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Abstract

Background: Autophagy inhibits tumorigenesis by limiting inflammation. LncRNAs regulate gene expression at
various levels as RNAs; thus, both autophagy and lncRNAs are closely related to the occurrence and development
of tumours.

Methods: A total of 232 autophagy-related genes were used to construct a coexpression network to extract
autophagy-related lncRNAs. A prognostic signature was constructed by multivariate regression analysis. Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis was applied to analyse enrichment in cancer-related
pathways. Immune infiltration analysis was used to analyse the relationship between the prognostic signature and
the tumour microenvironment.

Results: Nine autophagy-related lncRNAs were used to construct a prognostic model for non-small-cell lung
cancer. The median risk score was used to discriminate the high- and low-risk groups, and the low-risk group was
found to have better survival. Because KEGG pathway analysis showed that the prognostic signature was enriched
in some immune pathways, further analysis of immune infiltration was conducted, and it was found that the
prognostic signature did play a unique role in the immune microenvironment. Additionally, the prognostic
signature was associated with clinical factors.

Conclusion: We constructed a prognostic model of autophagy-related lncRNAs that can predict the prognosis of
non-small-cell lung cancer.
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Introduction
Lung cancer is one of the most serious malignancies that
threatens health, and its incidence has increased, mainly
owing to the increase in smoking, a known risk factor
[1]. Autophagy is a conserved catabolic cellular process
in which damaged or unusable proteins or other cyto-
plasmic components are transported to double-
membrane vesicles (autophagosomes) and then enter

lysosomes or vacuoles for degradation [2]. The level of
autophagy is a key threshold for promoting cell survival
or inducing cell death in response to environmental
stress [3–5]. Autophagy plays a related role in tumori-
genesis and anticancer treatment by modulating inflam-
mation, hypoxia, immunosuppression and metabolism in
the tumour microenvironment. In particular, impaired
autophagic flux is associated with chronic inflammation,
immunosuppression, matrix formation, cancer stem cell
generation, angiogenesis, metastasis, and metabolic
reprogramming in the tumour microenvironment. The
tumour microenvironment is composed of a variety of
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immune cells, mesenchymal cells, extracellular matrix
components and active mediators (such as cytokines,
chemokines, growth factors, and humoural factors), in
addition to tumour cells. The tumour microenviron-
ment can be divided into an immune microenviron-
ment based on immune cells and a nonimmune
microenvironment based on fibroblasts. An abnormal
tumour microenvironment is closely related to resist-
ance to cell death, promotion of proliferation, avoid-
ance of immune destruction, maintenance of
inflammation or induction of angiogenesis [6]. During
autophagy, cytoplasmic material is degraded in lyso-
somes. Because lysosomes have a distinct membrane
as a safety mechanism to prevent the leakage of their
degradation enzymes, autophagy involves complex
membrane dynamics. There are three types of autoph-
agy involving different modes of delivery of cargo to
lysosomes: macroautophagy, microautophagy, and
chaperone-mediated autophagy. Macroautophagy is
the main regulatory form of autophagy occurring in
response to environmental and physiological signals.
Microautophagy involves direct phagocytosis of cyto-
plasmic contents by lysosomes, while chaperone-
mediated autophagy involves the translocation of
chaperone auxiliary substrate proteins (and potentially
DNA and RNA molecules) across the lysosomal mem-
brane [7]. Long noncoding RNAs (lncRNAs) have
been widely reported to regulate pathophysiological
processes through mechanisms such as gene imprint-
ing, histone modification, chromatin remodelling,
transcriptional interference, nuclear transport, tran-
scriptional activation, and cell cycle regulation.
LncRNAs are mainly transcribed by RNA polymerase
II. LncRNAs are important elements of the mamma-
lian transcriptome that control a variety of cellular
mechanisms and regulate cellular processes, such as
cell metabolism, drug resistance, growth, proliferation,
invasion, metastasis, and apoptosis, ensuring homeo-
stasis. They may be oncogenic or tumour suppressive
by directly or indirectly affecting the transcription of a var-
iety of proteins through transcriptional and post-
transcriptional changes. The main regulatory mechanisms
of lncRNAs are the stabilization of proteins in the nucleus
and the sponging of miRNAs in the cytoplasm. They can
also act as competitive endogenous RNAs (ceRNAs) by
competitively binding to microRNAs (miRNAs) and thus
inhibiting their function [8]. In this study, 9 autophagy-
related lncRNAs with prognostic value (AC020765.2,
AC254562.3, AL031666.1, LINC01426, MMP2-AS1,
AC102953.2, AP000695.2, LINC00941 and NKILA) in pa-
tients were identified using multivariate Cox regression
analysis; a prognostic signature was then established based
on these prognostic lncRNAs, which may serve as an inde-
pendent prognostic factor in lung cancer.

