesting this particular network did not converge.
Network F, H continued to learn even after more than 90 epochs, indicating that they
perform better than the rest of the designs.

Figure 3. Loss and mean absolute error functions of the extraction network in Adera2.0 workflow.
(A) Models A, E, F, G, and H achieve the lowest loss. Models B, C, D and H show the highest loss.
Green is utilized for the loss function, while red is used for the validation loss calculations. (B) Model
A achieves the lowest MAE value. The mean absolute error is in blue, while the validation of the MAE
curve is in green. It is worth noting that the MAE validation values are lower than their respective
MAE training values. The MAE is calculated over any given dataset. The dataset is split randomly
into training and validation datasets with a ratio of 0.61:0.39. Thus the size of the validation dataset
is smaller, resulting in slightly lower MAE values compared to the MAE values resulting from the
training dataset.
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Figure 4. Sensitivity analysis for Adera2.0 extraction networks. (A) Normalized sensitivity for
different architectures of the extraction network (B) Boxplot of True and negative prediction for
various architectures of the extraction network. ** represents p-value of <0.001, *** represents p-value
of <0.0001, while ns stand for non-significant.
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Table 1. Different structures used for network number (3): Extraction network.

Architecture Description

A

Dense(512, activation = ‘selu’)
Dense(512, activation = ‘sigmoid’)

Dense(512, activation = ‘relu’)
Dense(512, activation = ‘relu’)
Dense(512, activation = ‘selu’)

LeakyReLU()
tf.keras.layers.Activation(‘selu’)

SimpleRNN(512)
Dense(512, activation = ‘selu’)
Dense(512, activation = ‘relu’)
Dense(512, activation = ‘selu’)
Dense(512, activation = ‘relu’)
Dense(512, activation = ‘selu’)

B Dense(512, activation = ‘selu’)
Dense(512, activation = ‘sigmoid’)

C
Dense(512, activation = ‘relu’)
Dense(512, activation = ‘selu’)

Dense(512, activation = ‘sigmoid’)

D
Dense(512, activation = ‘selu’)

Dense(512, activation = ‘Softmax’)
PReLU()

E Dense(512, activation = ‘selu’)
SimpleRNN(512)

F

Activation(‘selu’)
RNN(tf.keras.layers.LSTMCell(512))

LeakyReLU()
LeakyReLU()

G

Dense(512, activation = ‘selu’)
PReLU()

Dense(512, activation = ‘selu’)
SimpleRNN(512)
Activation(‘selu’)

LeakyReLU()

H

Activation(‘selu’)
RNN(tf.keras.layers.LSTMCell(512))

PReLU()
LeakyReLU()
LeakyReLU()

Table 2. Loss and MAE comparison for Extraction network various architectures.

Train Dataset Test Dataset Validate

Architecture Loss Mean
Absolute_Error

Validation
Loss

Validation
Mean

Absolute
Error

Loss Mean Abso-
lute_Error Loss Mean Abso-

lute_Error

A 0.0013 0.0290 0.0013 0.0286 0.0013 0.0288 0.0012 0.0283

B 0.0017 0.0333 0.0018 0.0338 0.0020 0.0354 0.0025 0.0377

C 0.0019 0.0351 0.0018 0.0349 0.0018 0.0350 0.0018 0.0348

D 0.0017 0.0342 0.0018 0.0342 0.0018 0.0341 0.0017 0.0339

E 0.0013 0.0295 0.0014 0.0306 0.0015 0.0309 0.0015 0.0310

F 0.0013 0.0294 0.0013 0.0291 0.0013 0.0293 0.0013 0.0290

G 0.0013 0.0291 0.0013 0.0287 0.0013 0.0293 0.0013 0.0290

H 0.0013 0.0296 0.0013 0.0293 0.0013 0.0294 0.0013 0.0292
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3.3. Sensitivity Analysis

