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Abstract
Abstinence is a lifelong endeavor, and the risk of a relapse is always present for 
patients with Alcohol Use Disorder (AUD). The aim of the study was to better un-
derstand specific characteristics of the intrinsic whole- brain- network architecture of 
34 AUD patients that may support abstinence or relapse. We used Graph Theory 
Analysis (GTA) of resting- state fMRI data from treatment seekers at 1  month of 
abstinence and their follow- up data as abstainers or relapsers 3 months later, together 
with data from 30 light/non- drinking controls scanned at the same interval. We de-
termined the group- specific intrinsic community configurations at both timepoints 
as well as the corresponding modularity Q, a GTA measure that quantifies how well 
individual network communities are separated from each other. Both AUD groups at 
both timepoints had community configurations significantly different from those of 
controls, but the three groups did not significantly differ in their Q values. However, 
relapsers showed a maladaptive community configuration at baseline, which became 
more similar to the controls’ community organization after the relapsers had started 
consuming alcohol again during the study interval. Additionally, successful recov-
ery from AUD was not associated with re- gaining the intrinsic brain organization 
found in light/non- drinkers, but with a re- configuration resulting in a new brain or-
ganization distinctly different from that of healthy controls. Resting- state fMRI pro-
vides useful measures reflecting neuroplastic adaptations related to AUD treatment 
outcome.
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1 |  INTRODUCTION

About 40%– 60% of all patients with alcohol use disor-
der (AUD) undergoing treatment will relapse within the 
first year (Kirshenbaum et al., 2009). Such a high relapse 
rate makes it desirable to have a biomarker that identi-
fies patients with elevated risk for relapse early in treat-
ment. Abundant literature demonstrates that abstinence 
from alcohol is commonly associated with structural 
change and neurocognitive improvements (Meyerhoff & 
Durazzo,  2020). In substance- dependent patients gradual 
neuroplastic change may precede necessary behavioral 
changes to maintain abstinence and resist relapse (Brooks 
et  al.,  2020). Consequently, we hypothesized that those 
AUD patients whose brains demonstrate greater plastic 
changes during and after treatment are also more success-
ful in escaping the often- lifelong cycle of excessive drink-
ing, withdrawal, abstinence, and relapse than those with 
less prominent neuroplastic changes.

Brain modularity Q, a metric that quantifies the subnetwork 
organization of the brain, was recently suggested as a “bio-
marker of plasticity” to explain differential gain in cognitive 
function after cognitive training or aerobic exercise (Gallen 
& D’Esposito, 2019). Modularity (Girvan & Newman, 2002) 
is a concept from the mathematical branch of graph theory 
analysis (GTA), which uses two elements, nodes and edges 
between the nodes, to describe and understand complex net-
works. Modularity describes to which extent a network can 
be partitioned into distinct non- overlapping subnetworks or 
“communities” that are characterized by a maximal num-
ber of within- community edges and a minimal number of 
between- community edges (Rubinov & Sporns, 2010, 2011). 
In real- world networks, Q ranges from zero to one. The closer 
Q is to one, the higher is the network's modularity. Modularly 
organized networks have been shown to be highly efficient 
in regulating the information integration in the brain with 
minimum energy cost (Bullmore & Sporns, 2012). The po-
tential modularity Q to predict positive plastic changes has 
already been shown in other populations than AUD patients. 
For example, patients with traumatic brain injury or healthy 
adults whose intrinsic brain organization at baseline was 
characterized by a high Q value showed the greatest cognitive 
improvement after undergoing cognitive training or aerobic 
exercise with presumed neuroplastic adaptations (Arnemann 
et al., 2015; Baniqued et al., ,,2018, 2019; Gallen et al., 2016).

Since modularity has successfully been used to differen-
tiate between participants who will respond to training in-
terventions and those who will not (Arnemann et al., 2015; 
Baniqued et  al., ,2018, 2019; Gallen et  al.,  2016), we here 
investigated if modularity also helps to better understand 
why some patients benefit from AUD treatment, while others 
do not. Furthermore, a Q value always quantifies the mod-
ularity of a specific and unique community configuration. 

Community configurations differ from each other regarding 
brain regions/network nodes allocated to specific communi-
ties and/or regarding how nodes of the same community in-
teract, or how different communities interact with each other. 
Therefore, we postulated that different community configura-
tions in behaviorally different study groups can shed light on 
properties of community configurations that support success-
ful treatment outcomes.

The specific study aim was to determine if the combina-
tion of group- specific Q values and their corresponding com-
munity configurations can differentiate early in treatment 
between AUD treatment seekers who will remain abstinent 
and will have relapsed at follow- up. Additionally, we wanted 
to understand better how the communities interact with each 
other and, how the regions of the extended brain reward sys-
tem (eBRS; Durazzo et  al.,  2011; Makris et  al.,  2008) are 
distributed within the group- specific community configu-
rations. The eBRS is critically involved in the development 
and maintenance of all forms of addictive disorders. For that 
purpose, we analyzed resting- state fMRI data from AUD 
patients obtained 1 month into treatment and 3 months later 
when they had either remained abstinent or had relapsed; we 
also compared their brain configurations to that of light/non- 
drinking controls.