Materials and methods
Isolation and sorting of lncRNAs and mRNAs
Data, including transcriptome profile data and clinical
information, for all included patients with lung adeno-
carcinoma and squamous cell carcinoma were down-
loaded from The Cancer Genome Atlas (TCGA, http://
cancergenome.nih.gov/). The data were sorted by a Perl
script (https://www.perl.org), and a total of 108 normal
samples and 1037 tumour samples were obtained; at the
same time, we deleted entries with missing information.
Through transferring the annotations to a human genes
format, we performed ID conversion and distinguished
lncRNAs and mRNAs.

Autophagy gene and lncRNA screening
The autophagy gene list was obtained from the Human
Autophagy Database (HADb, https://autophagy.lu/
clustering/index.html). When extracting autophagy
genes, we performed an averaging operation on genes
that appeared multiple times; normal samples and low-
expression genes (autophagy-related mRNAs or
lncRNAs with expression < 0.5) were deleted. Pearson
correlation analysis was applied to identify correlations
between the lncRNAs and autophagy-related genes. A
lncRNA with a correlation coefficient |R2| > 0.3 and P <
0.001 was considered to be an autophagy-related
lncRNA.

Signature development
Univariate and multivariate Cox regression analysis was
performed to evaluate the prognostic value of
autophagy-related lncRNAs. To establish the risk score,
lncRNAs with a P-value < 0.01 in the univariate analysis
were included in the multivariate stepwise Cox regres-
sion analysis. The following formula was used to deter-
mine the risk score for each patient: β gene1 × expr gene
1 + β gene 2 × expr gene 2 +… + β gene n × expr gene n.
Cox regression analysis was performed to establish a sig-
nature for predicting survival. Specifically, we assigned
risk scores by calculating the linear sum of the lncRNA
expression levels weighted by the corresponding regres-
sion coefficients (β). The β values were calculated by log
transformation of the hazard ratio (HR) from the multi-
variate Cox regression analysis. The high-risk and low-
risk groups were established based on the median risk
score. The lncRNAs expression values were defined as
the expression level of gene n (expr gene n) [9].

Construction of the lncRNA-mRNA interaction network by
cox regression analysis
It was vital to match the autophagy-related lncRNAs
and mRNAs according to the Cox regression analysis
results; thus, the network visualized with Cytoscape (ver-
sion 3.7.1) could highlight the connections and
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mechanisms involved in the development of lung cancer.
Furthermore, as the number of lncRNAs was high, it
was valuable to create a signature comprising a limited
number of variables and the best Akaike information cri-
terion (AIC).

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) is an method for
analysing whole-genome expression profile chip data by
comparing genes with predefined gene sets [10]. This
method operates through analysis of gene sets and can
thus be used to determine whether the gene set shows a
statistically significant difference between the two bio-
logical states. In this study, we verified whether genes
differentially expressed between the two groups are
enriched during autophagy.

Analysis of immune infiltrates
TIMER is a comprehensive resource for systematic ana-
lysis of immune infiltrates across diverse cancer types
(https://cistrome.shinyappes.io/timer/) and was used to
evaluate potential relationships between the risk group-
ing and tumour-infiltrating immune cells. TIMER em-
ploys a recently published statistical method known as
deconvolution to deduce the prevalence of TIIGs from
gene expression profiles. To approximate the abundance
of TIIGs, the TIMER database uses TCGA data for
10,897 samples across 32 types of cancer. To assess the
relative variations in gene expression amongst sets in the
samples [11, 12], we used a deconvolution algorithm
based on gene expression called CIBERSORT (http://
cibersort.stanford.edu/). With CIBERSORT, we mea-
sured the immune response of 22 TIICs to evaluate their
association with the risk grouping in lung cancer and to
reveal correlations amongst TIICs. We used standard
annotation files to establish gene expression datasets and
used the default signature matrix with 1000 permuta-
tions. Through Monte Carlo sampling, the approximate
P-value for the deconvolution was used to determine the
confidence levels of the outcomes. To analyse the influ-
ence of the high and low risk groupings on the immune
microenvironment, we utilized 999 tumour samples that
we classified into two groups. To determine the types of
lymphocytes affected by the grouping, we set the P-value
threshold at < 0.05 [13, 14].

