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Abstract: The use of illicit drugs is exceedingly prevalent in society, and several of them can be illegally
purchased from the internet. This occurrence is particularly augmented by the rapid emergence of
novel psychoactive substances (NPS), which are sold and distributed as “legal highs”. Amongst
NPS, the class of synthetic cathinones represents stimulant substances exhibiting similar effects to
amphetamine and its derivatives. Despite potentially being less psychoactive than amphetamine,
synthetic cathinones are harmful substances for humans, and little or no information is available
regarding their pharmacology and toxicology. The present study investigated the in vitro metabolism
and metabolites of four recent synthetic cathinones, namely, 1-(4-methylphenyl)-2-(methylamino)-
pentanone (4-MPD), 1-(4-methylphenyl)-2-dimethylamino-propanone (2-NMC), 1-(4-fluorophenyl)-2-
(pyrrolidin-1-yl-hexanone (4F-PHP) and 1-(1,3-benzodioxol-5-yl)-2-(ethylamino)-1-pentanone (bk-
EPDP). Our in vitro metabolism study resulted in 24 identified metabolites, including both phase I
and phase II metabolites. All metabolites were detected and identified using liquid chromatography–
high-resolution mass spectrometry and may serve as additional markers of abuse of these NPS in
toxicological analyses.

Keywords: NPS; 4-MPD; 2-NMC; 4F-PHP; bk-EPDP; in vitro metabolism; LC–HRMS

1. Introduction

The use of illicit drugs is exceedingly prevalent in society, and recently emerging
designer drugs can be illegally purchased via the internet. Novel psychoactive substances
(NPS) are illicit drugs synthesised with the purpose of mimicking conventionally estab-
lished recreational drugs. Many subclasses of NPS have been recognised, including stim-
ulants, synthetic cannabinoids, hallucinogens and synthetic opioids [1]. According to
the United Nations World Drug Report, the manufacture of amphetamine-like stimulants
seems to be the most dominant, and seizures of these drugs increased four-fold between
2009 and 2018. There are reports that, in some countries, methamphetamine seizures
decreased because mephedrone and its derivatives became more prominent [2]. This shift
in the NPS market to synthetic cathinones seems to be a trend that is widespread in global
society. Although some of these compounds have been scheduled as controlled substances,
most of them are still sold and distributed as “legal highs”. Furthermore, in order to avoid
legal restrictions, some of these newly emerged drugs are mislabelled as chemicals used for
research purposes and not for human consumption [3].

Cathinone is the main active ingredient in the khat shrub. Due to the similarity in
structure to amphetamine and amphetamine derivatives, cathinone is widely used for
its stimulant effects [4]. Cathinone has served as a template drug for the synthesis of
a wide range of novel and very potent synthetic cathinones (SCt), such as mephedrone,
methcathinone and methylone, which also exhibit amphetamine-like effects [4,5].
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The synthesis of NPS, including SCt, is a relatively quick and straightforward process,
and therefore, NPS are constantly emerging on the market to potentially avoid legislative
controls. For instance, Apirakkan et al. recently reported the identification and analytical
characterisation of three emerging synthetic cathinones, namely: 1-(4-methylphenyl)-2-
(methylamino)-pentanone (4-MPD), 1-(4-fluorophenyl)-2-(pyrrolidin-1-yl-hexanone (4F-
PHP) and 1-(1,3-benzodioxol-5-yl)-2-(ethylamino)-1-pentanone (bk-EPDP) [6]. Figure 1
illustrates the structures of amphetamine, cathinone and selected SCt derivatives, including
those investigated in this study.
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Figure 1. Chemical structures of amphetamine, cathinone, mephedrone and synthetic cathinone
derivatives investigated in this study.

Information about the toxic effects of SCt and their detection in biological matrices
(e.g., urine and blood) does not reach the scientific community as quickly as they emerge on
the market due to the straightforward production and subsequent availability of numerous
analogues with similar substituents. For instance, Majchrzak et al. reviewed SCt that ap-
peared on the illegal drug market from 2014 to 2017 and discovered more than 30 cathinone
derivatives [7]. When detecting the presence of SCt in human matrices, the parent drug
may not always be detected in the biological matrix (e.g., urine, saliva, hair and blood) due
to its relatively short half-life. Studies on human urine samples also showed that only a
small amount of SCt was excreted as the parent drug, whereas the metabolised form was
present in a larger amount [8], suggesting that targeting SCt metabolites in toxicological
investigations may extend their window of detection. Conducting administration studies
of emerging NPS with healthy human volunteers carries imposed health risks. Hence, it
is very hard to obtain ethical permission to conduct studies of such kind. However, elu-
cidating the metabolic pathways of these drugs and identifying the metabolite structures
provide important information that can be useful in analytical toxicology and forensic
science [9–11]. Investigating NPS metabolites may also be useful in assisting forensic in-
vestigations, such as drug-facilitated sexual assault or drug driving, to determine whether
the involved people were under the influence of certain substances when the incident oc-
curred [12,13]. Considering the existing difficulties of investigating the in vivo metabolism
of NPS, this research employed the use of human liver microsomes and S9 fractions
to elucidate the in vitro metabolism of four emerging SCt, namely, 1-(4-methylphenyl)-
2-(methylamino)-pentanone (4-MPD), 1-(4-methylphenyl)-2-dimethylamino-propanone
(2-NMC), 1-(4-fluorophenyl)-2-(pyrrolidin-1-yl-hexanone (4F-PHP) and 1-(1,3-benzodioxol-
5-yl)-2-(ethylamino)-1-pentanone (bk-EPDP). We report the detection and identification
of their metabolites by liquid chromatography–high-resolution mass spectrometry (LC–
HRMS). This analytical technique is suitable for the identification of SCt in any forensic
toxicology laboratory due to the provision of accurate mass measurements and the possibil-
ity of retrospective data analysis [14].
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2. Results

The in vitro metabolic reactions using HLM and S9 were quenched with acetonitrile
after 6 h of incubation, and the obtained metabolites of 4-MPD, 2-NMC, 4F-PHP and
bk-EPDP were analysed by LC–HRMS.

