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Abstract: There is growing interest in developing biomaterial-coated liposome delivery systems to
improve the stability and bioavailability of curcumin, which is a hydrophobic nutraceutical claimed
to have several health benefits. The curcumin-loaded rhamnolipid liposomes (Cur-RL-Lips) were
fabricated from rhamnolipid and phospholipids, and then chitosan (CS) covered the surface of Cur-
RL-Lips by electrostatic interaction to form CS-coated Cur-RL-Lips. The influence of CS concentration
on the physical stability and digestion of the liposomes was investigated. The CS-coated Cur-RL-Lips
with RL:CS = 1:1 have a relatively small size (412.9 nm) and positive charge (19.7 mV). The CS-coated
Cur-RL-Lips remained stable from pH 2 to 5 at room temperature and can effectively slow the
degradation of curcumin at 80 ◦C; however, they were highly unstable to salt addition. In addition,
compared with Cur-RL-Lips, the bioavailability of curcumin in CS-coated Cur-RL-Lips was relatively
high due to its high transformation in gastrointestinal tract. These results may facilitate the design
of a more efficacious liposomal delivery system that enhances the stability and bioavailability of
curcumin in nutraceutical-loaded functional foods and beverages.

Keywords: liposomes; chitosan; curcumin; rhamnolipids; stability; in vitro digestion

1. Introduction

Liposomes (Lips) are spherically shaped vesicles consisting of a phospholipid bilayer
that surrounds an aqueous core; they have attracted widespread attention for their good
nutraceutical-loaded property [1]. Due to their phospholipid bilayer, liposomes are often
used for encapsulating both hydrophilic and lipophilic functional ingredients and con-
trolling their release [2,3]. Therefore, they have considerable potential for application in
various fields such as functional foods, nutraceutical supplements, and pharmaceuticals.
However, the application of conventional liposomes was limited because of their poor
stability, their susceptibility to acidic pH, oxidation and enzymolysis with subsequent
possibility of losing the loaded bioactive agents [4–7]. Currently, a number of researchers
have proposed liposomal surface modifications as a way to overcome these limitations.
Various polymers were successfully applied to improve the surface properties of liposomes,
including synthetic polymers (pluronics and polyethylene glycol) [8–10] and natural poly-
mer (peptide, protein, and polysaccharides) [11,12]. Among them, polysaccharides are
the most extensively used polymers for liposome modification owing to non-toxicity, non-
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immunogenicity, good biocompatibility and biodegradability. Hence, it is necessary to
select suitable polysaccharides to modify liposomes.

Chitosan (CS) is obtained by partial deacetylation of chitin from crustacean shells,
which consists of D-glucosamine and N-acetyl glucosamine units linked through a β (1→ 4)
linkage [11]. When CS is dissolved in acidic media, CS has cationic charge due to protona-
tion of the -NH3 function on repeating the D-glucosamine unit [13]. Based on electrostatic
interactions, cationic CS can easily attach to the surface of anionic macromolecules and
form a protective polyelectrolyte layer [4]. Additionally, CS can improve the penetration
of macromolecules due to its mucoadhesive properties, and this property has risen wide-
spread attention as a potential enhancer of absorption across the mucosal epithelia [11].
Furthermore, several studies have demonstrated that CS may increase the cellular perme-
ability [14]. Take these properties of CS into account, it can be used for a coating material
to cover the surface of anion liposomes by the electrostatic interaction, and thus improve
the permeability and stability of liposomes.