Statistical analysis
Survival status was the basis for the univariate Cox
regression analysis, and R software (version 3.6.2) was
used to generate Kaplan-Meier curves. GSEA (http://
www.broadinstitute.org/gsea/index.jsp) was used to
discriminate two sets of functional annotations. Statis-
tical significance was assumed at a threshold two-tailed
P < 0.05.

Results
Collation of transcriptome data
We identified 14,142 lncRNAs that were extracted from
TCGA datasets, and a total of 210 autophagy-related
genes were downloaded from the Human Autophagy
Database (HADb, http://autophagy.lu/clustering//index.
html). We conducted coexpression analysis of the
autophagy genes and lncRNAs to identify autophagy-
related lncRNAs (|R2| > 0.3 and P < 0.001). According to
the properties of the genes, we separated 1496 identified
lncRNAs for further identification of prognostic genes.
We combined the two data types futime (survival time)
and fustate (survival status), which were obtained from
the clinical data (downloaded from TCGA), into the
lncRNA expression matrix. Patients with incomplete
clinical information (futime, fustate, age, sex, grade, state
or TNM) were excluded from the following analysis.

Construction of the cox prognostic model
Through univariate Cox regression analysis, 18 lncRNAs
were found to have prognostic value for lung cancer (P ≤
0.01), and these lncRNAs were subjected to multivariate
Cox regression analysis. A risk score formula based on
AC020765.2, AC254562.3, AL031666.1, LINC01426,
MMP2-AS1, AC102953.2, AP000695.2, LINC00941 and
NKILA had the lowest AIC (Akaike information criterion);
among these lncRNAs, five were favourable factors
(AC020765.2, AC254562.3, AL031666.1, LINC01426,
MMP2-AS1) and four were considered unfavourable
prognostic factors (AC102953.2, AP000695.2, LINC00941
and NKILA). The risk assessment score for the prediction
of overall survival was calculated as follows:
expAL031666.1 × 0.176009 + expAC020765.2 ×
0.138779 + expAC102953.2 × 0.103983 + expAP000695.2 ×
0.145198 + expNKILA × 0.048298 + expMMP2-AS1 ×
0.187273 + expLINC01426 × 0.086274 + expAC254562.3 ×
0.150477 + expLINC00941 × 0.054391 (Fig. 1) [15, 16].

Visualization of co-expression network
To better present the connections among and mecha-
nisms linking prognosis-related autophagy lncRNAs and
mRNAs, we first visualized the coexpression results with
Cytoscape and constructed heat maps for the lncRNAs
and mRNAs in the coexpression network to show the
differences in the expression data (Fig. 2A-C). The distri-
bution of the different patients, who were separated into
two groups by the median value of the risk score, was
significantly different in Cox regression analysis of the
autophagy-related genes, while it was not significantly
different between the two groups in the Cox regression
analysis of all genes (Fig. 3A-B) [17]. The risk survival
curves indicated that the five-year survival rates in the
low-risk (CI: 0.446–0.579) and high-risk (CI: 0.32–0.443)
groups were higher than 0.5 and 0.38, respectively (P <
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0.0001) (Fig. 3C). Next, we constructed a Sankey dia-
gram to further classify the lncRNAs as protective
lncRNAs (the higher the expression of the lncRNA, the
lower the risk) or risky lncRNAs and more comprehen-
sively visualize their connections (Fig. 3D).

