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Abstract

Mosquito-borne diseases have become a significant health issue in many regions around

the world. For tropical countries, diseases such as Dengue, Zika, and Chikungunya, became

epidemic in the last decades. Health surveillance reports during this period were crucial in

providing scientific-based information to guide decision making and resources allocation to

control outbreaks. In this work, we perform data analysis of the last Chikungunya epidemics

in the city of Rio de Janeiro by applying a compartmental mathematical model. Sensitivity

analyses were performed in order to describe the contribution of each parameter to the out-

break incidence. We estimate the “basic reproduction number” for those outbreaks and

predict the potential epidemic outbreak of the Mayaro virus. We also simulated several sce-

narios with different public interventions to decrease the number of infected people. Such

scenarios should provide insights about possible strategies to control future outbreaks.

Introduction

In the last decades, Mosquito-borne diseases have become a significant health issue in many

regions around the world. Projections indicate that around 2050, half of the population will be

at risk of some arbovirus infection [1]. These arboviruses, which include diseases such as Den-

gue, Zika, and Chikungunya, are epidemic in most of the tropical countries. Besides temperature

and humidity, human migrations and sanitation also contribute to the epidemic conditions in

these places [2, 3]. For example, around 300.000 people were infected by Dengue, Zika, or Chi-

kungunya by the end of the 11th week of 2019 in Brazil. This number represents almost three

times the reported cases in 2018 for the same period [4]. These surveillance reports over time

are essential in providing scientific-based information to guide decision making, resources allo-

cation, and interventions [5]. The usage of mathematical models has demonstrated to be a pow-

erful tool in contributing to these data analysis [6–8]. One of the most significant parameters
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extracted from these analyses is the basic reproduction number Ro. Ro is defined as the number

of secondary infections derived from one single infectious subject and is widely used as an epi-

demiological metric employed to describe the transmissibility of infectious agents [9].

Here we apply a compartmental mathematical model to investigate the dynamics of Chi-

kungunya outbreaks in the city of Rio de Janeiro in Brazil. The model consists of ordinary dif-

ferential equations that describe the transmission and the transition of the diseases in humans

and vectors [10, 11]. The model’s parameters were extracted from the literature or obtained

from the best fit from the data of Rio de Janeiro surveillance report for the years of 2016, 2018

and 2019 [12]. Based on these parameters, we estimate the basic reproduction number Ro for

Chikungunya outbreaks in those years. We also simulate a scenario predicting if the Mayaro

virus could be a potential epidemic disease in Rio de Janeiro. Modifications in the standard

model equations were implemented to introduce different possible interventions in order to

decrease the number of infected people [13]. Those simulated interventions include actions

such as killing adult mosquitoes by fogging, decreasing mosquitoes birth rate by removing

places where the vector lays eggs, e.g., removing standing water and, decreasing the contact

Fig 1. Model diagram representation of the disease dynamics. The blocks blue and red are related to human and

mosquitoes, respectively. The parameter and variable descriptions are presented in Tables 1 and 2. The dashed lines

represent the transmission of the disease between the two groups.

https://doi.org/10.1371/journal.pone.0222900.g001
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between an infected human with mosquitoes by stimulating repellent usage. A scenario con-

taining all interventions was also performed for different intensities of those actions.

Materials and methods

In this work, we perform mathematical modeling of Chikungunya outbreaks in Rio de Janeiro

for the years 2016, 2017 and 2019 [12]. The Chikungunya virus infects humans through mos-

quitoes as the disease vector. The model adopted here is a compartmental model known as

SEIR (Susceptible, Exposed, Infected, and Recovered) [8, 10, 14]. The approaches using this

class of models have been successful in modeling epidemic related to human vector dynamics

[11, 15]. Fig 1 presents a schematic description of this modeling.

The human disease flow is presented by the blue blocks where S is the susceptible propor-

tion of humans, which become exposed to the virus, E, at a rate βh after the contact with

infectious mosquitoes Z. After the latent period λh, the exposed humans become infectious:

either symptomatically I or asymptomatically Ia; the parameter ϕ determines the ratio

between the infectious states. Finally, the infected humans recover reaching the state R at

rate α.