Several metabolites of each SCt were identified from the full-scan data when extracting
the accurate protonated metabolite mass within a narrow 5 ppm extraction window. A
blank sample containing only reagents and enzymes but no SCt was also investigated to
confirm that peaks representing the identified metabolites were specific to the metabolism
study. No interfering peaks were detected in any of the blank samples (data not shown).
In total, 24 phase I and II metabolites were identified in our study, as summarised in
Table 1 below and Table S1 (supplementary material). Metabolite structure elucidation was
conducted via targeted MS2 experiments.

Table 1. Detected phase I and phase II metabolites for 4-MPD, 2-NMC, 4F-PHP and bk-EPDP.

Compound Proposed Structure Chemical Formula Exact Mass [M+H]+ Accurate Mass [M+H]+ ∆ ppm Rt (min)

4-MPD
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Table 1. Cont.
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3. Discussion

Due to the general structural similarities, the identification of metabolites, their frag-
mentation patterns and their metabolic pathways in our study were compared with previ-
ously studied SCt, such as mephedrone, 4-methylethcathinone (4-MEC), pentylone, methy-
lone, 1-phenyl-2-(pyrrolidin-1-yl)pentan-1-one (α-PVP) and 3,4-methylenedioxypyrovalerone
(MDPV) [15–20].

3.1. 4-MPD In Vitro Metabolism

In our study, four phase I and one phase II glucuronide metabolites of 4-MPD (M1–M5,
Table 1) were detected, with a mono-hydroxylated metabolite (M2) being the most abun-
dant species. Our in vitro results are in accordance with some findings in previous in vitro
studies on 4-methyl-N-ethyl-cathinone and mephedrone [16,21]. These studies proposed
the following metabolic pathways: reduction of the oxo group and N-dealkylation and
hydroxylation of the 4-methyl group to the corresponding 4-carboxy metabolite. Glu-
curonides were formed from hydroxyl metabolites. Our observed metabolic reactions
include reduction of the oxo group (M1), N-demethylation (M3) and 4′-methyl hydroxy-
lation (M2), followed by further oxidation, namely, carboxylation (M4). The glucuronide
metabolite identified in our study was obtained in the reaction of a hydroxyl metabolite
with glucuronic acid, which is also consistent with a mephedrone phase II metabolite
detected in human urine [22]. Based on the identified metabolites, a metabolic pathway for
4-MPD was postulated, as shown in Figure 2.



Metabolites 2022, 12, 115 6 of 19Metabolites 2022, 12, x FOR PEER REVIEW 6 of 20 
 

 

 

Figure 2. Proposed metabolic pathway for 4-MPD (metabolite numbering in accordance with Table 
1). 

The M1 metabolite was formed from the reduction of the oxo functional group in the 
β position (β-keto reduction), yielding a peak at m/z 208.1694. The M1 fragmentation pat-
tern (Figures S2 and S3) shared some similarities to that of the 4-MPD parent compound, 
as evidenced by the presence of a product ion at m/z 105.0697 (Δppm = −1.4451) and the 
production of the most abundant species corresponding to a common loss of a water mol-
ecule observed at m/z 190.1589 (Δppm = −0.4767). A slightly different fragment from the 
parent compound (m/z 175.1118) was also observed at m/z 177.1273 (Δppm = −0.6670). A 
mass difference of 2.0155 between these observed fragments further indicated the conver-
sion of the β-keto moiety into a hydroxyl group. 

The M2 metabolite (accurate m/z 222.1488, Δppm = −0.3701) (Figure 3 and S4) was the 
most abundantly detected 4-MPD metabolite in our in vitro system and was formed due 
to oxidative introduction of a hydroxyl group on the tolyl moiety of 4-MPD. This position 
of hydroxylation was also postulated because of the subsequent identification of an M4 
carboxylic acid metabolite, the oxidised form of a hydroxy-tolyl metabolite [15,16]. The 
loss of two water molecules was deduced from the 4-MPD M2 fragmentation pattern (Fig-
ure 3 and S4). Such losses were firstly indicated by a fragment ion from the M2 protonated 
precursor ion to m/z 204.1383 (Δppm = −0.1511) due to the primary loss of water, followed 
by a fragment at m/z 186.1278 (Δppm = 0.2741) due to the loss of a further water molecule, 
followed by a proposed intramolecular rearrangement. Contrary to the parent molecule 
and M1 metabolite, the most abundant species in the M2 fragmentation pattern is the loss 
of two water molecules followed by N-demethylation, observed at m/z 174.1278 (Δppm = 
0.3806). 
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Due to the large amount of the drug incubated with the enzymes, the presence of
unmetabolised 4-MPD was confirmed by identifying its protonated precursor ion at m/z
206.1539 and some major product ions, such as m/z 188.1434 (∆ppm = −0.1053, water
loss), m/z 175.1118 (∆ppm = 0.0784, CH5N loss), m/z 146.0964 (∆ppm = −0.1433, C3H8O
loss), m/z 133.0646 (∆ppm = −1.5107, C5H13N loss) and m/z 105.0699 (∆ppm = −0.0654,
C5H11ON loss). The MS2 spectrum (Figure S1) showed that m/z 188.1434 was the most
abundant species, corresponding to the loss of a water molecule. This fragmentation
pattern was also compared to that of mephedrone from a previous study in which m/z
119, suggested to be C8H7O+, was also identified [23]. Based on the postulated elemental
composition and the exact mass, it can be concluded that m/z 119.0491 in our study
corresponds to the same molecular formula and structure of those found for mephedrone.