Validation of the cox prognostic model
The risk curve had three parts, and the patients’ risk in-
creased sequentially from left to right. The first part
implied that we divided these patients into the high-
risk and low-risk groups on the basis of the median
value of the risk score. The survival status plot indi-
cated that as the risk value increased, the patients’ sur-
vival time decreased. The expression heat map

indicated that risk increased with increased expression
of some lncRNAs (LINC00941, AP000695.2, NKILA
and AC102953.2) and with decreased expression of
other lncRNAs (AC020765.2, AC254562.3, AL031666.1,
LINC01426 and MMP2-AS1) (Fig. 4A). To evaluate
whether the constructed model was independent of
other clinical traits as a predictive factor, we performed
an independent prognostic analysis. It was found that
clinical stage (P < 0.001), T stage (P < 0.001), M stage
(P = 0.007), N stage (P < 0.001) and risk score (P <
0.001) were directly related to the prognosis of patients
(Fig. 4B), while multivariate Cox regression analysis
showed that only T stage (P = 0.023), N stage (P =
0.029) and risk score (P < 0.001) were statistically

Fig. 1 Construction of prognostic signature. The red curve in the survival curve represented the high expression of lncRNA, and the blue curve
represented the ground expression of lncRNA. The low expression of five lncRNAs related to autophagy had better survival, while the high
expression of the other four lncRNAs related to autophagy had better survival
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independent predictive factors (Fig. 4C) [18]. The pre-
diction efficiency of the model was evaluated by ROC
curve analysis, and it can be seen that the area under
the curve was 0.685 for one-year survival, 0.648 for
two-year survival, and 0.638 for three-year survival.
This finding indicates that the predictive efficiency of
our model is good (Fig. 4D). The area under the red
curve in the ROC curve with multiple indicators was
0.673, suggesting that our model had promising power
for predicting the clinical outcome of patients. Further-
more, among the clinical traits, risk score had the
largest area under the curve value; thus, our model was
also superior to other clinical traits for predicting the
survival of patients (Fig. 5A) [19].

Gene set enrichment analysis
Further functional annotation was conducted through
GSEA, and the results revealed that the differentially
expressed genes between the two groups were enriched
in metabolism-related and tumour-related pathways.
GSEA showed that a total of 45 gene sets were signifi-
cantly enriched with a nominal P value < 0.05. Among
the identified pathways, several pathways were well
established in cancers, including small cell lung cancer,
pathways in cancer, thyroid cancer, P53 signaling path-
way, and WNT signaling pathway; all of these pathways
promote the development of tumours, indicating that
these pathways were active in high-risk patients, while
other pathways were silent in high-risk patients. The

Fig. 2 Co-expression network construction. (A) Expression of lncRNA related to autophagy in the prognostic signature of heat map between
normal and tumor samples. (B) Expression of mRNA related to autophagy in the co-expression network in heat map between normal and tumor
samples. Red represented high expression, blue represented ground expression, and the depth of color represented the level of expression. (C)
The co-expression network showed the link between lncRNA and autophagy-related mRNA
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Fig. 3 Presentation mode of the prognostic signature. (A) Principal component analysis diagram (PCA) showed the distribution of all genes. (B)
Principal component analysis chart (PCA) showed the distribution of prognostic signature. Green represented low risk, and red represented high
risk. (C) Kaplan-meier curve reflected the survival significance of the prognostic model. (D) The alluvial map was used to further show the
relationship between autophagy-related mRNA and autophagy-related lncRNA, and their risk types
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Fig. 4 Validation of prognostic signature. (A) The risk plot showed that as the risk score increases, the proportion of patient deaths increases,
which in turn indicateed the reliability of the model. The risk heat map further showed the difference in the expression of prognostic lncRNA
between the high and low risk groups. (B) Univariate Cox regression analysis showed that stage, T, N, M and riskscore had prognostic significance
for non-small cell lung cancer. (C) Multivariate Cox regression analysis displayed that age, T, N and riskscore were independent prognostic factors
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Fig. 5 Immune Infiltration Analysis. (A) The area under the ROC curve was used to predict the predictive power of the prognostic model. The
largest area under the prognostic model curve indicated the best prediction effect. (B) KEGG enrichment analysis showed that the prognostic
model is mainly enriched in the cancer pathway. (C) The scatter plot showed that the prognostic model is significantly correlated with B cells,
CD4+ T cells and macrophages. (D) The violin chart was used to show the difference between the 21 groups of immune cells in the high and
low risk groups. Red represents high expression and blue represents low expression
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PAR signalling pathway participates in lipid metabolism
and induces anticancer effects in human tumours. Buta-
noate metabolism, which significantly increases the
metabolic stress on tumour cell mitochondria, promotes
specific apoptosis of lung cancer cells and inhibits
tumour growth. Fatty acid metabolism, α-linolenic acid
metabolism and arachidonic acid metabolism inhibit the
initiation and metastasis of cancer (Fig. 5B) [20, 21].