In the case of the vectors disease flow, shown by the red blocks in Fig 1, the susceptible mos-

quitoes X become exposed Y at a rate βm after acquiring the virus from infectious humans. λm
defines the latent period for the exposed mosquito to transition to the infectious state Z. In

this modeling, we assume that human mortality and birth rates are the same, keeping the

human population constant. For the vectors, we set the parameter μ and μo as the mortality

and birth rate, respectively. The model is represented by the following set of differential equa-

tions:

dS
dt
¼ � bhSZ

dE
dt
¼ bhSZ � lhE

dI
dt
¼ �lhE � aI

dIa
dt

¼ ð1 � �ÞlhE � aIa

dR
dt
¼ aðI þ IaÞ

dX
dt

¼ mo � bmXðI þ IaÞ � mX

dY
dt

¼ bmXðI þ IaÞ � lmY � mY

dZ
dt
¼ lmY � mZ

Table 1 shows the definition of each state in the model for both humans and mosquitoes.

Those states will dynamically vary during the model simulation in which the parameter I
related to the number of cases reported by the surveillance data will be the variable used in the

fitting of the model simulation.
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Table 2 describes the parameters and ranges used in the model. Some data information

comes from the literature, and for the parameter which we have no description, they will be

obtained from the model best fit.

In this work we estimate the basic reproduction number Ro by applying the next generation

matrix method [21, 22]. Ro indicates the number of secondary infections derived from one sin-

gle infectious subject and can be described by:

Ro ¼ � rðPG
� 1Þ ð1Þ

Where ρ(K) is the spectral radius of the matrix K =PΓ−1. P is the transmission matrix that

contains the rates of humans to get infected by the vector and vice-versa:

P ¼

0 0 0 bh

0 0 0 0

0 bm 0 0

0 0 0 0

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

ð2Þ

Table 1. Definition of the state variables used in the model for both humans and mosquitoes.

Symbol Definition

S Susceptible proportion of human population

E Exposed proportion of human population

I Symptomatically infectious proportion of human population

Ia Asymptomatically infectious proportion of human population

R Recovered proportion of human population

X Susceptible proportion of mosquito population

Y Exposed proportion of mosquito population

Z Infectious proportion of mosquito population

https://doi.org/10.1371/journal.pone.0222900.t001

Table 2. Description of the parameters and range used in the model simulation.

Definition Range (days)

βh Proportional rate at which humans get infected Unknown

βm Proportional rate at which mosquitoes get infected Unknown

1/λh Human latent period of infection 2-10 [16, 17]

1/λm Mosquito latent period of infection 2-6 [18, 19]

α Rate of recovery 1-7

μo Mosquito birth rate 0.05-0.03

μ Mosquito mortality rate 0.05-0.03

ϕ Asymptomatically-Symptomatically infectious ratio 0.72-0.97 [16, 20]

https://doi.org/10.1371/journal.pone.0222900.t002
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Γ is the transition matrix that takes into account the transitions from being exposed to

become infectious:

G ¼

� lh 0 0 0

lh a 0 0

0 0 � ðmþ lmÞ 0

0 0 0 � m

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

ð3Þ

The mathematical solution of (1) gives an expression [11]:

Ro ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhbmlm

maðmþ lmÞ

s

ð4Þ

The Eq 4 has parameters in which there is no information available such as βh and βm. In

order to estimate Ro, these parameters will be obtained from the best fit of the model simula-

tions using data from the surveillance reports [12].

Results and discussion

The usage of the SEIR model to investigate diseases epidemics provides a tool to quantify dif-

ferent parameters in outbreaks. The basic reproduction number Ro is the most important

quantity, and it is defined as the number of secondary infections caused by an infected individ-

ual [3, 23]. It estimates the potential of an outbreak to occur in the case of Ro> 1 [10, 24]. The

knowledge of Ro also gives insights into the understanding of the epidemiology of a particular

disease and its spreading changes over time and geography [25].

The number of secondary infections in humans from an infected human, defined as RT, the

type reproduction number [26], can be obtained by Ro squared (RT = Ro2) [11]. The information

of RT can be used to estimate the number of people that need to be isolated or vaccinated (Q)

to contain the epidemic using the relation Q = 1 − 1/RT. We present the application of the

SEIR model in the data of Chikungunya in Rio de Janeiro—Brazil in different years (2016,

2018 and 2019). We also provide an estimation of the potential outbreak of Mayaro virus in

Rio de Janeiro. Some additions on the model are also proposed in a way to simulated possible

interventions in the epidemic control [13, 27].