We performed a sensitivity analysis to examine the performance of our proposed extrac-
tion networks. Our results indicate that the highest achieving architecture is network H, as it
achieved a mean of 73.2% ± 11.5 with a p-value of 0.007 (Figure 4). In the case of a random
sampling of data extraction, the sensitivity falls to 6.9 ± 3 % (p-value < 0.0001). Overall, our
data indicate that compound extraction model H significantly outperforms random sampling
of the data (p-value < 0.0007). Using the profiler function in TensorFlow we analyzed the
relative time and memory efficiency values for the models used. We used the GoogleColab
Nvidia K80/T4 (host machine) and NVIDIA GeForce GT 705 (local machine) to execute the
training, testing, and validation process. Our results indicate that using RNN layers increases
computation time, with networks AEFGH having a mean of 7.04 ± 1.87 ms, while networks
BCD have a mean was 4.57 ± 0.20 ms. It could be noted that having multiple layers, as in
the case of model A, resulted in having a slightly higher peak memory usage using the local
device and on the Google Cloud host (Supplementary Materials).

3.4. In Silico Validation of Adera2.0 Ability to Mine Known Drugs

We validated Adera2.0’s abilities by measuring its sensitivity to extract known drug
names. We compared the performances of our eight novel networks, focusing on their
ability to extract drug names from sentences (Phase IV) (Figure 5A–C). To measure the
sensitivity, we used three groups of sentences (each group consisting of five sentences).
These groups were formed based on their types into (i) generic, (ii) specific to a drug family,
and (iii) specific to a drug pathway. For the first category, we used the question “what are
the drugs commonly used to treat cardiovascular diseases?”. For this category, Models
G and H had the highest mean of 0.6 with a standard deviation of 0.15 (ii) In the case
of the second category, we used the question; “What are the types of statins?”. All the
models scored lower accuracy, with the highest being Model E (scoring 0.6). (iii) In the
third category, we used the question, “Which drugs function as PPARγ agonists?”. In this
category, Model F scored the highest with a value of 0.67. Overall, Model F was more
accurate in extracting drug names from sentences related to biological pathways. Models
G and H seemed to be more suitable for sentences acquired from more generic inquiries.

3.5. In Silico Validation Demonstrates Adera Performance

Adera2.0 is the new version of our previous publication (Adera1.0) [4]. The main
differences between the two network architectures are highlighted in Table 3. In summary,
we updated our workflow of Adera1.0 considerably to include multiple novel features. We
added a neural network capable of extracting compound names from sentences. Network “H”
was chosen to build the extraction network after comparing eight different neural network
architectures. The neural network accepts the embedding matrix of the user query and outputs
a 512x 1 matrix. The distance between the output matrix and the word embedding matrices of
each relevant sentence is calculated to determine the shortest distance. Using this approach; a
single compound name is extracted from each relevant sentence.
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Figure 5. Sensitivity analysis of the investigated models based on their ability to identify known
drugs. To validate the performance of our models, we compared their performance using three
types of questions. (A,B) We found that models G and H achieve the highest sensitivity on generic
questions. (A,B) Model F could be more suitable for the pathway question–answer category. (C) Our
K-means clustering analysis indicates that the models separate based on their sensitivity into a cluster
containing the B, C, and D models and another cluster containing the models’; A, E, F, H, and G.
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Table 3. Comparison between Adera1.0 and Adera2.0.

Description Adera1.0 Adera2.0

Function Question–answer system (QA) to find the nearest answer to a given query

Input to the system User input (query question)

Overall number of networks 2 3

Networks used Embedding and relevance Embedding, relevance, and extraction

Embedding network function Generate embedding for query question and each sentence in the relevant PDFs

Embedding network architecture DAN (deep averaging network) followed by feedforward autoencoder

Training of the network Wikipedia, web news, and question and answer websites

Pearson correlation performance 0.76

Output of the embedding network 512 × 1 embedding matrix

Relevance network function Determine the relevance of the answers

Relevance network architecture Convolution network

Training of the network Small in-house dataset SciQ

Best loss function performance 0.0018–0.002

Output of the relevant network Embedding matrices sorted based on relevance to the answer