The M1 metabolite was formed from the reduction of the oxo functional group in the β

position (β-keto reduction), yielding a peak at m/z 208.1694. The M1 fragmentation pattern
(Figures S2 and S3) shared some similarities to that of the 4-MPD parent compound, as
evidenced by the presence of a product ion at m/z 105.0697 (∆ppm = −1.4451) and the pro-
duction of the most abundant species corresponding to a common loss of a water molecule
observed at m/z 190.1589 (∆ppm = −0.4767). A slightly different fragment from the parent
compound (m/z 175.1118) was also observed at m/z 177.1273 (∆ppm = −0.6670). A mass
difference of 2.0155 between these observed fragments further indicated the conversion of
the β-keto moiety into a hydroxyl group.

The M2 metabolite (accurate m/z 222.1488, ∆ppm = −0.3701) (Figures 3 and S4) was
the most abundantly detected 4-MPD metabolite in our in vitro system and was formed
due to oxidative introduction of a hydroxyl group on the tolyl moiety of 4-MPD. This
position of hydroxylation was also postulated because of the subsequent identification of
an M4 carboxylic acid metabolite, the oxidised form of a hydroxy-tolyl metabolite [15,16].
The loss of two water molecules was deduced from the 4-MPD M2 fragmentation pattern
(Figures 3 and S4). Such losses were firstly indicated by a fragment ion from the M2
protonated precursor ion to m/z 204.1383 (∆ppm = −0.1511) due to the primary loss of
water, followed by a fragment at m/z 186.1278 (∆ppm = 0.2741) due to the loss of a further
water molecule, followed by a proposed intramolecular rearrangement. Contrary to the
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parent molecule and M1 metabolite, the most abundant species in the M2 fragmentation
pattern is the loss of two water molecules followed by N-demethylation, observed at m/z
174.1278 (∆ppm = 0.3806).
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Figure 3. Extracted ion chromatogram and MS2 spectra including the proposed fragmentation pattern
of 4-MPD M2.

Enzymatic removal of a methyl group from the nitrogen atom resulted in the formation
of the M3 metabolite, as evidenced by the species detected at m/z 192.1383 (data not
presented). For the M3 metabolite, the loss of a water molecule was observed as the most
abundant fragment in the MS2 spectra, leading to m/z 174.1277 (∆ppm = 0.0301). The
product ions that were observed for 4-MPD were also observed for the M3 metabolite,
including m/z 119.0492 (∆ppm = 0.7009, C4H11N loss) and m/z 105.0699 (∆ppm = 0.0072,
C4H9NO loss). These fragments indicate the unchanged general structure of the M3
metabolite compared to its parent molecule, with the exception of N-demethylation.

As previously indicated, M4 was formed through the metabolic oxidation of the
hydroxy-tolyl metabolite M2 and identified at m/z 236.1279. Due to this metabolic pathway
and since both compounds share structural similarities in the remainder of the molecule,
the fragmentation pattern of the M4 metabolite (data not presented) is comparable to that
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of the M2 metabolite. This similarity was evidenced by the subsequent loss pattern of
two water molecules, which seems quite favourable for this metabolite, as two fragments,
m/z 218.1171 (∆ppm = −1.8960) and m/z 200.1068 (∆ppm= −1.0475), were observed. The
same fragment observed for M2 at m/z 174.1275 was also observed for the M4 metabolite.
The only difference was that instead of experiencing the loss of two water molecules and
N-demethylation, the fragment observed at m/z 174.1275 for M4 (∆ppm = −1.1967) was
the result of the loss of three water molecules followed by N-demethylation. Manier et al.
investigated in vitro metabolism of 4-MPD using HLM with a similar experimental setting.
They identified what we describe as M1 and M4 and reported metabolites formed by
4-MPD hydroxylation of the alkyl chain and N-oxidation, which we did not identify [24].
Our work offers further insights into phase II metabolism in comparison to their work.

M5 glucuronide was the only phase II metabolite identified for 4-MPD and observed at
m/z 398.1806 (∆ppm = −0.8544) (Figure 4). This metabolite was further confirmed to be the
glucuronide form of the M2 metabolite, as the fragmentation pattern showed the presence
of m/z 222.1488, corresponding to the protonated mass of the M2 metabolite after the loss
of glucuronic acid (C6H10O7 loss). In this study, no other phase II metabolites formed from
4-MPD were detected. A possible explanation for the regioselective glucuronidation could
be that the position of the OH group in M2 is more accessible compared to the hydroxyl
position in M1.

3.2. 2-NMC In Vitro Metabolism

Generally, similar metabolite species identified for 4-MPD were identified for 2-NMC
(Figure 5, M6–M11, Tables 1 and S1).

The most abundant metabolite was M6, where the parent drug underwent β-oxo
group reduction. The remaining unmetabolised 2-NMC was confirmed by identifying
its protonated precursor ion at m/z 192.1383 (∆ppm = −0.1606) (data not presented).
Even though its general structure is somewhat similar to that of 4-MPD, the 2-NMC
fragmentation pattern showed slightly different product ions. The loss of a water molecule
does not seem to be favoured in 2-NMC fragmentation. Furthermore, instead of producing
a fragment at m/z 146, there was a fragment observed at m/z 147.0804 (∆ppm = −0.0847,
C2H7N loss), in which the keto/oxo functional group is intact together with the benzene
ring and methyl side chain. This particular fragment was also identified in a previous study
of mephedrone, where this fragment was suggested to possess an elemental composition
of C10H11O+ [23]. Based on their accurate masses, it can be concluded that these two
fragments represent the same structure and elemental composition. Another fragment was
observed at m/z 119.0855 (∆ppm = 0.1803), representing the loss of C3H7ON.