Basic reproduction number—Ro

The data which contains the weekly number of infected people of Chikungunya outbreak in

Rio de Janeiro was obtained from the surveillance report for the years 2016, 2018, and 2019,

which are publicly available [12]. The ratio between the number of reported cases and the total

population is presented in red circles Fig 2. The total number of cases reported in 2019 is

22896 until the 26th week when the data was collected. This number is almost two times higher

in comparison with 2016 and 2018 in 52 weeks, 14203 and 10700, respectively. In 2017 the

total number of cases was 1870, which will not be used in this study. Then, the SEIR model

was applied to fit the incidence data where the upper and the lower bound of the model param-

eters were set to vary in a range described in the literature. The transmissions coefficients λh,
λm, α, βh and βm values are obtained from the model best-fit since there are no values reports

in literature about these parameters for Rio de Janeiro [11]. The simulated number of cases

from the best-fit are presented as bars in Fig 2A, 2B and 2C for the years 2016, 2018, and 2019,

respectively. The least square error obtained for 2016 was of 0.0186, while for 2018 and 2019
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this measure reached 0.032 and 0.331 respectively. The parameters obtained from the fitting

and used to plot Fig 2 are described in Table 3. Table 3 also shows in the last row, the estima-

tion of Ro using Eq (4) for each investigated year.

All the estimated Ro values for the three studied years are greater than one describing how

severe were the outbreaks in which 2019 has the highest value R2019
o ¼ 1:95 compared with

R2016
o ¼ 1:82 and R2018

o ¼ 1:38. Considering other epidemic diseases in Rio de Janeiro as Den-

gue and Zika, which are transmitted by the same vector, the parameters estimated here are

similar to other registered outbreaks studies [25, 28]. It is worthwhile to mention that these

parameters give insights from a city as a whole, which is invariant on how heterogeneous the

sanitary conditions could be at different neighborhoods [7, 25, 29, 30].

The last column in Table 3 presents the estimated parameters for Mayaro virus using the

data for the Chikungunya outbreak in 2018, which is the most recent complete data available.

The assumption is based on the similarities between these two alphavirus in which they can

also be transmitted by the same mosquito vector: Aedes aegypti [6, 31, 34–36]. The estimated

RMAYVo for Mayaro presents values between 1.18 and 3.51 for the lower and upper limits. Even

the lower bound RMAYVo is greater than 1, suggesting that Mayaro has the potential to be an epi-

demic disease as recent reports are signaling for different locations [37–39].

Sensitivity analysis

The usage of the SEIR model allows us to estimate the importance of each parameter in the

characterization of an outbreak by performing a parameter sensitivity analysis (Fig 3). It was

carried out a hundred thousand Monte Carlo simulations sampling around the ±5% range

from the best fit value of the Chikungunya epidemic data of 2018. From these simulations, the

time-shift on the peak and the total number of infected people were obtained. Additionally,

Fig 2. The number of infected people distribution by Chikungunya in Rio de Janeiro for 2016, 2018 and 2019, A, B, and C, respectively. The red

dots describe the informed data obtained from the surveillance report [12] per week. The bars indicate the simulation best fit distribution

compared to the reported data.

https://doi.org/10.1371/journal.pone.0222900.g002

Table 3. Best fitted parameter values in different years for Chikungunya (CHKV) in Rio de Janeiro. Estimated parameter are also presented in the last column for

Mayaro virus. The last row shows the values of the estimated Ro for both Chikungunya and Mayaro.

Parameter CHKV—2016 CHKV—2018 CHKV—2019 Mayaro

βh 0.1 0.1 0.194 0.1–0.194

βm 0.732 0.562 0.298 0.298–0.732

λh 0.17 0.5 0.17 –

λm 0.17 0.181 0.17 0.17–0.33 [31, 32]

α 0.343 0.464 0.235 0.2–0.33 [33]

Ro 1.82 1.38 1.95 1.18–3.51

https://doi.org/10.1371/journal.pone.0222900.t003
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the Spearman correlation for each parameter with the time-shift and the total number of

infected people was calculated. [11]. In Fig 3 the transmission parameters (βh and βm) in both:

peak shift and total population infected, exhibit as an important contribution to the outbreak

characterization [40]. Fig 3A shows that the rate of recovery plays a significant role in the time

scale of the epidemic. The parameter presented a negative correlation, which means that posi-

tive variations in this parameter will modify the shift by delaying the peak reaching point; the

same is observed about the mosquito birth-death rate. On the other hand, Fig 3B shows that by

decreasing the magnitude of the transmission coefficients or increasing the value of γ and μ
may reduce the number to total cases of infected people. These parameters modification can

be related by triggering public interventions, which will be discussed in the next section. Intui-

tively, a fast recovery would decrease the probability of a mosquito to bit an infected person,

while the increase on the birth-death rate of the mosquito will create similar effect: an infected

mosquito would die quickly, therefore it may not be able to transmit the disease. Sensitivity

analyses based on the outbreak time dependence are presented in the Supporting Information.