2 |  METHODS

2.1 | Participants

For the study presented here, we analyzed resting- state fMRI 
(rs- fMRI) data from a final sample of 34 AUD individuals 
of a larger group of substance abuse patients recruited from 
outpatient treatment clinics at the San Francisco Veterans 
Administration Medical Center Substance Abuse Day 
Hospital and the Kaiser Permanente Chemical Dependence 
Recovery. All 34 underwent our MRI protocol at approxi-
mately 1 month of abstinence (baseline), while still in out-
patient treatment, and 24 returned for a follow- up scan after 
approximately 3 months (follow- up). The drinking status of 
the AUD patients at follow- up, ascertained by an in- person 
interview, determined their group membership for this analy-
sis: 12 AUD individuals (10 of them returning for the 3- month 
follow- up) had stayed sober and were classified as abstain-
ers, whereas 22 AUD individuals (14 of them returning for 
follow- up) had started consuming alcohol again during the 
3- months interval and were classified as relapsers. Relapsers 
were asked to refrain from alcohol consumption the day and 
evening before their follow- up scan, which usually occurred 
in the late afternoon. We also analyzed the rs- fMRI data of 30 
control participants from the local community, 21 of whom 
came back for a follow- up. All study participants had to have 
a breath alcohol concentration of zero at the time of scanning. 
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Basic demographics are summarized by group and timepoint 
in Table 1.

The screening section of the Structural Clinical Interview 
for DSM- 5 Axis I disorders was administered to all partici-
pants. All AUD individuals had moderate or severe AUD and 
no other moderate or severe substance use disorder. Exclusion 
criteria for all participants included a history of neurologic 
disorder, e.g., epilepsy, traumatic brain injury with loss of 
consciences > 30 min, cerebrovascular disease, a history of 
general medical diseases such as untreated hypertension, dia-
betes, hypo/hyperthyroidism, and psychiatric diseases such as 
major depression, anxiety, trauma, and PTSD. Additionally, 
to be included in the study presented here, enrolled study par-
ticipants had to have at least 150 volumes of rs- fMRI data left 
after cleaning the data from motion and physiological noise.

All participants underwent a battery of interviews and stan-
dardized questionnaires that included the Beck Depression 
Inventory (BDI, Beck et al., 1961), Barratt Impulsivity Scale 
(BIS- 11, Patton et  al.,  1995), and the State- Trait Anxiety 
Inventory (STAI, Spielberger (1983), which uses 20 ques-
tions to assess the transient emotional status of a person 
when facing a stressful situation like an exam or a job inter-
view (=state) and another 20 questions to assess a person's 
predisposition to react with anxiety in stressful situations 
(= trait). Alcohol use was measured using the Alcohol Use 
Disorder Identification Test (AUDIT, Saunders et al., 1993), 

which assesses with 10 questions potential hazardous alcohol 
use, potential alcohol dependence, and experience of alcohol 
harm. Tobacco use was measured using the Fagerström Test 
for Nicotine Dependence (FTND; Heatherton et  al.,  1991). 
The Committees on Human Research at the University of 
California San Francisco and the VA Medical Center had ap-
proved the study. Signed informed consent had been obtained 
from each participant prior to any research procedures in ac-
cordance with the Declaration of Helsinki.

2.2 | MRI data

The MRI data were collected at the VA Medical Center San 
Francisco on a 3.0 T MRI scanner (Siemens Magnetom Skyra 
Syngo MR D13) using a 20 channel receive head coil. The 
study used (a) a T1 weighted MPRAGE sequence with rep-
etition time (TR) = 2,300 ms, echo time (TE) = 2.98 ms, flip 
angle (FA) = 90, field of view (FOV) = 256 × 256 × 192 mm3, 
isotropic voxel size 1 × 1 × 1 mm3, 192 transverse slices per 
volume, acquisition duration  =  5.28  min; (b) a T2 weighted 
TSE sequence with TR = 9,000 ms, TE = 91 ms, FA = 1500, 
FOV = 230 × 230 × 162 mm3, voxel size 0.9 × 0.9 × 3 mm3, 35 
axial slices per volume, acquisition duration = 2.44 min; and (c) 
a whole brain task- free echo planar imaging (EPI) blood oxy-
gen level- dependent ep2d PACE sequence with TR = 2020 ms, 

T A B L E  1  Demographic description of the three groups: Controls (LDC), abstainers (ABS), relapsers (REL)

TP1 TP2

LDC ABS REL LDC ABS REL

N 30 12 22 21 10 14

Age [years] 44.2 (11.1) 37.1 (7.8) 43.9 (10.4) 42.6 (10.9) 38.1 (8.5) 43.2 (9.2)

Gender F|M [n| 12|18 8|4 8|14 7|14 6|4 5|9

Education [years] 15.9 (2.4) 14.7 (1.9) 14.8 (2.0) 16.1 (2.5) 14.7 (1.6) 15.6 (1.6)

AUDIT 1.78 (1.37) 33.18 (5.19)** 30.67 (5.13)** — — — 

1- year average [drinks/
month]

6.1 (8.3) 367.0 (206.1)** 355.2 (243.8)** 7.5 (9.9) 329.6 (192.9)* 384.8 (297.4)**

Lifetime average [drinks/
month]

8.7 (7.3) 183.9 (93.6)** 190.4 (98.6)** 7.9 (6.8) 160.9 (80.7)** 197.6 (111.8)*

Smokers No/Current/
Former [n]

15|3|4 7|2|3 10|9|3 8|3|2 6|2|2 7|4|3

FTND Total score 2.1 (2.0) 1.6 (2.3) 2.7 (2.1) 2.0 (1.8) 1.3 (1.5) 2.3 (2.2)

BIS- II- Total score 55.1 (9.9) 65.8 (8.8) * 66.6 (11.7)** 54.4 (10.9) 62.3 (11.6) 63.1 (9.3) *

BDI Total score 3.1 (3.9) 12.0 (8.9)** 15.0 (7.5)** 2.6 (2.8) 7. (6.8) 9.9 (5.8)**

STAI State score 23.9 (5.4) 37.5 (11.0)* 38.2 (12.6)** 25.3 (8.8) 35.7 (12.0)* 33.5 (9.6)

STAI Trait score 30.9 (8.9) 47.0 (11.7)** 47.5 (11.5)** 30.1 (6.8) 41.9 (10.6)* 38.8 (10.5)*