The M6 metabolite was formed through a reduction of the 2-NMC oxo functional
group, leading to a shift from the 2-NMC protonated precursor ion to m/z 194.1540
(∆ppm = 0.1836). Even though the structure of this metabolite only differs in the pres-
ence of a hydroxyl group instead of oxo in the parent molecule, its fragmentation pattern
is different. Unlike 2-NMC, the loss of a water molecule was the most abundant frag-
ment in the M6 metabolite fragmentation pattern, as indicated by a fragment ion at m/z
176.1434 (∆ppm = −0.0259). This indicated that, contrary to the parent molecule, the M6
metabolite contained a secondary hydroxyl group that was more readily released as a
water molecule [19]. Other fragments detected were m/z 161.1199 (∆ppm = 0.2997) due
to N-demethylation, 131.0856 (∆ppm = 0.4548, C2H9NO loss), 105.0698 (∆ppm = −0.7916,
C4H11NO loss) and m/z 91.0542 (∆ppm = −0.3030), resulting from hydroxyl group-
α-cleavage of the parent compound. The full-scan extracted ion chromatogram and
MS2 spectrum of this metabolite and its postulated fragmentation pattern are shown
in Figures 6 and S5.
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Figure 4. Extracted ion chromatogram and MS2 of M5 glucuronide, phase II metabolite of 4-MPD.
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The fragmentation pattern of the M7 metabolite (m/z 208.1332, ∆ppm = −0.0546)
demonstrated the loss of water, as a fragment ion at m/z 190.1229 (∆ppm = 1.4944) was
detected (Figure S6). A fragment ion observed for the parent compound (m/z 147.0804)
with a shift of 2.0158 to m/z 149.0962 (∆ppm = 0.5671) showed that the keto/oxo functional
group of the molecule was still intact together with the benzene ring and methyl side
chain. Fragment ions were observed at m/z 190.1229 (water loss due to β-keto cleavage)
(∆ppm = 1.4944), 149.0962 (∆ppm = 0.5671) and 133.0648 (∆ppm = 0.2094), all retaining the
hydroxylated group bound to the aromatic moiety, and m/z 119.0492 (∆ppm = 0.4446) fol-
lowing an intramolecular rearrangement. The results of the MS2 fragmentation experiment
on the M7 metabolite did not favour the pattern in which its keto/oxo functional group was
released from the molecule. The data from the MS2 extracted ion chromatograms showed
the presence of an additional peak at 1.10 min. This finding was then considered to be an
indication of the presence of another isomer of the M7 metabolite that differs in the position
of hydroxylation, despite the significant difference in retention times [25]. However, this
hypothesis can only be tested when analysing their reference materials.
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The M8 metabolite was produced through a metabolic reaction that turned the tertiary
amine into a secondary amine via removal of a methyl group, leading to a protonated
precursor ion at m/z 178.1226 (∆ppm =−0.0325). Of the MS2 product ions of this metabolite
(data not presented), the most abundant product ion was at m/z 160.1121 (∆ppm =−0.0966),
corresponding to the loss of water. It was suggested that the loss of water was followed
by the rearrangement of the M8 structure and formation of a cyclic amine attached to the
cyclohexane ring [17]. This rearrangement led to the presence of a product ion at m/z
145.0886 (∆ppm = 0.1524).

The M9 metabolite was produced from a combination of two metabolic reactions,
which were the reduction of the β-keto group and (aromatic) hydroxylation, leading to a
protonated precursor ion observed at m/z 210.1488 (∆ppm = −0.2460). The fragmentation
pattern (Figure S7) showed a product ion at m/z 192.1383 (∆ppm = −0.0017) consistent
with the loss of a molecule of water, most likely from the β-keto group. Further cleavage of
the N,N-dimethyl group led to a product ion observed at m/z 149.0961 (∆ppm = 0.2601),
followed by the second hydroxyl group loss and intramolecular rearrangement, leading to
a fragment at observed m/z 131.0856 (∆ppm = 0.2220).

Metabolite M10 was detected in the S9 fraction (m/z 222.1126, ∆ppm = 0.5615). As
observed for 4-MPD phase II metabolites, M11 glucuronide was the only glucuronide
metabolite identified for 2-NMC (m/z 384.1645, ∆ppm = −2.1708). It was assumed that
metabolite M11 was not formed in the reaction of glucuronic acid with M6, the most abun-
dant 2-NMC metabolite, but with M7, the mono-hydroxy metabolite. It is possible that
this preference was caused by a steric effect present on the molecule of the M6 metabo-
lite. This steric effect possibly occurs from three methyl groups attached to the nitrogen
atom, which potentially hinders the glucuronidation reaction site. Even though M11 glu-
curonide is present in a rather low amount, the fragments of initial phase I metabolites
(M7, m/z 208.1330, ∆ppm = −0.9344) can be identified as a result of glucuronic acid loss
after fragmentation.

Lopes et al. investigated in vitro phase I and phase II glucuronidation metabolism
of various synthetic cathinones, including 2-NMC [26]. Cathinones were incubated with
cofactors and enzymes (human and rat liver microsomes) and subsequently analysed
by LC–HRMS. Apparently, 4-NMC phase I metabolites were not identified, but phase II
glucuronide was identified. Glucuronidation occurs after demethylation (2-NMC loses one
n-methyl group, the M8 metabolite in our work) and hydroxylation at the remaining N-
methyl group. We identified 2-NMC hydroxy metabolites, but we propose a hydroxylation
reaction on the benzene ring.

3.3. 4F-PHP In Vitro Metabolism

A total of seven 4F-PHP phase I (M12–M17) and two phase II (M17 and M18 glu-
curonides) metabolites were detected and identified. The 4F-PHP metabolic pathway
(Figure 7) was found to mirror the reported in vitro metabolism of α-PVP, pyrovalerone
(MPVP) and 4′-methyl-α-pyrrolidinohexiophenone (MPHP) [18,19]. Here, the oxo metabo-
lite (M16) was found in a rather lower amount compared to the abundance of other
metabolites. Our study found that the metabolite with a reduced β-keto group (M12) was
the most abundant species.