Interventions

In this section, we will discuss the outcome of different possible intervention strategies to con-

trol the epidemic disease spreading [13, 23]. The simulations were carried out using the Chi-

kungunya epidemic outbreak data from Rio de Janeiro in 2018. The first approach simulates

the action of killing adult mosquitoes, which is related to the use of insecticide as fogging. In

the model, this strategy appears as an increase in the mosquitoes mortality rate μ presented in

Eq 5:

mðC; tÞ ¼ mcð1 � oyðC � CpÞÞ ð5Þ

where θ(. . .) is the unitary step function, μc is the natural rate of birth/death of the mosquito, C
is the cumulative number of infected people and, ω is the parameter related to the intensity of

the fogging action reflected in the mosquito death rate μ. The fogging action is triggered when

the cumulative number of infected people C, described in Eq 6, reaches the value Cp which is

30% of the total number of cases from the real data. For all the interventions discussed in this

Fig 3. Monte Carlo simulations sensitivity analysis. A present the Spearman correlation of each parameter value with the peak shift on time

and B shows the Spearman correlation of each parameter value with the total number of infected people. The values were obtain by 100.000

Monte Carlo simulations around ±5% the best fit values the 2018 outbreak.

https://doi.org/10.1371/journal.pone.0222900.g003
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study, the trigger event will be the same as the one present here in the fogging action.

dC
dt
¼ �lhE ð6Þ

Fig 4 presents the distribution of the number of cases and the cumulative number of cases

as a function time for different fogging intensities, A and B, respectively. In Fig 4A, once the

fogging action starts, the number of cases per week stop to grow and starts to decrease over

time. The strength of the parameter ω dictates how fast these curves decay. The cumulative

number of cases also reflects the fogging action for different intensities, as presented in Fig 4B.

The total number of case drops to 70.0% when ω = 0.25 presented in dashed red line and

drops to 54.0% when ω = 0.5 shown in the dotted yellow line when compared with the real

data without fogging action ω = 0.0.

The second simulated intervention is the action of reducing the birth rate of the vector.

This approach can be associated with population orientation or better social sanitary condi-

tions. These actions may produce a decrease in the number of places where the mosquitoes lay

the eggs such as standing water, for example. Here, this intervention appears in the model by

decreasing the mosquito birth rate μo, as shown in Eq 7:

moðCÞ ¼ mcð1 � oo yðC � CpÞÞ ð7Þ

where θ(. . .) is the unitary step function, μc is the natural rate of birth/death of the mosquito, C
is the cumulative number of infected people, Cp represents the cumulative amount of infected

people needed to trigger the action and, ωo is the parameter related to how efficient are the

population and government actions in preventing the vector from laying the eggs, which led to

decrease the mosquito birth rate μo.
Fig 5 shows the distribution of the number of cases and the cumulative number of cases as a

function time for different intensities of the mosquito birth rate reduction. Similar behavior as

the fogging intervention is observed here. In Fig 5A, the number of cases reaches the peak of

infected people sooner and then starts a decay in the number of cases per week. The total

number of case drops to 85.3% when ωo = 0.25 presented in dashed red line and drops to

70.7% for ωo = 0.5 shown in the dotted yellow line when compared with the data without the

Fig 4. Simulated intervention results in increasing the mosquitoes mortality rate by fogging action. A and B present the number of cases

and the cumulative number of infect people, respectively. The solid blue line is the simulation without intervention ω = 0.0. The dashed red line

presents the data for ω = 0.25, and the dotted yellow shows the data for ω = 0.5.

https://doi.org/10.1371/journal.pone.0222900.g004
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intervention ωo = 0.0 presented in Fig 5B. Although the behavior is similar to the fogging

action, the response of decreasing the mosquito birth rate to the total number of cases is less

efficient during the outbreak. It is worthwhile to mention that this kind of action, different

from the fogging, can be inherited and passed to the following years and avoid new outbreaks

to occurs in the future.