Extraction of compounds from
sentences function

Functionality does not exist

To extract compound names from the
relevant sentence

Relevance network architecture eight different architectures

Best loss function performance 0.0013

Input Sorted sentences

Training of the network Dataset Extraction (1.0)

Output List of compounds

We demonstrated the ability of our workflow to repurpose drugs, by showing its
ability to repurpose compounds based on their abilities to regulate the Th17 function
in depression diseases. A query question was used to initiate the workflow. The query
question was given as: “what are anti-oxidant drugs?”. The workflow produced ten
compounds (Table 4). It could be noticed that the resulting compounds belong to different
chemical and physical families. For example, coumarin is a phenylpropanoid used by
plants to fend off animals [40]. It is mainly used as an anticoagulant. On the other hand,
glycyrrhetinic acid is a triterpenoid derived from the root of licorice and could function as
an anti-cancer and anti-inflammatory drug [41].
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Table 4. Summary of the compounds identified using our software.

Compound Molecule Structure Biological Activity

Acebutolol (O = C(N)Cc1ccc(cc1)OCC(O)CNC(C)C)
Acebutolol is a selective 1-receptor
antagonist that lowers blood pressure
and heart rate.

beta-D-fructofuranose C(C1C(C(C(O1)(CO)O)O)O)O

beta-D-fructofuranose plays a key role in
glycolysis. However, its exact function is
still unknown. Currently, it is in a
clinical trial.
(clinicaltrials.gov Identifier:
NCT05207488)

Elatin (flavonoid)
CC1C(C(C(C(O1)C2 = C3C
( = C(C( = C2O)C4C(C(C(C(O4)CO)O)O)O)O)
C( = O)C = C(O3)C5 = CC( = C(C = C5)O)O)O)O)O

Elatin was reported to be antioxidant,
anti-cancer, anti-microbial,
neuroprotective, and anti-inflammation.

Coumarin O = C1C = Cc2ccccc2O1
Coumarin is an anticoagulant used to
treat deep vein thrombosis and
pulmonary embolism.

Resveratrol Oc1ccc(cc1)C = Cc1cc(O)cc(c1)O Resveratrol was reported to reduce
markers of inflammation.

Glycyrrhetinic acid CC1(C2CCC3(C(C2(CCC1O)C)C( = O)
C = C4C3(CCC5(C4CC(CC5)(C)C( = O)O)C)C)C)C

Glycyrrhetinic acid was shown to inhibit
11β-hydroxysteroid dehydrogenase, thus
inhibiting the conversion of cortisol.

Glycyrrhizin

CC1(C2CCC3(C(C2(CCC1OC4C(C(C(C(O4)C
( = O)O)O)O)OC5C(C(C(C(O5)C( =
O)O)O)O)O)C)C
( = O)C = C6C3(CCC7(C6CC(CC7)(C)C( =
O)O)C)C)C)
C.N.N. N

Glycyrrhizin was approved for use as a
flavor and aroma in manufactured foods.

Amygdalin
C1 = CC = C(C =
C1)C(C#N)OC2C(C(C(C(O2)COC3C
(C(C(C(O3)CO)O)O)O)O)O)O

Amygdalin was reported to suppress
oxidative damage.

Porphyrin
C1 = CC2 = CC3 = CC = C(N3)C = C4C = CC( =
N4)C = C5C
= CC( = N5)C = C1N2

Porphyrin constitutes a part of the heme
in the hemoglobin and myoglobin.

Bicalutamide
CC(CS( = O)( = O)C1 = CC = C(C = C1)F)(C( =
O)NC2 = CC
( = C(C = C2)C#N)C(F)(F)F)O

The antiandrogen drug bicalutamide is
primarily used to treat prostate cancer.