Note: Mean value with standard deviation in brackets; one asterisk = p < .05, two asterisks = p < .001 indicate the statistical level on which a group differed from 
the controls. The controls were pooled from three contemporaneously performed research studies, so not all demographic variables were consistently available. The 
variables other than age, gender, and education were obtained from 22 controls at baseline and 9 controls at follow- up.
Abbreviations: AUDIT, Alcohol Use Disorder Identification Test; BDI, Beck Depression Inventory; BIS- II, Barratt Impulsiveness Scale; FTND, Fagerstrom Test for 
Nicotine Dependence; STAI State/STAI Trait, State- Trait Anxiety Inventory; TP, timepoint.
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TE = 27 ms, FA = 770, FOV = 220 × 220 × 129.5 mm3; voxel 
size 2.5 × 2.5 × 3.5 mm3, 37 axial slices per volume, acquisi-
tion duration = 8.08 min, 240 volumes.

2.3 | Pre- processing of the MRI data

SPM12 (https://www.fil.ion.ucl.ac.uk/spm/) running on 
MATLAB 2018b (Natick, Massachusetts: The MathWorks 
Inc.) was used for all pre- processing steps of the functional 
and structural MRI data. (a) The first ten volumes of the EPI 
data were removed to minimize T1 saturation effects, leaving 
230 volumes for analysis. (b) The EPI data were slice time- 
corrected for descending acquisition and aligned to a mean EPI 
image by a two- step procedure. Only the motion- parameter file 
and the mean image of that first alignment step were used for 
the further pre- processing steps. (c) The T2 weighted image 
was co- registered to the T1 weighted image and the mean EPI 
image co- registered to the T2 weighted image. (d) A second 
alignment step was performed by which the original 230 EPI 
volumes were co- registered to the mean- EPI image from the 
first alignment. (e) The T1 weighted image was segmented 
into the three brain tissue maps using the “New Segmentation” 
algorithm of SPM12. (f) A study population- specific template 
was created using the DARTEL procedure (Ashburner, 2007) 
to be used for the normalization step, in which the structural and 
functional images were normalized to the MNI- space. During 
this step, both image types were resampled to a 2mm3 voxel 
size and only minimally smoothed using an isotropic Gaussian 
kernel (FWHM 1mm) in order to minimize possible spurious 
correlations for the following graph theoretical analyses.

2.4 | Denoising of the RS- FMRI data and 
computing correlation matrices

Denoising of the rs- fMRI data and computing subject- 
specific Pearson correlation matrices were performed using 
Conn (Version18b; https://www.nitrc.org/proje cts/conn/) 
running on MATLAB (MATLAB 2018b). The aComp-
Cor method (Behzadi et al., 2007) was used to detect low- 
frequency physiological confounding signals like breathing 
or heartbeat by extracting the Blood Oxygenation Level- 
Dependent (BOLD) signal from the subject- specific white 
matter and cerebrospinal fluid (CSF) masks (five principal 
components each). The Artifact Detection Toolbox (ART) 
was used to identify motion corrupted outliers (global- signal 
z value threshold 5; subject- motion threshold 0.9 mm), vol-
umes identified as outliers were censored by dummy- coding 
them as nuisance regressors for the subsequent regression. 
In a final step, the identified movement outliers, the physi-
ological confounds, and the realignment parameters (12 
regressors: 6 motion parameters and 6 first- order temporal 

derivatives) were regressed out. The data were band- pass 
filtered (0.008– 0.09  Hz), detrended (linear, quadratic, and 
cubic), and despiked. We used Student t tests with the com-
posite motion measure implemented in ART and the number 
of volumes identified as outliers by the denoising procedure 
as dependent variables to assess that the three groups did 
not significantly differ in motion artifacts and confounding 
signals.

2.5 | Network generation

To define the nodes for our GTA, we used the Atlas of 
Intrinsic Connectivity of Homotopic Areas (AICHA, Joliot 
et al., 2015) to partition the brain into 384 regions of inter-
est (ROIs). Both positive and negative BOLD- signal cor-
relations were used to compute unthresholded, positively, 
and negatively weighted edges between the 384 ROIs. 
Thresholding has the purpose to create a sparse network with 
only the strongest edges and to eliminate weaker edges with 
a higher probability of being spurious. However, we decided 
against thresholding the edges for the following reasons: 
(a) Thresholding the edge weights in clinical populations 
can induce spurious group differences (van den Heuvel 
et al., (2017); Hallquist and Hillary, (2018)). (b) Weak edges 
can be physiologically important (Santarnecchi et al., 2014) 
and the most dynamic connections, to which connections 
between communities likely belong (Zalesky et al.,  (2014), 
have correlations coefficients near zero.

2.6 | Defining the extended brain reward 
system (eBRS) using AICHA rois

To investigate how the eBRS is integrated within the brain's 
intrinsic communities, we defined the ROIs of the AICHA 
partition that corresponds best to the regions of the eBRS as 
described earlier (Durazzo et al., 2011; Makris et al., 2008). 
We used 62 ROIs of the AICHA parcellation to build the 
following composites: Bilateral nucleus accumbens, anterior 
thalamus, amygdala, hippocampus, and parahippocampal 
gyrus, anterior insula, lateral orbital prefrontal cortex, dorso-
lateral prefrontal cortex, ventromedial prefrontal cortex, and 
temporal pole.