In this study, curcumin (Cur) was utilized as a model bioactive substance due to its
good activity, such as antioxidant, anticancer, antibacterial, and anti-inflammatory [15].
The use of curcuminoid is, however, extremely limited, owing to its poor water-solubility,
easy chemical degradation, and low bioavailability [16]. In order to overcome these disad-
vantages of curcuminoid, some researchers tried various kinds of delivery systems to load,
protect, and deliver it, containing emulsion [16], nanoparticles [17], liposomes [18,19],
and hydrogels [20]. In a previous study, our research groups successfully prepared
curcumin-loaded rhamnolipid liposomes (Cur-RL-Lips) and characterized their physico-
chemical properties [21]. However, the capacity of Cur-RL-Lips was limited to inhibit the
temperature-induced curcumin degradation. Thus, we selected CS as a modifier to produce
curcumin-loaded liposomal delivery systems for improving the stability and bioavailabil-
ity of curcumin. The influence of the CS level on the stability, gastrointestinal fate, and
curcuminoid bioavailability of Cur-loaded liposomes was investigated. This study should
provide useful insights into the design of a more efficacious liposomal delivery system that
enhances the stability and bioavailability of curcumin in nutraceutical-loaded functional
foods and beverages.

2. Results and Discussion
2.1. Formation of CS-Coated Cur-RL-Lips

The formation of CS-coated Cur-RL-Lips was mainly attributed to the electrostatic
interaction between CS with positive charge and Cur-RL-Lips with negative charge, as
schematized in Figure 1a. The visual appearance, mean diameter and ξ-potential of
liposomes suspensions with different ratios of RL/CS are shown in Figure 1b,c, respectively.
At a fixed Cur-RL-Lips concentration, the turbidity of the liposome suspensions increased
with increasing CS level (Figure 1b). The mean diameter and ξ-potential of Cur-RL-Lips
(control) were 228.7 nm and −14.5 mV, respectively. However, the cationic CS solution was
added to anionic Cur-RL-Lips suspensions, resulting in the change of mean diameter and
ξ-potential (Figure 1c). The mean diameter of the liposome suspensions increased with
increasing the ratios of RL/CS: mean diameter = 412.9, 541.3, and 639.8 nm for liposomes
with RL:CS mass ratios of 1:1, 1:2, and 1:3, respectively. The increase in particle size may
have occurred for two reasons: (i) the addition of CS in the Cur-RL-Lips resulted in the
aggregation of liposomes; (ii) CS covered the surface of Cur-RL-Lips, which caused the
thickness of the liposomes’ shells to increase. Meanwhile, the ξ-potential of the liposome
suspensions changed from −14.5 mV (Cur-RL-Lips) to 19.7 mV (CS-coated Cur-RL-Lips
with RL:CS =1:1) and has no obvious difference with increasing CS level. The chitosan with
positive charge can form a protective polyelectrostatic layer onto liposomes with negative
charge, which was based on the electrostatic interaction between positive charge and
negative charge [22]. In this situation, the negative charge of the Cur-RL-Lips surface has
been fully shielded by the CS with positive charge. As the Cur-RL-Lips surface becomes
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fully covered with CS, the surface charge of the liposomes becomes positive and the
repulsion among the CS-coated liposomes dominates [3].
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Figure 1. (a) The formation scheme of chitosan (CS)-coated curcumin-loaded rhamnolipid liposomes (Cur-RL-Lips);
(b) visual appearance of liposomes with different ratios of RL/CS (RL:CS =1:1, 1:2, and 1:3); (c) mean diameter and
ζ-potential of liposomes with different ratios of RL/CS. Samples denoted by different capital case letters (A–C) were
significantly different (p < 0.05) when compared between different RL/CS ratios.

Additionally, the microstructure of the liposomes was obtained using AFM topo-
graphic images (Figure 2). The Cur-RL-Lips (control) and CS-coated Cur-RL-Lips with
different ratios of RL/CS (RL:CS =1:1 and 1:2) appeared small in particle size and had
good dispersivity. However, the CS-coated Cur-RL-Lips with RL:CS = 1:3 showed clearly
the aggregation of liposomes and low dispersivity, which suggested that excessive CS can
break the stability of liposomes. The result was consistent with those measured by dynamic
light scattering (Figure 1). The heights of CS-coated Cur-RL-Lips were higher than those
of Cur-RL-Lips, indicating that CS was successfully coated on the surface of Cur-RL-Lips.
Previous studies have also shown that CS-modified liposomes have bigger sizes and more
rigidity than non-modified liposomes, which can influence particle stability, digestion and
the release property of the loaded drug [23,24].