To examine the feasibility of our predictions to be used as Th17 inhibitors in depression,
we subjected the compounds to 11 constraints. In the first set of constraints, pathogenicity
was measured (Table 5). Several compounds were predicted not to have any pathogenic-
ity, such as acebutolol, glycyrrhetinic acid, glycyrrhizin, porphyrin, bicalutamide, and
fucoxanthin. Conversely, amygdalin, on the other hand, is predicted to be of high risk in
three of the four categories, highlighting the limitations of our workflow in terms of being
inherently unaware of toxicity. Moreover, our investigation of the physical and chemical
properties of the repurposed compounds revealed that various compounds did not break
any of Lipinski’s rules, such as acebutolol, beta-D-fructofuranose, coumarin, resveratrol,
and bicalutamide, while glycyrrhizin and flavonoids broke three rules, deeming them weak
on the level of oral absorbance. Furthermore, as our repurposing tasks are related to the
ability of the compound to inhibit pathogenic Th17 function in the brain during depression,
one of the main characteristics of the required drugs is blood–brain barrier infiltration
ability. Our investigation revealed that coumarin, resveratrol, porphyrin, and bicalutamide
were able to cross the BBB (Table 6 and Figure 6). We validated our findings by searching
relevant literature and the Drug Repurposing Hub (Table 7). Notably, bicalutamide was

clinicaltrials.gov
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inferred to decrease Th17 activity by inhibiting NF-κB signaling [42]. Paradoxically, it was
reported to worsen depression prognosis. Conversely, the porphyrin derivative known as
hematoporphyrin is regularly used as an antidepressant and antipsychotic. It was also used
to inhibit the podoplanin–CLEC-2 interaction and decrease the incidence of metastasis and
thrombosis [43]. Conversely, another derivative of porphyrin known as tin protoporphyrin
IX was shown to inhibit Heme oxygenase-1, which may affect Th17 activity [44].

Table 5. Pathogenicity constraints predication for the identified compounds.

Compound Mutagenicity Tumorgenicity Irritant Reproductive
Effective

Acebutolol No No No No

beta-D-fructofuranose No No No Yes

Elatin (flavonoid) Yes Yes No No

Coumarin Yes Yes No Yes

resveratrol No No No Yes

Glycyrrhetinic acid No No No No

glycyrrhizin No No No No

Amygdalin Yes No Yes Yes

Porphyrin No No No No

Bicalutamide No No No No

Table 6. Comparison of repurposed drugs based on their physical and chemical characteristics.

Compound Clog Solubility Mol
Weight Tpsa Drug-

Likeness Drug Score BBB Violations

Acebutolol 1.7 −3.5 336.0 87.66 4.91 0.83 BBB- 0

beta-D-
fructofuranose −2.7 0.38 180 110 −2.56 0.32 BBB- 0

Elatin
(flavonoid) −1.91 −1.89 594 267.2 0.42 0.14 BBB- 3

Coumarin 1.5 −2.37 146 26 −1.83 0.12 BBB+ 0

resveratrol 2.83 −2.86 228.0 60.69 −3.25 0.27 BBB+ 0

Glycyrrhetinic
acid 5.36 −5.78 470 74.6 −2.36 0.2 BBB- 1

Glycyrrhizin 0.39 −5.14 822 267.0 −4.29 0.19 BBB- 3

Amygdalin −3.08 −1.12 457 202.3 −8.7 0.09 BBB- 2

Porphyrin 2.05 −4.34 310.0 52.54 0.97 0.67 BBB+ 1

Bicalutamide 2.14 −5.08 430 115 −11 0.24 BBB+ 0
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Figure 6. BBB infiltration predictions of bicalutamide.

Table 7. Repurposed components arranged based on their capabilities.