2.7 | Computation of the group-  and 
timepoint- specific community structure and 
degree of community integration

Brain Connectivity Toolbox routines (BCT; Rubinov and 
Sporns, 2019) were used to compute the GTA measurements 
described below.

https://www.fil.ion.ucl.ac.uk/spm/
https://www.nitrc.org/projects/conn/
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2.8 | First Step: Defining a group-  and 
timepoint- specific community- configuration

To define consensus community configurations that are 
representative for each group and timepoint (Betzel & 
Bassett, 2017), we followed a similar procedure as described 
in Cohen & D’Esposito,  2016. Ten thousand iterations of 
the Louvain algorithm (Blondel et  al.,  2008; Rubinov & 
Sporns, 2010) were run with a resolution parameter γ = 1.6 
and the subjects’ individual connectivity matrices as input to 
determine community configuration for each group at each 
timepoint. Simultaneously, the Q value was computed for 
each iteration and a subject- specific agreement matrix, which 
coded how often two nodes were allocated to the same com-
munity over the 10,000 iterations. The resulting individual 
agreement matrices of the subjects were used to compute 
group-  and timepoint- specific average agreement matrices. 
These were the input for the subsequent computation of a 
consensus partition (Lancichinetti & Fortunato,  2012). For 
the consensus partition, the Louvain algorithm was run 
with 10,000 iterations (Brain Connectivity Toolbox (BCT), 
Rubinov & Sporns, 2010) on the average agreement matrix 
of each group at each timepoint until the re- clustered agree-
ment matrices converged into a single cluster solution (=con-
sensus partition) for that group at that timepoint.

2.9 | Second step: Determining the degree of 
global between- community interaction of the 
communities

We computed the participation coefficient (PC, (Guimerà & 
Ameral, 2005) adapted for weighted unthresholded networks 
(Rubinov & Spoons,  2011), which measures the degree to 
which a node is involved in the global between- community 
information integration. A node with a PC value near 1 is 
characterized by a high number of between- community con-
nections and qualifies as a connector hub that facilitates the 
between- community integration (Sporns & Betzel,  2016). 
When using connectivity matrices with positive and nega-
tive correlations, it is possible to compute a PC value for the 
negatively correlated edges of every individual node as well 
(Rubinov & Sporns, 2011). A node with a PC value near 1 
for its negatively correlated edges is segregated or decoupled 
from the global between- community information integration.

The absolute “negative” PC value of each node was sub-
tracted from its absolute “positive” PC value to generate a 
single value to describe a node's importance for the between- 
community communication. A positive result indicates that 
the node has predominantly an integrative role in the global 
between- community communication, a negative result means 
that the node is not participating in the global between- 
community communication. This combined PC metric is 

referred to as “global integration coefficient” (GIC) for the 
rest of the manuscript. To investigate how the communities 
interacted with each other, we computed the average GIC 
value of all nodes within a community.

2.10 | Statistics

Neither PC nor GIC was normally distributed, hence we 
used Wilcoxon Rank Sum tests for the group statistics. Non- 
parametric permutations as described in Bassett et al. (2008) 
were used to assess if differences in subnetwork configura-
tions between relapsers/abstainers versus controls could have 
been happened just by chance or were a unique and significant 
feature of the respective AUD subgroup. For that purpose, 
we created the following pairs at each timepoint: “controls 
versus relapsers,” “controls versus abstainers,” “abstainers 
versus relapsers.” The following steps were repeated for each 
of these pairs and timepoints separately. (a) The individu-
ally computed subject agreement matrices of the two groups 
were randomly re- allocated to one of the two groups in such a 
way that the original group size was kept. (b) A new average 
agreement matrix for each of the permutated groups was cal-
culated and (c) used as input for all the steps described in the 
section Defining a group-  and timepoint- specific subnetwork- 
configuration. The result was a new individual community 
configuration reflecting the community structure for each of 
the permutated groups. The steps a- c were repeated 5,000 
times. We counted how often a specific community of the 
original group from a certain timepoint could also be found in 
the 5,000 permuted community configurations. That number 
was used to compute the p value (number of observations/
number of permutations). Bonferroni corrections were used 
when appropriate.

3 |  RESULTS

3.1 | Demographics

As expected, both AUD groups had higher measures of life-
time drinking severity than the controls (Table 1). Relapsers 
and abstainers scored higher on BIS- 11 and BDI scores than 
the controls at baseline, but only relapsers still had higher 
BIS- 11 and BDI scores than the controls at follow- up. 
Abstainers showed higher state and trait anxiety scores than 
controls at both timepoints; relapsers also revealed higher 
state and trait anxiety scores than controls at baseline, but 
only higher trait anxiety at follow- up.

AUD participants with 3- months follow- up differed 
from those who dropped out (Table S1). Participants with 
follow- up had more years of education at either timepoint 
than dropouts. Abstainers without follow- up also had greater 
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substance use severities than those returning for study: they 
had consumed more monthly alcoholic drinks over lifetime 
and had a higher score on the Fagerström Test for Nicotine 
Dependence (both p = .039).

3.2 | Motion

The three groups did not differ significantly in motion arti-
facts or other physiological confounds (Table S2).

4 |  RESULTS OF THE GRAPH 
THEORY ANALYSES

4.1 | Description of the community 
configurations

At both timepoints, we found a three- community configura-
tion for controls and relapsers. Abstainers also had a three- 
community configuration at baseline, but at follow- up, 
abstainers had a four- community configuration (Figure 1). 
Community 1 in the three- community configuration (Figure 
1 = dark blue) covered the bilateral lateral and the medial supe-
rior frontal gyri, parts of the bilateral middle frontal gyrus ex-
tending into the lateral and medial orbitofrontal cortex, further 
covering the temporal pole, middle and inferior temporal gyrus 
with hippocampus and parahippocampal gyrus and extending 
into the angular gyrus and parts of the precuneus. On the brain's 
midline, community 1 covered the anterior and posterior cin-
gulate gyri, as well as large sections of the thalamus and basal 
ganglia. The brain regions covered by community 1 correspond 
approximately to regions belonging to the default mode net-
work (DMN) and the limbic network (Doucet et al., 2019).