The parent compound was identified based on its protonated precursor ion showing
the protonated molecular mass (m/z 264.1754, ∆ppm = −1.4140). Low-abundance frag-
ments were produced from the parent compound MS2 spectrum (Figure S8). The two most
distinct product ions were observed at m/z 193.1024 (∆ppm = 0.1871), corresponding to the
loss of the pyrrolidine ring, and at m/z 109.0448 (∆ppm = −0.1174), indicating β-cleavage
followed by the loss of a water molecule.
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The M12 metabolite was formed through a reduction of the keto/oxo group, leading to
m/z 266.1911 (∆ppm = −1.3828). Unlike the parent compound, the loss of a water molecule
seems the most favoured for M12, as the most dominant ion was observed at m/z 248.1806
(∆ppm = −1.0917) (Figure 8).

Both metabolites M13 and M15 were formed due to a metabolic hydroxylation at differ-
ent positions and resulted in a mixture of positional isomers. Therefore, these metabolites
are isomeric and thus isobaric species, exhibiting identical calculated protonated masses.
Both M13 and M15 protonated precursor ions were observed at m/z 280.1703 (data not pre-
sented). Both species share similar fragmentation patterns with the parent compound. We
propose that the M13 metabolite is formed by phenyl hydroxylation, which occurred at two
different positions, since two peaks were detected at 3.39 min and 3.59 min. The product
ion observed at m/z 123.0239 (∆ppm =−1.7265) indicated the presence of a hydroxyl group
attached to the benzene ring in M13. One characteristic fragment for M15 (Rt = 5.31 min)
was observed at m/z 156.1383 (∆ppm = −0.1976), demonstrating that the hydroxylation
occurred on the pyrrolidine ring. It is assumed that the hydroxylation occurring on the
benzene ring (M13) produces more polar metabolites compared to the one hydroxylated on
the pyrrolidine ring, hence the different elution times.
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The M14 metabolite was formed through two subsequent hydroxylations of the parent
molecule, leading to m/z 296.1652 (∆ppm = −1.4388). This type of dihydroxy metabolite
was not observed on the other three synthetic cathinones analysed in this study. Although
the positions of the two hydroxyl groups cannot be confidently deduced, they are likely
to reside on the aromatic moiety. Metabolic oxidation of the hydroxyl group on the M15
metabolite resulted in the formation of the M16 metabolite, leading to a protonated pre-
cursor ion at m/z 278.1548 (∆ppm = −1.5119). A similar characteristic fragment (m/z 156)
observed for the M15 metabolite was also identified with a shift of 2.0158 to m/z 154.1224
(∆ppm = −1.7207). This difference further confirmed the oxidative biotransformation of
the hydroxyl group attached to the pyrrolidine ring into a carbonyl group.

M17 and M18 glucuronides were formed through conjugation reactions between M12
and M13 metabolites, respectively, with glucuronic acid. These two metabolites were
identified as the only 4F-PHP phase II metabolites. The protonated precursor ions were
observed at m/z 442.2234 (∆ppm = −0.4496) for M17 and m/z 456.2025 (∆ppm = −0.8065)
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for M18. Both glucuronidated metabolites product ion scans (data not presented) displayed
the typical loss of glucuronic acid, followed by the loss of a water molecule. The M18
peak appeared as a doublet, which may further prove our claim that two M13 metabolites
detected were positional isomers. Two close M18 Rt (4.67 and 4.80 min) clearly highlighted
the differential position of the sugar moiety attached to the phase I metabolite.

Carlier et al. investigated the phase I metabolic profile of pyrrolidinyl SCts, α-PHP
and 4F-α-PVP, using pooled human hepatocyte incubations and LC–HRMS analysis [27].
Markers for both cathinones were suggested, and 4F-α-PVP metabolism was described for
the first time, although further experiments with suitable synthesised analytical standards
are needed to confirm the findings. 4F-α-PVP is structurally related to 4F-PHP, the cathinone
investigated in our study. The major 4F-α-PVP metabolic reactions included reduction of
the β-keto group and oxidation of the pyrrolidinyl ring, which mirror metabolites detected
in this study (M12 and M16). Pyrrolidinyl dihydroxylation was a major 4F-α-PVP metabolic
transformation. In our work, dihydroxylation occurred on the phenyl ring. Carlier et al.
reported that dealkylation to the primary amine and alkyl hydroxylation were identified
as minor phase I metabolites in both α-PHP and 4F-α-PVP, but we did not identify any
similar metabolites for 4F-PHP.

Wagmann et al. published a study describing the toxicokinetics of synthetic cathinones,
including 4F-PHP [28]. Urine and blood samples were collected from a male who was
admitted into the hospital due to aggressive behaviour and uncontrolled moves. The analy-
sis was conducted by LC–HRMS and gas chromatography–mass spectrometry (GC–MS).
4F-PHP was identified in patients’ blood and urine, and the investigation was extended
to elucidating and identifying any metabolites present. In vitro drug metabolism was
performed with the S9 fraction, and identification of specific monooxygenases taking part
in metabolic reactions was performed with HLM. Wagmann et al.’s study provided compre-
hensive information about phase I and II metabolic reactions, which led them to calculate
the plasma concentrations of metabolites and propose metabolites for target screening. The
metabolite matching our M16 was recommended by Wagmann et al. as a screening target
for urine analysis.

In another detailed and informative study, the same author investigated the in vitro
metabolism of 4F-PHP after incubations with HepaRG cells and zebrafish larvae and
LC–HRMS analysis [29]. Clearly, our metabolites M12, M13, M15, M17 and M18 match
their findings.

3.4. bk-EPDP In Vitro Metabolism

After analysing bk-EPDP HLM and S9 incubates, six metabolites in total were identi-
fied, of which three phase II metabolites, namely, two glucuronides (M19 and M23) and a
sulphate (M24), were identified (Figure 9).