2.2. Stability of CS-Coated Cur-RL-Lips

The liposomes could experience various environmental stresses when they were
added to commercial products (such as foodstuffs, nutritional supplements, and medicines)
or when they travel through the human gastrointestinal tract (GIT) [19,25]. These different
environmental conditions (e.g., pH value, salt level, and temperature) could affect the sta-
bility of liposomes. Thus, this is quite necessary to evaluate the influence of environmental
factors on the stability of liposomes.
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Figure 2. Atomic force microscopy image of Cur-RL-Lips (Control) and CS-coated Cur-RL-Lips with
different ratios of RL/CS (RL:CS = 1:1, 1:2, and 1:3).

2.2.1. pH Stability

Liposome suspensions were exposed to various pH values (pH 2~7) for 3 days, and
then their visual appearance, particle size, and surface charge were measured. As shown
in Figure 3a, fresh Cur-RL-Lips (control) suspensions were a yellow, clear and transparent
liquid at different pH values. After storage for 3 days, there was no significant change
in the visual appearance of Cur-RL-Lips suspensions. However, CS-coated Cur-RL-Lips
suspensions with different ratios of RL/CS were yellow cloudy liquid. The turbidity
of CS-coated Cur-RL-Lips suspensions was the highest at pH 7, while their turbidity
decreased with reducing pH values from 7 to 2. Visually, a sediment was observed at
the bottom of the test bottles under nearly neutral pH (6 and 7) after 3 days of storage,
indicating some aggregation of liposomes had occurred. Conversely, CS-coated Cur-RL-
Lips were relatively stable at the most acidic solutions (pH 2 and 3), which is conducive to
endure the acidic condition of stomach and prevent the release of the encapsulated drug in
the stomach [26,27]. These phenomena were supported by dynamic light scattering. At
pH 7, except for Cur-RL-Lips (control), there was a marked increase in the particle size
of CS-coated liposomes after 3-day storage (Figure 3b). The CS-coated liposomes with
RL:CS = 1:1 had significant increase in particle size at pH 4.5 for 3-day storage, others
were not significantly different at pH 2 and 4.5. Additionally, compared with liposomes
at pH 4.5, the particle size of liposomes was small at pH 2, which may be due to a good
solubility of CS at acidic pH [28]. To provide some further insights into the mechanism
of liposomes instability, the surface charge of liposomes was determined at various pH
values (Figure 3c). The surface charge of Cur-RL-Lips (control) went from highly negative
at neutral pH (−37.9 mV for pH 7) to highly positive at acidic pH (18.0 mV for pH 2), with
a zero charge at around pH 4. Meanwhile, the change of surface charge has no effect on the
stability of Cur-RL-Lips. However, CS-coated Cur-RL-Lips with different ratios of RL/CS
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have a positive surface charge, and the magnitude of surface charge was the lowest at pH 7.
Therefore, there are two reasons for explaining the instability of CS-coated Cur-RL-Lips at
pH 6 and 7: (i) the electrostatic repulsion between liposomes was low because of the low
magnitude of surface charge at pH 7; (ii) the chitosan has low solubility at an alkaline and
neutral pH so that the CS-coated liposomes precipitate out [29].
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Figure 3. Influence of pH on the visual appearance (a), mean diameter (b) and ζ-potential (c) of liposomes with different
ratios of RL/CS. Samples denoted by different capital case letters (A–C) were significantly different (p < 0.05) when
compared between different pH (same RL/CS ratios and storage time). Samples denoted by lowercase letters (a–c) were
significantly different (p < 0.05) when compared between different RL/CS ratios and storage times (same pH).