Community 2 (Figure 1 = light green) included the most 
posterior parts of the superior and middle frontal gyri, the 
supplementary motor area, the sensorimotor cortex with the 
insular cortex, and the Rolandic operculum extending into the 
inferior parietal cortex and the middle cingulate cortex on the 
brain's midline. This community corresponds approximately 
to the regions of the executive control network (ECN), the 
dorsal attention network (DAN), the salience network (SN), 
and the sensorimotor network (SMN; Doucet et al., 2019).

Community 3 (Figure 1  =  red) encompassed the visual 
network (VIS; Doucet et al., 2019).

The most salient feature of the abstainers’ four- community 
configuration at follow- up was that a section of the DMN, 
the dorsal medial prefrontal cortex (dmPFC) subsystem 
(Andrews- Hanna et al., 2010) that consists of the dmPFC and 
the temporoparietal junction, had separated from the DMN 
and formed a new community (community 2a) together with 
regions corresponding to the DAN and SN (Figure 1). At 
follow- up, community 2 of the abstainers at baseline was 

reduced to the somatomotor regions only (now community 
2b).

4.2 | Modularity— Q value

At both timepoints, abstainers presented with higher Q values 
(baseline 0.2459; follow- up 0.2438) than relapsers (baseline 
0.2297; follow- up 0.2337) and controls (baseline 0.2296; fol-
low- up 0.2399). Although relapsers had a minimally higher 
Q value than controls at baseline and a lower Q than con-
trols at follow- up (Figure 2), none of the group differences 
reached statistical significance (p ≤ .05).

4.3 | Similarity of the community 
configurations: Percent of shared network 
allocation and results of the permutation testing

Controls, relapsers, and abstainers shared the community al-
location of 84%– 91% of the nodes at baseline and of 65%– 
91% of the nodes at follow- up (Figures S1a- f). Permutation 
tests (Table 2) evaluated if the exact combination of nodes 
forming a specific community found in one group could also 
have been observed by chance in one of the other two groups. 
Although three of the relapsers’ communities could also 
have been found by chance in one of the other two groups 
(for details see the three comparisons categorized as “ns” in 
Table 2), the permutation tests showed that the probability of 
observing the exact triple or quadruple combination of com-
munities of one group in one of the other two had a close- 
to- zero statistical probability (p < .002) at both baseline and 
follow- up.

4.4 | Differences in the community 
configurations: Allocation of the basal 
ganglia and thalamus nodes at baseline and 
follow- up

Figure 3 and Figures S1a, S1c in the supplement illustrate 
that at baseline, the allocation of the basal ganglia and thala-
mus nodes to community 2 instead of community 1 was the 
aspect in which the relapsers’ community configuration dif-
fered most prominently from those of abstainers and con-
trols. In relapsers, 89% of the basal ganglia and thalamus 
nodes were allocated to community 2, whereas most of these 
nodes in controls and abstainers were allocated to commu-
nity 1 (controls = 76%; abstainers = 87%). Permutation test-
ing demonstrated that these node allocations to community 
2 were significantly specific for relapsers. The probability 
to find that configuration by chance in controls was 0.16% 
(p = .0016) and 0.24% (p = .0024) in abstainers.
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F I G U R E  1  Group-  and timepoint specific community configurations and within- group change in percent: We found a 3- community configuration 
for all three groups at timepoint 1 and for the controls and relapsers at timepoint 2. The abstainers underwent a reconfiguration in the three months interval 
and presented with a 4- community configuration at timepoint 2. ABS = abstainers; LDC, (light drinking) controls; REL = relapsers, TP = timepoint. The 
color code is as follows: dark blue = community 1; light green = community 2/2b; red = community 3; dark green = community 2a
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4.5 | Specific features of the four- community 
configuration of the abstainers at follow- up

Figures S1e, S1f in the supplement indicate that the alloca-
tion of one of the DMN’s subsystems, the dmPFC subsystem, 
to community 2a could be a specific feature of abstainers at 

follow- up. Using permutation statistics, we confirmed that 
the grouping of the dmPFC subsystem with the ECN, SN, 
and DAN into a separate community 2a was specific for ab-
stainers. The probability to observe this abstainer- specific 
configuration by chance in controls was 0.04% (p = .0004) 
and in relapsers 0.02% (p = .0002).

F I G U R E  2  Group-  and timepoint- specific maximum Q values. The Q values are shown on the y axis, the three groups (red = controls (LDC); 
orange = relapsers (REL); yellow = abstainers (ABS)) and the timepoints (TP) are shown on the x axis. The boxplots show the median value as a 
line and the mean value as a cross. The body represents the interquartile distance and the whiskers the lowest and highest Q value. At timepoint 1, 
controls and relapsers had approximately the same Q values (controls versus relapsers p = .94). Abstainers had higher Q values than the other two 
groups but not significantly higher (abstainers versus controls p = .27; abstainers versus relapsers p = .24). At timepoint 2, relapsers had minimally 
lower Q values than controls (controls versus relapsers p = .72). Abstainers had again the highest Q values but not significantly higher (abstainers 
versus controls p = .59; abstainers versus relapsers p = .53) and not as high as at timepoint 1

T A B L E  2  Results of the permutation statistics– the community configurations are similar but still significantly specific for each group at each 
timepoint

TP1

Community 1 Community 2 Community 3

REL versus LDC 0% (p < .0002) 0.02% (p = .0006) 0.02% (p < .0006)

ABS versus LDC 0% (p < .0002) 0.04% (p =.0012) 0% (p < .0002)

REL versus ABS 0% (p < .0002) 0% (p < .0002) 2.96% (ns)

ABS versus REL 0% (p < .0002) 0.42% (p = .0126) 0.06% (p = .0018)

TP 2

Community 1 Community 2 Community 3

REL versus LDC 0.52% (p = .0156) 0% (p < .0002) 5.2% (ns)

REL versus ABS 3.36% (ns) 0.02% (p = .0006) 0.82% (p = .0246)