Differences in immune cells in the high- and low-risk
groups
Independent tumour-infiltrating lymphocytes contribute to
the prediction of overall survival and the status of sentinel
lymph nodes. Hence, TIMER was applied to analyse the pos-
sible relationships between risk grouping and immune infil-
tration in lung cancer. As shown in Fig. 5C, a negative
correlation existed between risk classification and the num-
bers of B cells (P-value = 7.192 × 10–6), macrophages (P-
value = 0.022) and CD4+ T cells (P-value = 0.027) [22, 23].
To estimate whether there is a difference between the
tumour immune microenvironment in the two groups of
patients, 999 tumour patients were divided into a low-risk
group and a high-risk group, which contained 500 and
499 patients, respectively. The comprehensive CIBER-
SORT algorithm was employed to characterize the infiltra-
tion of 21 different immune cells based on gene
expression profiles, with patients separated into two
groups based on the median risk score. Markers of acti-
vated memory CD4+ T cells and M0 macrophages
showed low expression in the low-risk group, while
markers of resting mast cells showed high expression in
the low-risk group (Fig. 5D). The correlation heat map ob-
tained with the 22 types of immune cells revealed that
CD8+ T cells correlated positively with activated memory
CD4+ T cells but showed a negative relationship with
resting memory CD4+ T cells (Fig. 6A). The immune
score and matrix score of the patients can help to deter-
mine the degree of immune cell infiltration in the tumour
microenvironment and the tumour purity. Analysis of the
matrix microenvironment showed that there was no sig-
nificant difference among the patients when they were di-
vided into two groups based on the median value of the
matrix score, while when the patients were divided into
two groups based on the median value of the immune
score, significant differences were revealed in the immune
microenvironment (Fig. 6B-C) [24–27].

Correlation analysis of clinical parameters
We conducted correlation analysis of clinical parameters to
assess whether the risk score and the lncRNAs in the Cox
prognostic model are related to clinical traits. We found
that the risk model was significantly related to clinical stage
and T stage. In addition, AP00695.2 in the model was sig-
nificantly related to age, sex and T stage, while AC020765.2

was related to sex, AC254562.3 was related to clinical stage,
AC102953.2 was significantly different between ages, and
LINC00941 was related to T stage. The differences were
significant: AL031666.1 was significantly different between
ages and stages, LINC01426 was significantly different be-
tween sexes, and MMP2-AS1 had an obvious difference be-
tween clinical stages and T stages (Fig. 7).

Discussion
Lung cancer, which is one of the most fatal malignan-
cies, is currently a major health issue worldwide. It is of
great urgency to find a way to predict the overall survival
rate of patients with lung cancer. Epigenetic modifica-
tions of genes, especially lncRNAs, have shown close
links to lung cancer [28, 29]. LncRNAs, as supplemental
genes/miRNAs, are promising predictors of the risk of
lung cancer recurrence. Due to technological limitations,
problems still exist in functional research lncRNAs in
comparison with coding RNAs. Therefore, it is vital to
establish a risk model to better predict the prognosis of
lung cancer.
In this research, we identified 9 prognostic autophagy-

related lncRNAs and divided patients into high-risk and
low-risk groups based on the median risk score.
Through univariate and multivariate Cox regression ana-
lysis, we concluded that the risk model is an independ-
ent prognostic factor.
Autophagy originates with the formation of membrane