The phase I metabolites identified in our study are in accordance with some of the
metabolites resulting from in vitro studies of structurally similar cathinones, such as MDPV,
methylone, penthylone and ethylone [17,19,30,31]. None of these in vitro studies, how-
ever, reported findings on glucuronide or sulphate metabolites. Previous studies also
suggested that the major metabolic pathways for synthetic cathinones endowed with a
methylenedioxy ring in their structure were the hydrolysis of the methylenedioxy ring
(demethylenation) followed by O-methylation. These findings are consistent with the
observed results in our study, since metabolite M20 was identified as the most abundant
metabolite, followed by M21.

The bk-EPDP parent compound was identified based on its protonated precursor ion,
which was observed at m/z 250.1435 (∆ppm =−1.1658 ppm). Based on the MS2 product ion
spectra, it was obvious that the fragmentation pattern favoured the loss of a water molecule.
This was demonstrated by the fragments observed at m/z 232.1330 (∆ppm = −0.8378 ppm)
(data not presented).
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The M19 protonated precursor ion was observed at m/z 222.1124 (∆ppm = −0.4002),
which is consistent with the loss of a methyl group from the parent compound. Unlike
the parent molecule, the loss of a water molecule is less favoured for M19. Instead, a
fragment observed at m/z 174.0913 (∆ppm = −0.0960) corresponding to the loss of one
water molecule followed by CH4O was seen as the most abundant one (data not presented).

The M20 (m/z 238.1435, ∆ppm = −1.2886) metabolite was formed by a hydrolysis
reaction on the pyrrolidine ring, which resulted in the formation of a catechol. Due to
the presence of two hydroxyl groups attached to the benzene ring, the loss of more than
one water molecule was expected in the M20 product ion spectrum (Figure 10). This is
supported by fragments observed at m/z 220.1330 (∆ppm = −0.9528) and m/z 202.1226
(∆ppm = −0.2551), which is consistent with the loss of one water molecule followed
by a further water loss and intramolecular rearrangement, and two water molecules,
respectively. Other fragments were also observed at m/z 193.0859 (∆ppm = 0.0075, C2H3N+

loss) and m/z 123.0440 (∆ppm =−0.8377, C6H13NO+ loss). A similar metabolic reaction was
confirmed in an in vivo study on a structurally similar compound, 3′,4′-methylenedioxy-α-
pyrrolidinobutyrophenone (MDPBP) [31]. Finally, M20 was found to undergo methylation,
leading to the M21 metabolite. Our MS2 suggests that two isomeric O-methoxy metabolites
were formed. Two peaks with retention times of 2.69 min (m/z 252.1591, ∆ppm = −0.3167)
and 4.23 min (m/z 252.1595, ∆ppm = 0.1106) were detected. The peak eluting at 4.23 min
was about five times more abundant than the peak at 2.69 min.
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Figure 10. Extracted ion chromatogram and MS2 spectra with proposed fragmentation pattern for
M20, the most abundant metabolite of bk-EPDP.

M22 was produced through a metabolic addition of hydroxyl group. Our data suggest
that the hydroxylation occurs on the aromatic ring and that a mix of two isomers was
formed. Lastly, glucuronide (M23) and sulphate (M24) phase II metabolites were also
identified in bk-EPDP incubates. Both phase II metabolites originated from the most
abundant phase I metabolite, M20. A conjugation reaction between glucuronic acid and
M20 resulted in a protonated precursor ion observed at m/z 414.1754 (∆ppm = −1.0691),
while M20 conjugation with PAPS resulted in the sulphate phase II metabolite being
detected in the S9 fraction at m/z 318.0997 (∆ppm= −2.6817). A protonated molecule of the
M20 metabolite after the loss of glucuronic acid and sulphate was identified on the MS2

spectra of both metabolites (data not presented).
Bk-EPDP was part of the previously described study by Wagmann et al. [28]. They

proposed two glucuronides as screening targets, whose aglycone structures match metabo-
lites M21 and M23 in our study. Our M19, M22 and M23 metabolites were identified in a
similar in vitro study utilising HepaRG cells and zebrafish larvae [29].
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4. Materials and Methods
4.1. Chemicals

All SCts utilised in this study were kindly provided by TicTac Communications (Lon-
don, UK) and were test-purchased from the internet. All four cathinones appeared to be
highly pure when checked as described by Apirakkan et al. [6]. HPLC-grade acetonitrile,
analytical-grade methanol and formic acid were obtained from Fisher Scientific (Loughbor-
ough, UK). Ultra-pure water (18.2 MΩ.cm) was obtained from an Elga Purelab Flex (High
Wycombe, UK). Phosphate buffer (0.5 M, pH = 7.4), Ultrapool™ human liver microsomes
(HLM), NADPH regeneration system solutions A and B, and UDP Reaction Mix Solu-
tion A and B were purchased from Corning (Wolburn, MA, USA). 3′-Phosphoadenosine
5′-phosphosulphate (PAPS) was purchased from Merck (Damstadt, Germany).

4.2. In Vitro Metabolism Study Using Human Liver Microsomes and S9 Fractions

In vitro experiments were conducted following the protocol published by Menzies et al. [25].
To investigate phase I metabolism, 10 µg of each SCt was mixed in an Eppendorf®® LoBind
protein tube (1.5 mL) (Stevenage, UK) with 500 µL of phosphate buffer (0.2 M, pH = 7.4),
50 µL of NADPH-regenerating system A (26 mM NADP+, 66 mM glucose-6-phosphate
and 66 mM MgCl2 in water), 10 µL of NADPH-regenerating system B (40 U/mL glucose-
6-phosphate dehydrogenase in 5 mM sodium citrate) and 390 µL of ultra-pure water.
The mixture was preincubated at 37 ◦C for 10 min using an Eppendorf ThermoMixer®®

(Stevenage, UK) before 50 µL of HLM (20 mg/mL in 250 mM sucrose) was added to initiate
metabolism. The incubation continued for six hours using the Eppendorf ThermoMixer®®.
After six hours, 50 µL of cold acetonitrile was added to terminate the reaction. The aliquots
were centrifuged at 12,000× g for 5 min to separate the denatured enzymes and incubates.
Phase II metabolism was performed alongside phase I, but instead of adding 390 µL of ultra-
pure water, 62.5 µL of UDP reaction mix solution A (25 mM UDP-glucuronic acid in water),
100 µL of UDP solution B (250 mM Tris-HCl, 40 mM MgCl2 and 0.125 mg/mL alamethicin
in water) and 32.5 µL of deionised water were added to the mixture. Experiments with
the S9 fraction containing cytosolic and microsomal enzymes were performed in a similar
manner but with the addition of 150 µL of PAPS (1 mg/mL solution in water) and 50 µL of
the S9 fraction (20 mg/mL in 250 mM sucrose). Blank reaction mixtures were also run in
parallel, comprising all reagents and enzymes as above but without the presence of any
drug. Experiments were performed in singlicate. Processed incubates were subsequently
injected into the LC–HRMS system.