Core- Community 1 Community 2a Community 2b Community 3

ABS versus LDC 0% (p < .0002) 0% (p < .0002) 0% (p < .0002) 0% (p < .0002)

ABS versus REL 0% (p < .0002) 0% (p < .0002) 0.12% (p = .0048) 0.92% 
(p = .0368)

Note: The first column of the table specifies the two groups whose data were permutated, e.g, REL versus LDC at TP1 means that we tested how probable it is that 
the relapser- specific community configuration at timepoint 1 could have been observed by chance in the controls at timepoint 1. The first number is the frequency in 
percent that the community configuration was observed across the 5,000 iterations, the corresponding p value (Bonferroni corrected) is given in brackets. For example, 
the exact node combination of community 2 in relapsers versus controls at timepoint 1 was only detected in 0.02% of the 5,000 iterations. A percentage that small 
corresponds to a p value = 0.0006 thereby community 2 is significantly specific for relapsers at timepoint 1.
Abbreviations: ABS, abstainers; LDC, light drinking controls; REL, relapsers; TP, timepoint.
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As a direct result of the allocation of the dmPFC subsys-
tem to the abstainer- specific community 2a, the abstainers 
also showed a special allocation of the eBRS regions at fol-
low- up (Figure 4). Whereas 87%– 94% of the eBRS nodes in 
controls and relapsers were allocated to community 1 and 
only 6%– 13% to community 2 (Table 3), 19% of the eBRS 
nodes in abstainers was allocated to the new community 
2a and only 79% of the nodes to the new, reduced commu-
nity 1. These eBRS region allocations were unique for the 
abstainers’ four- community configuration at follow- up, and 
permutation testing showed that they were uniquely specific 
for the abstainers and could only have been found with a 0.1% 
chance (p =.001) in one of the other two groups.

4.6 | Results for the “global integration 
coefficient” (GIC): Degree of integration 
between communities

We did not observe GIC differences between controls and ab-
stainers at baseline (Table  4 and Figure 5). In both groups, 
community 1 was characterized by a negative average GIC, 
indicating segregation from the other two communities. In con-
trast, the relapsers at baseline showed a positive GIC value for 
community 1. Subsequent Wilcoxon Sum Rank tests confirmed 

that the relapsers’ community 1 at baseline was significantly 
over- integrated in the between- community- interaction com-
pared to both controls and abstainers. Additionally, community 
2 showed a negative GIC value in the relapsers at baseline but 
not in the controls and abstainers, indicating segregation of com-
munity 2 from the between- community- interaction in relapsers. 
The follow- up Wilcoxon Sum Rank tests confirmed that com-
munity 2 was de- connected in relapsers compared to controls 
and abstainers. The group- differences in between- community 
integration observed for relapsers at baseline were no longer 
present at follow- up when relapsers showed the same GIC pat-
tern as the controls (negative GIC value for community 1 and 
positive GIC value for community 2). Abstainers showed similar 
between- community integration patterns at both timepoints. The 
abstainer- specific reduced communities 1 and 2a were both char-
acterized by negative GIC values, indicating segregation from 
their global between- community interactions. Due to the abstain-
ers’ different community configurations at follow- up, it was not 
possible to compare them directly to the controls or relapsers.

5 |  DISCUSSION

The aim of this study was to test if modularity (Q), re-
cently suggested as a biomarker for brain plasticity (Gallen 

F I G U R E  3  Percentage of basal ganglia and thalamus nodes allocated to one of the three communities in the controls (LDC, left), relapsers 
(REL, middle), and abstainers (ABS, right) by timepoint (TP). Most prominent is the different community allocation of the relapsers at timepoint 
1 to that of the controls and abstainers at timepoint 1. Most of the controls’ and abstainers’ basal ganglia and thalamus nodes were allocated to 
community 1 at timepoint 1 (dark blue bars). In contrast, the relapsers’ basal ganglia and thalamus nodes were more highly interconnected with 
community 2 nodes (light green bars). At timepoint 2, after the relapsers had started consuming alcohol again, the relapsers’ community allocation 
resembled that of the controls
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& D’Eposito,  2019), and the corresponding group- specific 
community configurations can help explain features of the 
intrinsic brain organization in individuals with AUD that are 
associated with sustained abstinence or relapse after treat-
ment. Such markers may have clinical utility in predicting 
relapse in treatment seekers.

We found that abstainers at the 1- month baseline and 
3 months later had (non- significantly) higher Q values than 
controls and relapsers, indicating a higher potential for brain 

plasticity. Controls and relapsers, who had similar Q values 
at both timepoints, had approximately the same potential 
for neuroplasticity. All three groups had a similar three- 
community configuration at baseline, sharing the commu-
nity allocation of 80%– 90% of the nodes. Despite the visual 
resemblance, the group- specific community configurations 
were unique, since none of them could have been found by 
chance in any of the other two groups. The most prominent 
difference between the groups across time resulted from a 

F I G U R E  4  Abstainers (ABS) show a different allocation of the extended brain reward system (eBRS) at timepoint (TP) 2 as a result of the 
re- configuration. The top row shows the 9 regions of the eBRS with 1 = dorsolateral prefrontal cortex (PFC), 2 = orbital PFC; 3 = temporal pole; 
4 = ventromedial PFC; 5 = hippocampus; 6 = amygdala; 7 = anterior insula; 8 = nucleus accumbens, 9 = anterior thalamus. The other rows show 
the abstainers’ 3- community configuration at timepoint 1 (middle), and the 4- community configuration at timepoint 2 (bottom). At timepoint 1, 
the dorsolateral prefrontal eBRS region was allocated to community 1 and community 2; at timepoint 2, the dorsolateral prefrontal region was 
allocated to the new community 2a that we showed to be significantly specific to the abstainers at that timepoint. Brain regions belonging to the 
eBRS are highlighted in transparent violet to allow a better mapping of the eBRS region to the community structure

Community 1 Community 2
Core 
Community 1

Community 
2a

LDC at TP1 93.55 (58) 6.45 (4) — — 

LDC at TP2 90.32 (56) 9.68 (6) — — 

REL at TP1 87.09 (54) 12.91 (8) — — 

REL at TP2 93.55 (58) 6.45 (4) — — 

ABS at TP1 93.55(58) 6.45 (4) — — 

ABS at TP2 — — 79.03 (49) 19.35 (12)

Note: The number of the total 62 eBRS nodes within each of the different communities is listed in brackets.
Abbreviations: ABS, abstainers; LDC, light drinking controls; REL, relapsers; TP, timepoint.