2.2.2. Salt Stability

The salt stability of the liposomes was determined by adding different levels of NaCl
(0~400 mM) to them (Figure 4). The turbidity of all samples increased clearly when adding
salt (Figure 4a). After 3-day storage, Cur-RL-Lips suspensions had only a slight change
in the visual appearance and particle size (Figure 4a,b), though the added salt resulted in
a decrease in the magnitude of negative charge on the Cur-RL-Lips (Figure 4c). Instead,
CS-coated Cur-RL-Lips were extremely unstable for adding salt. After 3-day storage, visual
appearance showed that a yellow sediment formed at the bottom of test bottles, especially
CS-coated Cur-RL-Lips with RL:CS = 1:2 and 1:3, and particle size increased strongly as the
level of salt added was increased. These results indicate that the aggregation of CS-coated
liposomes has occurred, which could be because of the electrostatic screening between
them by the mineral ions [30]. The magnitude of positive surface charge on the CS-coated
liposomes reduced with increasing salt level, which again supported the viewpoint of
the electrostatic screening. Overall, these results suggest that it is adverse to the use of
CS-coated Cur-RL-Lips under the high salt condition.
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2.2.3. Thermal Stability

The capacity of nutraceutical-loaded liposomes to remain stable during high tem-
perature (e.g., cooking, sterilization, or pasteurization) is important for their commercial
applications. Hence, the thermal stability of Cur-loaded liposomes was determined by
measuring the curcumin degradation and the change of particle size at 80 ◦C for 60 min
(Figure 5). The concentration of curcumin in all samples decreased during storage. The
degradation rate of curcumin in Cur-RL-Lips was the highest, which is probably because
the structure of the thin-phospholipid bilayer cannot stop curcumin from chemical degra-
dation during heating [31]. The degradation rate of curcumin in CS-coated liposomes
slowed down when the RL/CS ratio increased (Figure 5a). The curcumin retention in
the Cur-RL-Lips and CS-coated Cur-RL-Lips with RL:CS = 1:3 after storage for 60 min at
80 ◦C were 78.8% and 94.4%, respectively. These results indicated that CS covering on the
surface of liposomes can effectively prevent curcumin from chemical degradation during
thermal treatment. Additionally, except for CS-coated Cur-RL-Lips with RL:CS = 1:3, there
was no obviously difference (P < 0.05) in the particle size of liposomes both before and
after storage (Figure 5b). Therefore, the CS-coated Cur-RL-Lips are effective at protecting
curcumin from chemical degradation, as well as protecting liposomes from disruption or
aggregation as RL:CS ≤ 1:2.
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between different treatment condition.

2.3. Release of Curcumin in CS-Coated Cur-RL-Lips

The in vitro release behavior of curcumin was recorded during 72 h at 37 ◦C, and
the cumulative release curve is shown in Figure 6. The Cur-RL-Lips showed a higher
curcumin release than the CS-coated Cur-RL-Lips, and its cumulative release percentage
reached 82.0% after 72 h. However, the addition of CS in Cur-loaded liposomes can result
in the reduction in curcumin release. The curcumin release was only 67.6% from CS-coated
Cur-RL-Lips with RL:CS = 1:3 in 72 h at 37 ◦C. These indicated that the presence of CS was
able to inhibit the release of curcumin from the liposomes, which may be beneficial for
prolonged release applications. Presumably, the surface of Cur-RL-Lips was fully covered
with CS because of the electrostatic interaction between CS (positive charge) and Cur-RL-
Lips (negative charge), thereby reducing the tendency of curcumin to be released [31].
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2.4. In Vitro Digestion of CS-Coated Cur-RL-Lips