The third and the last studied intervention acts as the reduction of the rate in which infected

humans transmit the disease to the mosquitoes. This effect can be associated as a quarantine

action, isolating infected people or, more realistic, the usage of repellents by the infected

human. Both strategies go in the direction of decreasing the contact between infected humans

and the vector which is simulated using the Eq 8.

bmðCÞ ¼ bcð1 � � yðC � CpÞÞ ð8Þ

where θ(. . .) is the unitary step function, βc is the natural rate at which humans infect mosqui-

toes, C is the cumulative number of infected people, Cp represents the cumulative amount of

infected people needed to trigger the action and, � is the parameter that modulates how intense

is the decrease in the rate at which humans infect mosquitoes βm.

Fig 6 presents the results for this last intervention. The curves in Fig 6A and 6B show a simi-

lar pattern, as observed in the other two previous actions. The number of cases shows a decay

after the intervention starts for different intensities of �. In Fig 6B the total number of cases

curves present results closer to the birth control intervention than the fogging action. For � =

0.25, the total number of cases decreased to 82.7% of the initial value, meanwhile, for � = 0.5

this number drops to 64.1%.

A combined simulation applying all the three interventions was carried out, and the results

are presented in Fig 7. The combined intervention presents, as expected, the most effective

strategy to decrease the number of infected people. The distribution curve of the number of

cases per week shows more intense decay in Fig 7A. The total number of cases drops to 54.3%

from the initial value when ω, ωo, � = 0.25 and reduce to 43.6% for the parameters ω, ωo, � =

0.5 in Fig 7B.

Fig 5. Simulated intervention results in decreasing the vector birth rate by the action of removing the places where mosquitoes lay the

eggs. A and B present the number of cases and the cumulative number of infect people, respectively. The solid blue line is the simulation

without intervention ωo = 0.0. The dashed red line presents the data for ωo = 0.25, and the dotted yellow shows the data for ωo = 0.5.

https://doi.org/10.1371/journal.pone.0222900.g005
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Conclusion

The last three Chikungunya outbreaks in the city of Rio de Janeiro, Brazil, were modeled using

the SEIR model and estimates the Basic Reproduction Number Ro for the years 2016, 2018,

and 2019. The simulations results register values greater than 1 for all of them, and 2019 is the

most severe, even though the data was limited for the first six months. The calculation of Ro
gives a global overview of the impact and scale of the outbreak. Sensitivity analyses were per-

formed to indicate, quantitatively, the importance of each parameter to the epidemic profile in

different stages of the outbreak. A more detailed approach could take into account the number

of infected people in each neighborhood with different sanitary conditions, and such details

are not explored in this work. This study was expanded to include the Mayaro virus, which

was reported as an emerging disease in South America [37, 39, 41]. Based on the assumption

Fig 6. Simulated intervention results in decreasing the rate in which humans transmit the disease to susceptible vectors. A and B present

the number of cases and the cumulative number of infect people, respectively. The solid blue line is the simulation without intervention � = 0.0.

The dashed red line presents the data for � = 0.25, and the dotted yellow shows the data for � = 0.5.

https://doi.org/10.1371/journal.pone.0222900.g006

Fig 7. Simulated intervention results by the combination of all the other three actions discussed in this work. A and B present the number

of cases and the cumulative number of infect people, respectively. The solid blue line is the simulation without intervention ω, ωo, � = 0.0. The

dashed red line presents the data for ω, ωo, � = 0.25, and the dotted yellow shows the data for ω, ωo, � = 0.5.

https://doi.org/10.1371/journal.pone.0222900.g007
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that Mayaro and Chikungunya viruses have a similar spreading mechanism [37], since both

viruses have the same vector [31, 36, 42, 43], we used parameters fitted from the Chikungunya

outbreak from 2018 to estimate the RMAYVo from Mayaro. The results indicate that Mayaro has

the potential to be an epidemic disease in Rio de Janeiro with RMAYVo values in a range of 1.18

and 3.51. Also, to possibly stop or at least decrease the intensity of an outbreak, three interven-

tions strategies were proposed by modifying the basic equations of the SEIR model. These

interventions are associated to the increase of the vector mortality rate by fogging techniques,

the decrease of mosquito birth rate by decreasing the amount of places where the mosquito lay

the eggs and, the decrease of the rate in which humans transmit the disease to mosquitoes by

the isolation of infected people or the usage of repellent. Although those simulations do not

retract real data, they can contribute to discussions about public and government policies

directions.
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tion in Sao Paulo State, Brazil. Revista de Saúde Pública. 2003; 37:477–484. https://doi.org/10.1590/

s0034-89102003000400013 PMID: 12937709

36. Kantor AM, Lin J, Wang A, Thompson DC, Franz AW. Infection Pattern of Mayaro Virus in Aedes

aegypti (Diptera: Culicidae) and Transmission Potential of the Virus in Mixed Infections With Chikungu-

nya Virus. Journal of medical entomology. 2019; 56(3):832–843. https://doi.org/10.1093/jme/tjy241