Repurposed
Components Antioxidants Th17 Interaction Known Effects on

Depression

Acebutolol Yes [45] Unknown Unknown

beta-D-
fructofuranose Unknown Unknown Unknown

Elatin (flavonoid) Yes [46] Yes [46] Yes [47]

Coumarin Yes [48] Yes [49] Yes [50]

Resveratrol Yes [51] Yes [52] Yes [53]

Glycyrrhetinic acid Yes [54] Yes [55] Yes [56]

Glycyrrhizin Yes [54] Yes [55] Yes [56]

Amygdalin Yes [57] Yes [58] unknown

Porphyrin Yes [31] Yes [44] Yes [31] (enhance
prognosis)

Bicalutamide No [59] Yes [42] Yes (worsen
prognosis)

Bicalutamide scored 0.02 on the SVM-MACCCSFP BBB score indicating that it is highly
likely to be able to cross the BBB.

4. Discussion

Our system offers a drug repurposing workflow. Thousands of literature documents are
being added to PubMed and similar repositories each year. Mining drug databases is a viable
option for drug repurposing. However, classical approaches use large dictionaries to extract
the compound from mined sentences. Word2VEC approaches offer a solution by embedding
text to numerical matrices. However, it lacks awareness of sentence context. Our updated
workflow is both able to determine sentence relevance and also to extract compound names
with a loss of less than 0.01 and a sensitivity of 67% (Table 2, Figures 4 and 5).

4.1. Output of the Extraction Network Highlight the Importance of Architecture

Our approach, as well as others, demonstrates that neural network prediction re-
sults are highly dependable on the architecture and the loss function. The extraction
network’s main task is, given a sentence embedding, to predict a word embedding repre-
senting a generic compound. To do this, we trained our network on an in-house dataset of
1000 entries. Our findings, in agreement with previous reports, suggest that RNN could
be most suited for compound name extraction tasks. Notably, designs that lack the RNN
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structures perform significantly worse (Figures 3 and 4). This observation was further vali-
dated by inspecting the ability of our eight models to extract known drug names. K-means
clustering analysis (Figure 5C) showed clear clustering between Models A, E, F, G, and
H (cluster I) and models B, C, and D (cluster II). RNNs are known to perform better than
CNN-based models using a multi-classifier framework. CNN was reported not to be able
to grasp the text context [60]. RNNs can predict time series and have been used successfully
for text normalization, de-identification, and sequence labeling [61,62]. However, RNNs
also suffer from low efficiency in multi-classifier settings [63]. In this report, we proposed a
novel network design to extract drug compounds from sentences using a regression loss
function (i.e., mean square root error (MSE)). Our model “H” which utilizes a simple RNN
achieves a loss of less than 0.0013 as well as a sensitivity of an average of 67% (Figures 3–5).

4.2. Case Study Results Show Our Workflow Predictions Accuracy

We demonstrated the ability of our workflow to correctly repurpose a compound that
can target Th17 expansion in the brain. We have previously shown that Th17 is capable
of infiltrating the brain during depression diseases, causing a localized inflammation of
the hypothalamus. This inflammation is associated with depression-like behavior [64–66].
Currently, depression drugs focus on the role of neurotransmitters and overlook the in-
flammatory side [67]. Thus, repurposing drugs to target the inflammatory symptoms
of depression can help ease the symptoms and ensure a better quality of life. We used
Adera to mine PubMed PDFs for anti-oxidant drugs. We investigated a list of ten drugs for
their ability to fulfill the needed objective (i.e., target Th17 expansion in the brain during
depression). Additionally, we subjected the resulting drugs to a rigorous list of constraints
that ensured that the repurposed drug would fulfill the objective while being biologically
safe, orally available, and non-toxic. Our investigation proposes the use of porphyrin and
bicalutamide. Our findings are supported by the literature, which shows that both drugs
have interacted with the effect on Th17 and are regularly used to improve the prognosis of
depression [31,38,44].

4.3. Limitations and Future Direction

Currently, Adera2.0 is unaware of the structure of the repurposed drug. Downstream
analysis using molecular dynamics, molecular docking, and QM/MM programs are still
essential to reduce the cost of the in vitro and in vivo validation of drugs that could be
repurposed using our software. Future improvements to the software will include neural
networks predicting protein–drug interactions to overcome this limitation.

