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Abstract: Functionalized gold nanoparticles (AuNPs) have been successfully used in many fields
as a result of having low cytotoxicity, good biocompatibility, excellent optical properties, and their
ability to target cancer cells. Here, we synthesized AuNP carriers that were modified by hyaluronic
acid (HA), polyethylene glycol (PEG), and adipic dihydrazide (ADH). The antitumor drug dox-
orubicin (Dox) was loaded into AuNP carriers and attached chemically. The Au nanocomposite
AuNPs@MPA-PEG-HA-ADH-Dox was able to disperse uniformly in aqueous solution, with a di-
ameter of 15 nm. The results of a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide
(MTT) assay indicated that AuNP carriers displayed very little toxicity toward cells in high doses,
although the antitumor properties of Au nanocomposites were significantly enhanced. Cellular
uptake experiments demonstrated that AuNPs modified with hyaluronic acid were more readily
ingested by HepG2 and HCT-116 cells, as they have a large number of CD44 receptors. A series
of experiments measuring apoptosis such as Rh123 and annexin V-FITC staining, and analysis of
mitochondrial membrane potential (MMP) analysis, indicated that apoptosis played a role in the
inhibition of cell proliferation by AuNPs@MPA-PEG-HA-ADH-Dox. Excessive production of reactive
oxygen species (ROS) was the principal mechanism by which the Au nanocomposites inhibited cell
proliferation, leading to apoptosis. Thus, the Au nanocomposites, which allowed cell imaging in
real-time and induced apoptosis in specific cell types, represent theragnostic agents with potential
for future clinical applications in bowel cancer.
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1. Introduction

Gold nanoparticles (AuNPs) are used in cancer diagnosis and biological imaging
because of their excellent optical properties, low cytotoxicity, and good biocompatibil-
ity [1–5]. As potential drug carriers, AuNPs have received considerable attention by many
researchers [6–10], as it has been frequently reported that they can induce programmed
cell death (i.e., apoptosis) [11,12]. Furthermore, as drug carriers, AuNPs can transport
imaging and therapeutic agents, providing the possibility of diagnosis, treatment, and
monitoring therapeutic progress, while AuNPs themselves do not participate in diagnosis
or therapy [13–17]. However, AuNPs are rarely reported as agents that can inhibit cell
proliferation and achieve both fluorescence-enhanced cell imaging and specific cell tar-
geting. Therefore, improvements in functionalized AuNPs represent an important trend
in cancer treatment research [18]. In the present study, we aimed to design a sensitive
and specific agent using AuNPs that inhibits cell proliferation and allows fluorescence
enhanced cell imaging.
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Hyaluronic acid (HA) is a macromolecule from a natural source, widely used in
biomedical applications due to its good biocompatibility, biodegradability, and low toxicity,
especially in cosmetics, treatments for arthritis, and drug delivery [19–24]. Recent studies
have demonstrated that the surface of cancer cells over-express the CD44 receptors on their
surface, to which HA strongly binds [25–30]. Therefore, HA can be utilized as a target
ligand for tumor-targeted drug delivery [31–35]. The structure of HA can be modified to
produce a variety of derivatives, which not only maintains its stability, but also enhances
its bio-compatibility. HA has an abundance of hydroxyl and carboxyl groups, representing
multiple sites for chemical modification [36,37]. Therefore, combining AuNPs with HA
represents a strategy for specifically targeting the high concentrations of CD44 on the
surface of tumor cells.