T A B L E  3  Community allocation of 
the 62 nodes constituting the extended brain 
reward system (eBRS) in percent
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re- configuration in the abstainers between baseline and fol-
low- up. Whereas at follow- up, controls and relapsers pre-
sented with almost the same three- module- configuration as 
at baseline, abstainers showed an additional fourth module, 
reducing the shared community allocation to 60%– 90% of the 
nodes.

Relapsers also underwent some degree of re- configuration 
that manifested itself in a change in the allocation of caudate 
and thalamus nodes from community 2 at baseline to com-
munity 1 at follow- up. In controls and abstainers, those nodes 
were primarily allocated to community 1 at both timepoints. 
This indicates that these regions interacted with different in-
trinsic connectivity networks (ICN) in relapsers than in con-
trols and abstainers 1 month into abstinence. At follow- up, 
after relapsers had started consuming alcohol again, their 
thalamus and caudate nodes were also allocated to commu-
nity 1, just as in controls and abstainers. Finally, relapsers 
revealed distinct differences in how the three communities 
globally interacted with each other at baseline but not any-
more 3 months later. In the following sections, we will dis-
cuss the most important findings and their interpretations in 
more detail.

5.1 | Community re- configuration in the 
abstainers from baseline to follow- up

We found a similar three- community configuration in all 
three groups at baseline (DMN and limbic network allocated 
to community 1; ECN, DAN, SN, and SMN allocated to 
community 2; VIS constituting community 3). At follow- up, 
controls and relapsers still presented with a three- community 
configuration, whereas abstainers revealed a four- community 
configuration: the dmPFC subsystem was now separated 
from the core DMN and merged with the ECN, SN and DAN 
into a new community 2a, while the SMN became a new in-
dependent community 2b.

The DMN consists of a group of distinct brain regions 
that generally show higher activity when a person is not 
actively engaging with the external world but rather focus-
ing on an internal flow of thoughts or mental images. In 
contrast to the view that the DMN always has the high-
est intrinsic activity at rest (Fox et al., 2006), studies have 
recently demonstrated that intrinsic activity, measured by 
functional connectivity within and between intrinsic net-
works, fluctuates and that the spatial extent of the networks 

F I G U R E  5  Global Integration Coefficient (GIC) by group and timepoint for the different communities. The solid line in each box indicates 
the group median value, the cross indicates the group mean value, the whiskers indicate the lowest and the highest GIC values, the brackets 
indicate significant group differences in GIC. The community specific GIC of relapsers (REL, middle) at timepoint (TP) 1 significantly differs 
from that of controls (LDC, left) and abstainers (ABS, right) at timepoint 1. Community 1 of the abstainers and controls showed negative mean 
GIC values indicating segregation from the other two communities in these two groups, the relapsers’ community 1 was characterized by global 
integration with the other two communities as indicated by positive mean GIC values of that community. In contrast, while community 2 showed 
global integration in the controls and abstainers, the same community was characterized by segregation in the relapsers at timepoint 1. The group 
differences in global integration of the communities between relapsers and the other two groups were significant at timepoint 1 but not anymore at 
timepoint 2



   | 2935MULLER and MEYERHOFF

varies over time. For example, Chen et al. (2018) showed 
that the brain dynamically traverses two distinct activity 
patterns during unconstrained rest: 60% of the time the 
brain shows a pattern that closely resembles the DMN, but 
for 40% of the time the brain shows a pattern very similar 
to that of a task- positive network. This network shows high 
levels of activity during active goal- driven behavior (Fox 
et al., 2006), and it is composed of ECN, DAN, ventral 
attention network, SN, motor network, auditory network, 
VIS, as well as a part of the DMN (Chen et al., 2018). Di 
and Biswal (2015) compared states of low versus high in-
trinsic activity in the DMN, SN, and motor networks. They 
found that phases of high DMN activity were character-
ized by decreased connectivity between DMN regions but 
increased connectivity between regions belonging to the 
fronto- parietal control network. In contrast, during phases 
of high SN activity, DMN and fronto- parietal control net-
work showed higher inter- network connectivity.

Based on these studies, the re- configuration found in 
abstainers at follow- up indicates that they were in a more 
controlled state of deliberate mind- wandering than controls 
and relapsers. Deliberate is different from spontaneous mind- 
wandering insofar as the latter happens involuntarily and is 
experienced as interfering with one's intentions, whereas de-
liberate mind- wandering is experienced as a voluntary and 
controlled train of thought in accordance with one's intentions 
(Golchert et al., 2017). As such, deliberate mind- wandering 
requires integration of DMN and ECN (Smallwood et al., 
2012; Golchert et al., 2017) in order to exert a top- down 
control to shield the abstract flow of thoughts from external 
disturbances. Strong and stable coupling of ECN and DMN 
(as reflected in a subsystem of DMN interacting most of the 
time and more intensely with ECN than with its own core net-
work), is exactly what the abstainers exhibited at follow- up.