5. Conclusions

Our workflow (Adera2.0) is capable of text mining highly specific PDFs to search
for drugs that could be used in an immunological context. Our workflow is capable of
automatically downloading and parsing PDFs from PubMed. The workflow predicts
the relevance between each parsed sentence and the user query. The workflow extracts
compound names from relevant sentences with a sensitivity in the 60–70% range. Overall,
the use of Adera may reduce the time and costs required for R&D in drug discovery.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/molecules27196453/s1, Table S1: Relative time efficiency of the models used. Table S2: Relative
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of the models used (on Google cloud).

Author Contributions: Conceptualization, M.E.M., J.O.H. and M.S.; data curation, M.L., K.D. and
M.E.M.; formal analysis, M.L., J.P., O.A., K.D. and M.E.M.; investigation, M.L., O.A., M.E.M., J.P. and
A.K.; methodology, M.L., O.A. and A.K.; supervision, J.O.H. and M.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was financed by the NLnet Foundation, grant number RfP 2021-10-039.

https://www.mdpi.com/article/10.3390/molecules27196453/s1
https://www.mdpi.com/article/10.3390/molecules27196453/s1


Molecules 2022, 27, 6453 17 of 19

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used in this manuscript is available through the following
link: https://data.mendeley.com/datasets/whr7wrh42y/1.

Acknowledgments: We would like to thank Macrious Abraham and Meriam Joachim for their fruitful
discussions and inspiration. We would like to thank the teams at NLnet and COST for their financial
support. Additionally, we would like to acknowledge the authors of the open-source python libraries
KeyBert and MetaPub.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Not applicable.

References
1. Scannell, J.W.; Blanckley, A.; Boldon, H.; Warrington, B. Diagnosing the Decline in Pharmaceutical R&D Efficiency. Nat. Rev. Drug

Discov. 2012, 11, 191–200. [CrossRef] [PubMed]
2. Prasad, V.; Mailankody, S. Research and Development Spending to Bring a Single Cancer Drug to Market and Revenues After

Approval. JAMA Intern. Med. 2017, 177, 1569. [CrossRef] [PubMed]
3. Simsek, M.; Meijer, B.; van Bodegraven, A.A.; de Boer, N.K.H.; Mulder, C.J.J. Finding Hidden Treasures in Old Drugs: The

Challenges and Importance of Licensing Generics. Drug Discov. Today 2018, 23, 17–21. [CrossRef]
4. Kubick, N.; Pajares, M.; Enache, I.; Manda, G.; Mickael, M.-E. Repurposing Zileuton as a Depression Drug Using an AI and In

Vitro Approach. Molecules 2020, 25, 2155. [CrossRef] [PubMed]
5. Anstey, A.; Lear, J.T. Azathioprine: Clinical Pharmacology and Current Indications in Autoimmune Disorders. BioDrugs 1998, 9,

33–47. [CrossRef] [PubMed]
6. Watkins, J.; Dargie, H.J.; Bune, A.; Dollery, C.T. Reduction of Beta-Blocking Drugs in Hypertensive Patients Treated with Minoxidil.

BMJ 1979, 1, 1400. [CrossRef]
7. Mercurio, A.; Adriani, G.; Catalano, A.; Carocci, A.; Rao, L.; Lentini, G.; Cavalluzzi, M.M.; Franchini, C.; Vacca, A.; Corbo, F.

A Mini-Review on Thalidomide: Chemistry, Mechanisms of Action, Therapeutic Potential and Anti-Angiogenic Properties in
Multiple Myeloma. Curr. Med. Chem. 2017, 24, 2736–2744. [CrossRef]

8. López-Muñoz, F.; Alamo, C.; Cuenca, E.; Shen, W.; Clervoy, P.; Rubio, G. History of the Discovery and Clinical Introduction of
Chlorpromazine. Ann. Clin. Psychiatry 2005, 17, 113–135. [CrossRef]