4.3. LC–HRMS Analysis

LC–HRMS analysis was performed on a Thermo Fisher Scientific Q-Exactive™ Hybrid
Quadrupole-Orbitrap™ Mass Spectrometer coupled with Dionex UltiMate 3000 UPLC
pump (Hemel Hempstead, UK). A Waters Acquity UPLC®® BEH C18 column (2.1 × 50 mm,
1.7 µm) (Manchester, UK) maintained at 30 ◦C was utilised for the separation of compounds.
The flow rate was 0.3 mL/min, and the aqueous and organic mobile phases used were
water (A) and acetonitrile (B), respectively, both containing 0.3% formic acid. The gradient
was programmed as follows: 0–0.5 min 5% B, 0.5–3.5 min 20% B, 3.5–5.5 min 25% B,
5.5–7 min 57% B, 7–8 min 90% B, 8–10 min 5% B. The total run time was 13 min, including
re-equilibration time. In silico metabolite prediction was performed using ChemDraw
2016 software; predicted metabolites were analysed in positive electrospray ionisation
mode (ESI), and the scan method was set to use both full-scan and targeted MS2 modes for
confirmation. The full-scan method settings were: resolution of 70,000 (FWHM), automatic
gain control (AGC) target 1e6 and maximum ion injection time 50 ms, scan range m/z
100–1500. The targeted MS2 method settings were: collision energy of 25, resolution of
35,000 (FWHM), AGC target 1e5 and maximum injection time 100 ms, isolation window
m/z 1. The data interpretation was performed using Thermo XCalibur™ software version
2.2 provided by Thermo Fisher Scientific (Hemel Hempstead, UK).
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5. Conclusions

The analytical investigation of the in vitro metabolism of four emerging synthetic
cathinones (4-MPD, 2-NMC, 4F-PHP and bk-EPDP) resulted in 24 identified and confirmed
phase I and II metabolites after six hours of incubation. All metabolites were detected and
identified using LC–HRMS. The identification and structure elucidation of these metabolites
will facilitate clinical and forensic toxicology investigations of intoxication cases involving
their parent compounds.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12020115/s1, Figure S1: Extracted ion chromatogram
and MS2 spectra of unmetabolized 4-MPD (proposed fragment ion structures were reported by
Apirakkan et al. doi:10.1002/dta.2218), Figure S2: Extracted ion chromatogram and MS2 spectra
of 4-MPD M1, Figure S3: 4-MPD M1 proposed fragmentation pattern, Figure S4: 4-MPD M2 MS2
spectra, Figure S5: 2-NMC M6 MS2 spectra, Figure S6: 2-NMC M7 extracted ion chromatogram
(Rt = 4.17 min) and MS2 spectra with proposed fragmentation pattern, Figure S7: 2-NMC M9 ex-
tracted ion chromatogram (Rt = 3.55 min) and MS2 spectra with proposed fragmentation pattern,
Figure S8: Extracted ion chromatogram and MS2 spectra of unmetabolized 4F-PHP (proposed frag-
ment ion structures were reported by Apirakkan et al. doi:10.1002/dta.2218), Table S1: Detected
phase I and phase II metabolites for 4-MPD, 2-NMC, 4F-PHP and bk-EPDP including summarised
diagnostic product ions as discussed in the paper.

Author Contributions: Individual contributions are the following: conceptualisation, I.G. and V.A.;
methodology, V.A. and I.G.; software, Y.G.; formal analysis, Y.G.; investigation, Y.G. and I.G.; re-
sources, I.G. and V.A.; data curation, Y.G.; writing—original draft preparation, Y.G. and I.G.; writing—
review and editing, I.G. and V.A.; visualisation, I.G.; supervision, V.A. and I.G.; project administration,
V.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in this manuscript and
supplementary information (https://www.mdpi.com/article/10.3390/metabo12020115/s1).

Acknowledgments: Y.G. contributed to this research while working toward her MSc degree in
Forensic Science at King’s College London, which was sponsored by Indonesia Government Fund
for Education. All authors are grateful to TicTac Communications for the provision of synthetic
cathinone standards.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tracy, D.K.; Wood, D.M.; Baumeister, D. Novel psychoactive substances: Types, mechanisms of action, and effects. BMJ 2017,

356, i6848. [CrossRef] [PubMed]
2. United Nations Office on Drugs and Crime 2020 World Drug Report. Available online: https://wdr.unodc.org/wdr2020/field/

WDR20_Booklet_3.pdf (accessed on 29 Novemer 2021).
3. Hohmann, N.; Mikus, G.; Czock, D. Effects and Risks Associated with Novel Psychoactive Substances. Dtsch. Arztebl. Int. 2014,

111, 139–147. [CrossRef] [PubMed]
4. Kelly, J.P. Cathinone derivatives: A review of their chemistry, pharmacology and toxicology. Drug Test. Anal. 2011, 3, 439–453.

[CrossRef] [PubMed]
5. Prosser, J.M.; Nelson, L.S. The Toxicology of Bath Salts: A Review of Synthetic Cathinones. J. Med. Toxicol. 2012, 8, 33–42.