structures called phagocytic cells or membranes. After
phagocytic cell formation begins, the double membrane
grows to surround the cellular contents during a process
called the autophagic extension phase. Autophagy can
promote the survival of tumour cells but can also lead to
cell death. It can be enhanced or inhibited by anticancer
agents. Upregulation of autophagy during cancer treat-
ment can promote either the survival or death of tumour
cells. Although little is known about the role of autoph-
agy in cancer therapy to date, recent studies have sug-
gested that therapeutic autophagy will become a new
approach for lung cancer treatment [30–32]. First, au-
tophagy can have a tumour-suppressive function.
Autophagy is a valuable mechanism used by cells to
maintain cell integrity and genome stability. The absence
of autophagy genes naturally interferes with this homeo-
stasis; thus, it may initiate cell tumour development.
Furthermore, a variety of autophagy mechanisms con-
tribute to tumour suppression. Under stress, autophagy
is activated to remove damaged proteins and organelles,
including mitochondria. Inhibition or lack of autophagy
leads to an increase in the reactive oxygen species level,
resulting in accumulation of DNA damage, which is
manifested as gene amplification, increased numbers of
double-strand breaks and polyploid nuclei. This increase
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Fig. 6 Immune microenvironment analysis. (A) Correlation heat map showed the correlation between 22 immune cells and prognostic models.
(B) We predicted the content of stromal cells through matrix scores, and then analyzed the differences in stromal cells between high and low risk
groups. (C) We used the immune score to predict the content of immune cells, and then analyzed the differences in immune cells in the high
and low risk groups
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Fig. 7 Clinical correlation analysis. The prognostic model was significantly correlated with T and stage, which implied the accuracy and reliability
of the model. While Part of the lncRNAs in the model were also significantly related to clinical factors respectively
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in DNA damage may lead to higher susceptibility to the
onset and development of cancer.
In addition, autophagy is a carcinogenic process, and

both mechanical tissue and genetic research support this
hypothesis. When the intracellular and extracellular en-
vironments are deficient and cells are under metabolic
stress, autophagy is activated as an adaptation mechan-
ism. In the early stages of tumour formation, cancer cells
often experience hypoxia and an environment in which
nutrients are limited due to tumour growth because of
the lack of an effective blood supply. These conditions
cause metabolic stress and lead to reduced mitochon-
drial oxidative phosphorylation. Subsequently, cancer
cell proliferation is suppressed, and cells can enter a dor-
mant state. During dormancy, tumour cells rely on au-
tophagy as a survival strategy, thereby repurposing
nutrients to promote cell survival. When the environ-
mental stress is ameliorated, cancer cells can resume
proliferation. In fact, defective autophagy causes lung tu-
mours to halt progression and become benign eosino-
philic tumours, which are characterized by an abundant
cytoplasm and high mitochondrial quality [33]. Recent
studies have shown that LINC01426 can act as a predict-
ive gene of SQCLC and GC. LINC00941 was defined as
an optimal diagnostic lncRNA biomarker for HNSCC,
GC and LUAD. AP000695.2 was used as one of the indi-
cators for constructing a prognostic model of gastric
adenocarcinoma [34]. NKILA was found to promote
tumour immune evasion by sensitizing T cells to
activation-induced cell death [35]. NKILA was also
found to suppress nasopharyngeal carcinoma carcino-
genesis and metastasis via NF-kappaB pathway inhibition
[36]. NKILA was shown to suppress TGF-beta-induced
epithelial-mesenchymal transition by blocking NF-
kappaB signalling in breast cancer [37].
Equally important, our study used the TIMER

database to reveal connections between the risk sig-
nature and immune infiltration levels in lung cancer.
We found that the associations of the risk signature
with B cells, CD4+ T cells and macrophages were
the strongest. Moreover, our CIBERSORT analysis
revealed that the expression of markers of activated
mast cells, M0 macrophages and activated memory
CD4+ T cells was increased in the high-risk group,
whereas the expression of markers of naive B cells,
T follicular helper cells, resting dendritic cells and
resting mast cells was decreased. Our results could
indicate a possible mechanism by which the
lncRNAs in the risk signature regulate the functions
of mast cells in tumours. Mast cells are multifunc-
tional cells, and related studies have confirmed that
they are related to the pathological process of neo-
plastic diseases. For example, mast cells can promote
tumour angiogenesis by releasing heparin or dissolve

surrounding connective tissue by releasing proteo-
lytic enzymes, which is beneficial for tumour growth
and metastasis. In contrast, other studies have shown
that mast cells surrounding the tumour have the role
of tumour defence and host protection. Combining
previous findings with our research, we can propose
a corresponding explanation that activated mast cells
promote tumour growth and resting mast cells in-
hibit tumour growth.
In conclusion, we demonstrated that the lncRNAs in-

vestigated using this model can serve as therapeutic tar-
gets for precision treatment of lung cancer. Practical
research will be conducted to further verify their bio-
logical functions and explore the underlying molecular
mechanisms.
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