The digestion process of the liposomes was studied by a three-stage simulated GIT
model, including mouth stage, stomach stage, and small intestine stage. At the end of
each single stage, the visual appearance, particle size, and ζ-potential were recorded
(Figure 7a–c). When the liposomes were exposed to the mouth phase, the particle size of
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all the liposomes (mean diameter > 1 µm) was obviously larger than that of the initial
liposomes (mean diameter < 600 nm). Meanwhile, there was no change in surface charge
of Cur-RL-Lips. However, the surface charge of CS-coated Cur-RL-Lips shifted positive
to negative, and the magnitude of the surface charge decreased with increasing ratios of
RL/CS in the mouth phase. These changes mainly attributed to the ability of mucin in
simulated saliva to promote aggregation of liposomes and the effect of pH in surface charge
of liposomes [32]. Next, the liposomes entered the stomach for digestion. Except for the
particle size of CS-coated Cur-RL-Lips with RL:CS = 1:3 decreasing slightly, the particle
size of the liposomes did not significantly change. Nevertheless, the surface charge of all
liposomes changed from negative in the mouth phase to positive in the stomach phase,
which was mainly due to the low pH of the gastric fluids [33]. In addition, the magnitude
of the surface charge in CS-coated Cur-RL-Lips with RL:CS = 1:2 and 1:3 had an apparent
increase alongside an increase in the electrostatic repulsion between the liposomes, which
may be the main reason for reducing the particle size of CS-coated Cur-RL-Lips with
RL:CS = 1:3. All samples had relatively large particle sizes and low negative surface
charges after passing through the small intestine phase. An obvious sediment was shown
in the bottom of test bottles, especially in Cur-RL-Lips. Furthermore, the particle size of
samples with CS was smaller than those without CS, which indicated that the presence
of CS may have inhibited the formation of large particle structures such as vesicles and
insoluble calcium soaps.
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Figure 7. Visual appearance (a), particle size (b), ζ-potential (c) of Cur-loaded liposomes with different ratios of RL/CS
during the digestion phases; (d) curcumin transformation, bioaccessibility and bioavailability percentages for Cur-loaded
liposomes with different ratios of RL/CS during the digestion phases. Samples denoted by different capital case letters
(A–D) were significantly different (p < 0.05) when compared between different GIT regions (same RL/CS ratios). Samples
denoted by lowercase letters (a–c) were significantly different (p < 0.05) when compared between different RL/CS ratios
(same GIT region).
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Additionally, the in vitro bioavailability of curcumin was determined by measuring
initial curcumin concentration (Cinitial), as well as the curcumin concentration in raw digesta
phase (Cdigesta) and in mixed micelle fraction (Cmicelle) at the end of small intestine stage.
Then, these data were used to calculate the transformation (T*) and bioaccessibility (B*), as
the following equations:

Trans f ormation (%) =
Cdigesta

Cinitial
× 100 (1)

Bioaccessibility (%) =
Cmicelle
Cdigesta

× 100 (2)

The bioavailability (BA) is given by B* × T*, so it is a ratio of the curcumin con-
centration in mixed micelle fraction to the initial curcumin concentration. As shown in
Figure 7d, the CS-coated Cur-RL-Lips have higher transformation than Cur-RL-Lips, which
indicated that the digesta of CS-coated Cur-RL-Lips remained at a higher concentration
of curcumin. The bioaccessibility of curcumin was similar in liposomes, apart from CS-
coated Cur-RL-Lips with RL:CS = 1:3. A high level of CS may cause by the aggregation
of colloid, and thus affect the absorption of nutraceutical [34]. However, considering the
bioavailability, the amount of bioavailable curcumin was higher in CS-coated Cur-RL-Lips
than in Cur-RL-Lips, which is consistent with the study of Cuomo et al. [4]. This effect can
mainly be attributed to the much higher transformation of the curcumin in the CS-coated
Cur-RL-Lips. Consequently, these results indicated that a larger amount of curcumin can
be absorbed by delivering it in the form of CS-coated liposomes, which is mainly because
of a large increase in transformation.