PMID: 30668762

37. Figueiredo MLGd, Figueiredo LTM. Emerging alphaviruses in the Americas: Chikungunya and Mayaro.

Revista da Sociedade Brasileira de Medicina Tropical. 2014; 47(6):677–683. https://doi.org/10.1590/

0037-8682-0246-2014 PMID: 25626645

38. Pego PN, Gomes LP, Provance DW Jr, De Simone SG, et al. Mayaro virus disease. Journal of Human

Virology & Retrovirology. 2014.

39. Pan American Health Organization & World Health Organization. Epidemiological Alert: Mayaro fever.

1 May 2019. PAHO/WHO. 2019;.

40. Samsuzzoha M, Singh M, Lucy D. Uncertainty and sensitivity analysis of the basic reproduction number

of a vaccinated epidemic model of influenza. Applied Mathematical Modelling. 2013; 37(3):903–915.

https://doi.org/10.1016/j.apm.2012.03.029

41. Acosta-Ampudia Y, Monsalve DM, Rodrı́guez Y, Pacheco Y, Anaya JM, Ramı́rez-Santana C. Mayaro:

an emerging viral threat? Emerging microbes & infections. 2018; 7(1):1–11. https://doi.org/10.1038/

s41426-018-0163-5

42. Kantor A, Grant D, Balaraman V, White T, Franz A. Ultrastructural analysis of chikungunya virus dis-

semination from the midgut of the yellow fever mosquito, aedes aegypti. Viruses. 2018; 10(10):571.

https://doi.org/10.3390/v10100571

43. Wiggins K, Eastmond B, Alto B. Transmission potential of Mayaro virus in Florida Aedes aegypti and

Aedes albopictus mosquitoes. Medical and veterinary entomology. 2018; 32(4):436–442. https://doi.

org/10.1111/mve.12322 PMID: 30006976

Modeling Chikungunya control strategies and Mayaro potential outbreak in Rio de Janeiro

PLOS ONE | https://doi.org/10.1371/journal.pone.0222900 January 28, 2020 13 / 13

https://doi.org/10.1017/S0950268817000358
https://doi.org/10.1098/rspb.2003.2339
http://www.ncbi.nlm.nih.gov/pubmed/12965026
https://doi.org/10.1186/s12976-017-0051-z
http://www.ncbi.nlm.nih.gov/pubmed/28347332
https://doi.org/10.1371/journal.pntd.0000942
http://www.ncbi.nlm.nih.gov/pubmed/21264356
https://doi.org/10.1371/journal.pone.0174293
http://www.ncbi.nlm.nih.gov/pubmed/28362820
https://doi.org/10.4269/ajtmh.2011.11-0359
http://www.ncbi.nlm.nih.gov/pubmed/21976583
https://doi.org/10.4103/0974-777X.91049
http://www.ncbi.nlm.nih.gov/pubmed/22223990
https://doi.org/10.1371/journal.pntd.0006895
http://www.ncbi.nlm.nih.gov/pubmed/30403665
https://doi.org/10.1016/s0035-9203(01)90184-1
https://doi.org/10.1016/s0035-9203(01)90184-1
http://www.ncbi.nlm.nih.gov/pubmed/11579875
https://doi.org/10.1590/s0034-89102003000400013
https://doi.org/10.1590/s0034-89102003000400013
http://www.ncbi.nlm.nih.gov/pubmed/12937709
https://doi.org/10.1093/jme/tjy241
http://www.ncbi.nlm.nih.gov/pubmed/30668762
https://doi.org/10.1590/0037-8682-0246-2014
https://doi.org/10.1590/0037-8682-0246-2014
http://www.ncbi.nlm.nih.gov/pubmed/25626645
https://doi.org/10.1016/j.apm.2012.03.029
https://doi.org/10.1038/s41426-018-0163-5
https://doi.org/10.1038/s41426-018-0163-5
https://doi.org/10.3390/v10100571
https://doi.org/10.1111/mve.12322
https://doi.org/10.1111/mve.12322
http://www.ncbi.nlm.nih.gov/pubmed/30006976
https://doi.org/10.1371/journal.pone.0222900