[CrossRef]
6. Apirakkan, O.; Frinculescu, A.; Shine, T.; Parkin, M.C.; Cilibrizzi, A.; Frascione, N.; Abbate, V. Analytical characterization of three

cathinone derivatives, 4-MPD, 4F–PHP and bk-EPDP, purchased as bulk powder from online vendors. Drug Test. Anal. 2018, 10,
372–378. [CrossRef]
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new designer drug 4′-methylethcathinone (4-MEC) and elaboration of a novel liquid chromatography–tandem mass spectrometry
(LC–MS/MS) screening method for seven different methcathinone analogs. Forensic Sci. Int. 2011, 210, 213–220. [CrossRef]
[PubMed]

24. Manier, S.K.; Schwermer, F.; Wagmann, L.; Eckstein, N.; Meyer, M.R. Liquid Chromatography-High-Resolution Mass
Spectrometry-Based In Vitro Toxicometabolomics of the Synthetic Cathinones 4-MPD and 4-MEAP in Pooled Human Liver
Microsomes. Metabolites 2021, 11, 3. [CrossRef] [PubMed]

25. Menzies, E.L.; Hudson, S.C.; Dargan, P.I.; Parkin, M.C.; Wood, D.M.; Kicman, A.T. Characterizing metabolites and potential
metabolic pathways for the novel psychoactive substance methoxetamine. Drug Test. Anal. 2014, 6, 506–515. [CrossRef]

26. Lopes, B.T.; Caldeira, M.J.; Gaspar, H.; Antunes, A.M.M. Metabolic Profile of Four Selected Cathinones in Microsome Incubations:
Identification of Phase I and II Metabolites by Liquid Chromatography High Resolution Mass Spectrometry. Front. Chem. 2021,
8, 1241. [CrossRef]

27. Carlier, J.; Diao, X.; Giorgetti, R.; Busardò, F.P.; Huestis, M.A. Pyrrolidinyl Synthetic Cathinones α-PHP and 4F-α-PVP Metabolite
Profiling Using Human Hepatocyte Incubations. Int. J. Mol. Sci. 2020, 22, 230. [CrossRef] [PubMed]

28. Wagmann, L.; Manier, S.K.; Eckstein, N.; Maurer, H.H.; Meyer, M.R. Toxicokinetic studies of the four new psychoactive substances
4-chloroethcathinone, N-ethylnorpentylone, N-ethylhexedrone, and 4-fluoro-alpha-pyrrolidinohexiophenone. Forensic Toxicol.
2020, 38, 59–69. [CrossRef]

29. Wagmann, L.; Frankenfeld, F.; Park, Y.M.; Herrmann, J.; Fischmann, S.; Westphal, F.; Müller, R.; Flockerzi, V.; Meyer, M.R. How
to Study the Metabolism of New Psychoactive Substances for the Purpose of Toxicological Screenings—A Follow-Up Study
Comparing Pooled Human Liver S9, HepaRG Cells, and Zebrafish Larvae. Front. Chem. 2020, 8, 539. [CrossRef]

30. Strano-Rossi, S.; Cadwallader, A.B.; de la Torre, X.; Botrè, F. Toxicological determination and in vitro metabolism of the designer
drug methylenedioxypyrovalerone (MPDV) by gas chromatography/mass spectrometry and liquid chromatography/quadrupole
time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2010, 24, 2706–2714. [CrossRef]

31. Meyer, M.R.; Mauer, S.; Meyer, G.M.J.; Dinger, J.; Klein, B.; Westphal, F.; Maurer, H.H. The in vivo and in vitro metabolism and
the detectability in urine of 3’,4’-methylenedioxy-alpha-pyrrolidinobutyrophenone (MDPBP), a new pyrrolidinophenone-type
designer drug, studied by GC-MS and LC-MSn. Drug Test. Anal. 2014, 6, 746–756. [CrossRef]

http://doi.org/10.2174/1389200054021825
http://doi.org/10.1002/dta.2990
http://doi.org/10.1016/j.forsciint.2015.07.040
http://doi.org/10.1016/j.toxac.2016.12.002
http://doi.org/10.1016/j.jchromb.2016.09.027
http://doi.org/10.1002/dta.1369
http://www.ncbi.nlm.nih.gov/pubmed/22573603
http://doi.org/10.1002/dta.1682
http://www.ncbi.nlm.nih.gov/pubmed/24953431
http://doi.org/10.1124/dmd.112.050880
http://www.ncbi.nlm.nih.gov/pubmed/23545806
http://doi.org/10.1007/s11419-013-0218-1
http://doi.org/10.1007/s00216-015-8763-6
http://doi.org/10.1093/jat/bku021
http://doi.org/10.1007/s00216-011-5678-8
http://doi.org/10.1124/dmd.114.061416
http://doi.org/10.1016/j.forsciint.2011.03.019
http://www.ncbi.nlm.nih.gov/pubmed/21498012
http://doi.org/10.3390/metabo11010003
http://www.ncbi.nlm.nih.gov/pubmed/33374857
http://doi.org/10.1002/dta.1541
http://doi.org/10.3389/fchem.2020.609251
http://doi.org/10.3390/ijms22010230
http://www.ncbi.nlm.nih.gov/pubmed/33379373
http://doi.org/10.1007/s11419-019-00487-w
http://doi.org/10.3389/fchem.2020.00539
http://doi.org/10.1002/rcm.4692
http://doi.org/10.1002/dta.1559

	Introduction 
	Results 
	Discussion 
	4-MPD In Vitro Metabolism 
	2-NMC In Vitro Metabolism 
	4F-PHP In Vitro Metabolism 
	bk-EPDP In Vitro Metabolism 

	Materials and Methods 
	Chemicals 
	In Vitro Metabolism Study Using Human Liver Microsomes and S9 Fractions 
	LC–HRMS Analysis 

	Conclusions 
	References