9. Nag, S.; Baidya, A.T.K.; Mandal, A.; Mathew, A.T.; Das, B.; Devi, B.; Kumar, R. Deep Learning Tools for Advancing Drug
Discovery and Development. 3 Biotech 2022, 12, 110. [CrossRef]

10. Cheng, D.; Knox, C.; Young, N.; Stothard, P.; Damaraju, S.; Wishart, D.S. PolySearch: A Web-Based Text Mining System for
Extracting Relationships between Human Diseases, Genes, Mutations, Drugs and Metabolites. Nucleic Acids Res. 2008, 36,
W399–W405. [CrossRef]

11. Leaman, R.; Islamaj Dogan, R.; Lu, Z. DNorm: Disease Name Normalization with Pairwise Learning to Rank. Bioinformatics 2013,
29, 2909–2917. [CrossRef] [PubMed]

12. Jarada, T.N.; Rokne, J.G.; Alhajj, R. A Review of Computational Drug Repositioning: Strategies, Approaches, Opportunities,
Challenges, and Directions. J. Cheminform. 2020, 12, 46. [CrossRef] [PubMed]

13. Davis, A.P.; Wiegers, T.C.; Rosenstein, M.C.; Mattingly, C.J. MEDIC: A Practical Disease Vocabulary Used at the Comparative
Toxicogenomics Database. Database 2012, 2012, bar065. [CrossRef] [PubMed]

14. Wishart, D.S. DrugBank: A Comprehensive Resource for in Silico Drug Discovery and Exploration. Nucleic Acids Res. 2006, 34,
D668–D672. [CrossRef]

15. Hansson, L.K.; Hansen, R.B.; Pletscher-Frankild, S.; Berzins, R.; Hansen, D.H.; Madsen, D.; Christensen, S.B.; Christiansen, M.R.;
Boulund, U.; Wolf, X.A.; et al. Semantic Text Mining in Early Drug Discovery for Type 2 Diabetes. PLoS ONE 2020, 15, e0233956.
[CrossRef]

16. Henry, S.; Panahi, A.; Wijesinghe, D.S.; McInnes, B.T. A Literature Based Discovery Visualization System with Hierarchical
Clustering and Linking Set Associations. AMIA Jt. Summits Transl. Sci. Proc. 2019, 2019, 582–591.

17. Hu, G.; Agarwal, P. Human Disease-Drug Network Based on Genomic Expression Profiles. PLoS ONE 2009, 4, e6536. [CrossRef]
18. Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [CrossRef]
19. Wu, C.; Gudivada, R.C.; Aronow, B.J.; Jegga, A.G. Computational Drug Repositioning through Heterogeneous Network Clustering.

BMC Syst. Biol. 2013, 7, S6. [CrossRef]
20. Liu, S.; Tang, B.; Chen, Q.; Wang, X. Drug Name Recognition: Approaches and Resources. Information 2015, 6, 790–810. [CrossRef]
21. Halgrim, S.; Xia, F.; Solti, I.; Cadag, E.; Uzuner, Ö. A Cascade of Classifiers for Extracting Medication Information from Discharge

Summaries. J. Biomed. Semant. 2011, 2, S2. [CrossRef] [PubMed]