3. Materials and Methods
3.1. Materials

Phospholipid S100 (containing 94% phosphatidylcholine) was purchased from Lipoid
GmbH (Ludwigshafen, Germany). Curcumin (98%) was purchased from Aladdin Indus-
trial Corporation (Shanghai, China). Chitosan was purchased from Sigma-Aldrich Co. (St.
Louis, MO, USA). Rhamnolipids were provided by Xi’an boliante Chemical Co., (Xi’an,
China). All other reagents (analytical grade) were purchased from Xilong Chemical Co.,
(Shanghai, China). Double distilled water (Milli-Q) was used to prepare all solutions.

3.2. Preparation of Cur-RL-Lips and CS-Coated Cur-RL-Lips

The curcumin-loaded rhamnolipid liposomes (Cur-RL-Lips) were prepared according
to the method of Cheng et al. [21] with some modifications. Phospholipids (RL, 10 mg/mL)
were mixed with rhamnolipids (RL, 2 mg/mL) and a certain amount of curcumin (Cur)
dissolved in absolute ethanol. The obtained solution was then added to a phosphate buffer
saline solution (5 mM, pH 7) and stirred for 30 min. Aqueous Cur-RL-Lips was obtained
by removing the ethanol using a vacuum rotary evaporator at 45 ◦C. The final curcumin
concentration in this system was 400 µg/mL.

The Cur-RL-Lips were coated with chitosan using the method of Cuomo et al. [4]
with some modifications. The Cur-RL-Lips were mixed with equal volume chitosan (CS)
solution to obtain a range of RL:CS mass ratios (1:1, 1:2 and 1:3 w/w). Finally, the Cur-RL-
Lips (control) and CS-coated Cur-RL-Lips with different RL:CS mass ratios were adjusted
to pH 4.5 by adding a small amount of either HCl or NaOH solution.

3.3. Mean Particle Diameter and ζ-Potential

The mean diameter and ζ-potential of the liposomes were determined using an instru-
ment capable of both dynamic light scattering and microelectrophoresis analysis (Malvern
Zetasizer Nano- ZSP, Malvern Instruments, Worcestershire, UK) according to the method
of Peng et al. [18]. The liposome samples were diluted to an appropriate concentration
using phosphate buffer solution (same pH and salt level as sample).
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3.4. Microstructure

The microstructure of liposomes was observed using an atomic force microscope
(AFM). The liposome suspensions were dropped into the clear mica plate, and then the
microstructure images of liposomes were obtained by an AFM (Agilent 5500, Agilent
Technologies, Santa Clara, CA, USA) with a silicon cantilever of force constant of 0.58 N/m
operated in tapping mode at room temperature.

3.5. Stability of Cur-RL-Lips and CS-Coated Cur-RL-Lips

pH: The influence of pH on the stability of liposome dispersions was determined by
preparing a series of samples with the desired pH values ranging from 2 to 7. The obtained
samples were then stored in a 25 ◦C incubator for around 24 h and 3 d, respectively. The
appearance, mean particle diameter, and ζ-potential of the samples were recorded using
the methods described earlier.

Salt addition: The influence of salt level on the stability of liposome suspensions was
determined by preparing a series of samples with different levels of NaCl (0, 50, 100, 200,
and 400 mM). The obtained samples were then stored in a 25 ◦C incubator for around
24 h and 3 d, respectively. The appearance, mean particle diameter, and ζ-potential of the
samples were recorded using the methods described earlier.

Thermal stability: The liposome suspensions (5 mL) were mixed with 20 mL of phos-
phate buffer solution (5 mM, pH 7) and sealed into a series of 2 mL test tubes, which were
incubated in a water bath at 80 ◦C for 10, 20, 30, 40, 50, and 60 min, respectively. The tubes
were then immediately cooled to room temperature using an ice water. Finally, the mean
particle diameter was determined using the methods described earlier and the curcumin
concentration was obtained by measuring the absorbance of samples at 420 nm.