Abstainers at follow- up showed an additional feature 
shown specifically to deliberate mind- wandering: the internal 
thought process has to be shielded from irrelevant input from 
the outside by a temporary decoupling of the brain regions 
processing perceptual information (Smallwood et al., 2012). 
Evidence of such decoupling can be seen in our finding that 
communities 1 and 2a in abstainers showed an altered global 
between- community integration at follow- up: While commu-
nity 2 had shown between- community integration with com-
munity 3 at baseline (i.e., both communities had positive GIC 
values), community 1 and the new community 2a were both 
segregated (i.e., they had negative GIC values) from commu-
nities 2b 3 at follow- up.

The re- configuration of the community structure in the 
abstainers at follow- up had also consequences for the inte-
gration of the eBRS within the community structure. At base-
line, all three groups showed an almost identical allocation 
(i.e., >87% of the eBRS nodes were allocated to community 
1). At follow- up, the dorsolateral prefrontal part of the eBRS 

in the abstainers was entirely re- allocated to the new fourth 
community composed of the dmPFC subsystem, the ECN, 
DAN, and SN. We suggest that the re- allocation of the eBRS 
might be an indicator of the abstainers’ executive control over 
the eBRS being so intense/strong during the first months 
into sobriety that it re- shaped the intrinsic organization of 
their brains, while they successfully maintained sobriety for 
4 months.

5.2 | Caudate and thalamus show different 
resting- state network interactions in relapsers 
than in abstainers and controls

Alves et al. (2019), using an advanced coregistration based 
on functional alignment, recently showed that thalamus and 
basal ganglia, particularly caudate nucleus, belong to the 
DMN. Their subsequent tractography analyses not just sup-
ported these functional findings but also revealed a central 
role of the thalamus within the DMN for information inte-
gration and resilience. In line with these findings, controls 
and abstainers of our study showed a stable allocation of the 
thalamus and the basal ganglia to the DMN (community 1), 
at both timepoints. In contrast, in relapsers at baseline, most 
thalamic nodes were assigned to community 2 consisting of 
the ECN, DAN, SN, and SMN. This suggests a higher inter- 
connectedness of the thalamus and the caudate nucleus with 
these four ICNs in relapsers than with the DMN. Taken to-
gether, we interpret the altered allocation of thalamus and 
caudate nucleus in relapsers at baseline as an indicator of 
functional de- differentiation.

5.3 | Different global between- community 
integrations in the relapsers at baseline: An 
early indicator of future relapse?

Abstainers and controls showed the same global- between- 
community integration pattern at baseline: community 1 
was segregated or decoupled (negative GIC values) from the 
global between- community crosstalk, while communities 2 
and 3 (positive GIC values) interacted with each other. In 
contrast, relapsers showed the reverse pattern: community 1 
(usually segregated from primary ICNs like the visual, audi-
tory or motor network) was coupled with community 3, while 
community 2 (containing three important ICNs involved in 
top- down control: the ECN, SN, and DAN) was decoupled 
from the other two communities. Thus, we postulate that in 
the abstainers and controls, the intrinsic brain network archi-
tecture allowed exercising top- down control with minimal 
reconfiguration and energetic costs whenever external events 
demanded so, however, the relapsers would need to substan-
tially reconfigure their intrinsic brain configuration in order 
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to exercise effective top- down control (Bell et  al.,  2014). 
Additionally, the relapsers’ functional brain organization 
would require more energy- demanding effort to maintain 
top- down control during the first month of sobriety, when 
top- down control is essential for maintaining abstinence.

6 |  LIMITATIONS

The relatively small number of abstainers at both timepoints 
and the unbalanced group sizes are certainly the most impor-
tant limitations of our study. The main reason for the abstain-
ers’ small sample size is the notoriously high relapse rate in 
AUD (40%– 60%) within the first 6  months after treatment 
in combination with the rigorous exclusion of data sets with 
motion artifacts and other noise to guarantee that our findings 
were based on data of highest quality. Sample size and the 
VA as primary recruitment source were also reasons for our 
inability to investigate potential sex differences.

Furthermore, these are cross- sectional analyses of AUD 
patients 1 month into treatment and 3 months later. We found 
characteristic differences in intrinsic network organization 
early in treatment with the potential to predict future relapsers 
in a different cohort. However, we do not know whether the 
intrinsic network organization of abstainers and relapsers 
already differed at the start of their treatment (i.e., before 
baseline) or whether the differences resulted from different 
neuroplastic alterations during the first month of sobriety. We 
also are unable to ascertain whether these differences in the 
intrinsic network organization observed in abstainers are just 
transient snap- shots typical for an early timepoint in a life- 
long effort to stay sober, whether their intrinsic network or-
ganization will become more similar to that of controls over 
time, or whether the distinct four- community configuration 
in abstainers is just the brain configuration necessary to stay 
sober for the rest of their lives. Well- timed longitudinal as-
sessments could address these limitations in the future.

7 |  CONCLUSIONS

Relapsers as early as 1 month into treatment have indications 
of a maladaptive community configuration. The commu-
nity containing the DMN, an ICN that is usually character-
ized by de- coupling from primary ICNs like the auditory or 
visual networks, was over- integrated with the visual com-
munity, while the community containing the ICNs important 
for top- down control was de- connected from the between- 
community integration. This community configuration is un-
suitable for situations in which the ability to initiate active 
top- down control over urges to drink is essential. An unex-
pected study finding was that successful recovery from AUD, 
as seen in abstainers, is not associated with re- gaining the 

intrinsic brain organization typical for controls, but with a re- 
configuration resulting in a functional brain organization sig-
nificantly different from that of controls. A distinctive feature 
of the abstainers’ re- configured intrinsic brain organization 
was the stronger functional coupling of a DMN subsystem, 
the dmPFC, and parts of the eBRS with ICNs subserving top- 
down control and attention so that these networks formed an 
additional separate community in abstainers.
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