https://data.mendeley.com/datasets/whr7wrh42y/1
http://doi.org/10.1038/nrd3681
http://www.ncbi.nlm.nih.gov/pubmed/22378269
http://doi.org/10.1001/jamainternmed.2017.3601
http://www.ncbi.nlm.nih.gov/pubmed/28892524
http://doi.org/10.1016/j.drudis.2017.08.008
http://doi.org/10.3390/molecules25092155
http://www.ncbi.nlm.nih.gov/pubmed/32380663
http://doi.org/10.2165/00063030-199809010-00004
http://www.ncbi.nlm.nih.gov/pubmed/18020555
http://doi.org/10.1136/bmj.1.6175.1400
http://doi.org/10.2174/0929867324666170601074646
http://doi.org/10.1080/10401230591002002
http://doi.org/10.1007/s13205-022-03165-8
http://doi.org/10.1093/nar/gkn296
http://doi.org/10.1093/bioinformatics/btt474
http://www.ncbi.nlm.nih.gov/pubmed/23969135
http://doi.org/10.1186/s13321-020-00450-7
http://www.ncbi.nlm.nih.gov/pubmed/33431024
http://doi.org/10.1093/database/bar065
http://www.ncbi.nlm.nih.gov/pubmed/22434833
http://doi.org/10.1093/nar/gkj067
http://doi.org/10.1371/journal.pone.0233956
http://doi.org/10.1371/journal.pone.0006536
http://doi.org/10.1093/nar/28.1.27
http://doi.org/10.1186/1752-0509-7-S5-S6
http://doi.org/10.3390/info6040790
http://doi.org/10.1186/2041-1480-2-S3-S2
http://www.ncbi.nlm.nih.gov/pubmed/21992591


Molecules 2022, 27, 6453 18 of 19

22. Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M.; et al.
Applications of Machine Learning in Drug Discovery and Development. Nat. Rev. Drug Discov. 2019, 18, 463–477. [CrossRef]
[PubMed]

23. Bhatnagar, R.; Sardar, S.; Beheshti, M.; Podichetty, J.T. How Can Natural Language Processing Help Model Informed Drug
Development?: A Review. JAMIA Open 2022, 5, ooac043. [CrossRef] [PubMed]

24. Uzuner, Ö.; South, B.R.; Shen, S.; DuVall, S.L. 2010 I2b2/VA Challenge on Concepts, Assertions, and Relations in Clinical Text.
J. Am. Med. Inform. Assoc. 2011, 18, 552–556. [CrossRef]

25. Bell, D.; Hahn-Powell, G.; Valenzuela-Escárcega, M.A.; Surdeanu, M. An Investigation of Coreference Phenomena in the
Biomedical Domain. In Proceedings of the 10th International Conference on Language Resources and Evaluation, Portorož,
Slovenia, 23–28 May 2016.

26. Wei, C.-H.; Peng, Y.; Leaman, R.; Davis, A.P.; Mattingly, C.J.; Li, J.; Wiegers, T.C.; Lu, Z. Overview of the BioCreative V Chemical
Disease Relation (CDR) Task. Proc. Fifth BioCreative Chall. Eval. Work. 2015, 154–166.

27. Ekbal, A.; Bandyopadhyay, S. A Hidden Markov Model Based Named Entity Recognition System: Bengali and Hindi as Case Stud-
ies. In Pattern Recognition and Machine Intelligence; Springer: Berlin/Heidelberg, Germany, 2007; pp. 545–552, ISBN 3540770453.

28. Cer, D.; Yang, Y.; Kong, S.; Hua, N.; Limtiaco, N.; John, R.S.; Constant, N.; Guajardo-Cespedes, M.; Yuan, S.; Tar, C.; et al. Universal
Sentence Encoder. arXiv 2018. [CrossRef]

29. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013,
arXiv:1301.3781.

30. Mattmann, C.A.; Zitting, J.L. Tika in Action; Manning: New York, NY, USA, 2012; ISBN 9781935182856.
31. Corsello, S.M.; Bittker, J.A.; Liu, Z.; Gould, J.; McCarren, P.; Hirschman, J.E.; Johnston, S.E.; Vrcic, A.; Wong, B.; Khan, M.; et al.

The Drug Repurposing Hub: A next-Generation Drug Library and Information Resource. Nat. Med. 2017, 23, 405–408. [CrossRef]
32. Mickael, M.E.; Bhaumik, S.; Chakraborti, A.; Umfress, A.A.; van Groen, T.; Macaluso, M.; Totenhagen, J.; Sorace, A.G.; Bibb, J.A.;

Standaert, D.G.; et al. RORγt-Expressing Pathogenic CD4 + T Cells Cause Brain Inflammation during Chronic Colitis. J. Immunol.
2022, 208, 2054–2066. [CrossRef]
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