3.6. Release of Curcumin in Cur-RL-Lips and CS-Coated Cur-RL-Lips

The in vitro release of curcumin from liposomes was evaluated according to the
method of Li et al. [35]. Briefly, liposomal samples (2 mL) were transferred in dialysis bag
(8–14 kDa molecular weight cut-off). The dialysis bags were then incubated in 50 mL of
a phosphate buffer (5 mM, pH 7) release medium containing Tween-80 (0.5% w/w) and
10% ethanol as an auxiliary solvent for curcumin and incubated in a shaker at 100 rpm and
at 37 ◦C for 72 h. At specific time intervals, 2 mL of release medium was withdrawn and
replaced with fresh medium. The release medium was diluted with anhydrous ethanol
to calculate the total cumulative amount of curcumin released from the liposomes. The
content of curcumin was measured at various sampling times by a spectrophotometer
at 420 nm.

The cumulative release (%) of curcumin was calculated using the equation below:

Cumulative release (%) = (50Ci +
n

∑
i=1

Ci−1)V0/M0 (3)

where V0 is the initial volume of curcumin in release system, M0 is the initial mass of
curcumin in the sample, and Ci is the concentration of curcumin released at each sampling
time point.

3.7. Digestion of Cur-RL-Lips and CS-Coated Cur-RL-Lips

A three-stage simulated GIT model was employed to characterize the potential gas-
trointestinal behavior of the liposomes [33,36]. (i) Mouth phase: the liposomes (7.5 mL)
were combined with artificial saliva (7.5 mL), adjusted to pH 6.8, and then incubated at
37 ◦C for 2 min; (ii) Stomach phase: simulated gastric fluids (15 mL) containing 3.2 mg/L
pepsin were added to the mouth phase (15 mL), the mixture was adjusted to pH 2.5, and
then incubated at 37 ◦C for 2 h; (iii) Small intestine phase: the mixture (30 mL) from the
stomach phase was collected and adjusted to pH 7.0, then added to 1.5 mL of simulated
intestinal fluids and 3.5 mL bile salt solution. Afterward, the pH was adjusted back to
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7.0, and 2.5 mL of pancreatin solution (36 mg/mL) was added. The temperature of the
simulated gastrointestinal system was controlled at 37 ◦C throughout. The pH-stat method
was used to monitor lipolysis during small intestinal digestion for 2 h.

3.8. Statistical Analysis

All experiments were performed on three prepared samples. The results were ex-
pressed as mean values ± standard deviation in triplicates. Statistical analysis software
(SPSS 25.0) was used for analyzing the data. Analysis of variance (ANOVA) was used to
determine significance at p < 0.05 by Tukey’s HSD (honestly significant difference) test.

4. Conclusions

In this study, the impact of the ratios of chitosan (CS) and rhamnolipid (RL) on the
physical stability and digestion of the chitosan-coated rhamnolipid liposomes containing
curcumin (CS-coated Cur-RL-Lips) was examined. Initially, we showed that chitosan
(CS) and Cur-RL-Lips spontaneously assembled into CS-coated Cur-RL-Lips in aqueous
solutions because of electrostatics interaction between cationic CS and anionic Cur-RL-
Lips. Then, the physical stability and gastrointestinal digestion of CS-coated Cur-RL-Lips
were investigated. The CS-coated Cur-RL-Lips were stable to aggregation under acidic
conditions (pH ≤ 5), which is conducive to enduring the acidic condition of stomach and
preventing the release of the encapsulated drug in the stomach. The CS-coated Cur-RL-Lips
exhibited better stability than the Cur-RL-Lips when stored at elevated temperatures (80 ◦C
for 60 min). The CS covered the surface of liposomes effectively inhibited temperature-
induced curcumin degradation. Additionally, curcumin in CS-coated Cur-RL-Lips can be
better absorbed than those in Cur-RL-Lips, but a high level of CS reduced the bioaccessibil-
ity of curcumin. Therefore, the amount of CS in liposomes should be controlled reasonably.
Overall, these results have good potential for the design of a more efficacious liposomal
delivery system for encapsulating and delivering bioactive agents.
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