Polyethylene glycol (PEG), often utilized as an adhesive, is non-toxic, highly water
soluble, and is approved for use both as a food and in a variety of clinical applications by
the U.S. Food and Drug Administration [38–40]. When combined with organic compounds,
PEG can enhance the biocompatibility and increase the solubility of poorly water-soluble
compounds [41–43]. It can inhibit the adsorption of transaminase proteins, inhibiting their
clearance from blood circulation when modified with PEG, prolonging their half-life in
blood, and affecting the transport of drug delivery systems [44–47]. Therefore, PEG has
been widely studied in the fields of controlled drug release, wound healing, and drug
delivery [48–52]. Doxorubicin (Dox) is an anti-tumor drug that is clinically used for the
treatment of acute myelogenous leukemia, acute lymphoblastic leukemia, Hodgkin’s and
non-Hodgkin’s lymphoma, breast cancer, and other malignant tumors [53–58]. However, it
displays a low utilization rate, causes severe adverse reactions, and an inability to effectively
reach the sites of tumors [59–62]. Although AuNPs can disperse well in aqueous solution,
their duration in the circulation is not sufficiently long and they easily agglomerate [63–66].
To overcome these shortcomings, Dox, HA, and AuNPs were combined for drug deliv-
ery, having improved dispersion and enhanced absorption characteristics, allowing the
transport into cells for reduced toxicity and side effects with enhanced treatment effects.

In the present study, Au nanoparticles with a diameter of 15 nm were synthesized
by boiling, and their surfaces modified by adsorption, yielding Au@MPA. PEG-HA was
chemically bonded then modified and linked to ADH to obtain PEG-HA-ADH, which was
then chemically bonded to the AuNPs to yield Au@MPA-PEG-HA-ADH (Scheme 1). The
AuNPs were loaded with the anti-tumor drug Dox and retained using hydrazone bonds
to obtain the final compound Au@MPA-PEG-HA-ADH-Dox (Scheme 1), which displayed
good stability in aqueous solution. The antitumor properties of the Au nanocomposite
were evaluated using an MTT assay and their cellular uptake observed using a fluorescent
inverted microscope. Cell apoptosis induced by the Au nanocomposites was identified
by flow cytometry and high-content imaging. Cellular uptake experiments demonstrated
that the Au nanocomposites were preferentially ingested by HepG2 and HCT-116 cells that
expressed a large number of CD44 receptors.
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2. Results and Discussion
2.1. Synthesis and Characterization

First, the ligand PEG-HA-ADH was synthesized through chemical synthesis (Scheme 2),
while the 1Hydrogen-Nuclear Magnetic Resonance (1H NMR) spectrum (Figure S2) and
Fourier transform infrared (FTIR) spectrum (Figure S3) were used to evaluate the reaction.
From the 1H NMR spectrum, a peak relating to an amide bond had a chemical shift of
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11, indicating that the compound PEG-HA-ADH was successfully obtained. Au particles
with a diameter of 15 nm were obtained by boiling, after which PEG-HA-ADH ligands
were grafted onto the surface with chemical bonds, obtaining the modified form of AuNPs,
Au@MPA-PEG-HA-ADH. Furthermore, the AuNPs were loaded with the anti-tumor drug
Dox and immobilized with hydrazone bonds to obtain the final compound Au@MPA-
PEG-HA-ADH-Dox, which had excellent stability in aqueous solution. The AuNPs and
Au nanocomposites were characterized by transmission electron microscopy (TEM), FTIR
spectrum (Figure S4), ultraviolet and visible spectrophotometry (UV–Vis), and fluorescence
spectroscopy. The FTIR spectrum of Dox is displayed in Figure S5. As shown in Figures
S3–S5, Au@MPA-PEG-HA-ADH-Dox had peaks of PEG, HA, ADH, and Dox. Therefore, it
is probable that Dox was successfully incorporated into the MPA-HA-PEG-ADH modified
Au nanoparticles. As can be observed from Figure 1, TEM indicated that Au@MPA
exhibited slight aggregation behavior. After modification with HA and PEG, the AuNPs
exhibited good dispersibility. After loading with Dox, the Au nanocomposites retained
good dispersibility, although the particle size became quite large while a film had formed
on the surface of the AuNPs, indicating that they had been modified. Dispersion of the
particles was measured, as shown in Figure S6, where the variation in the dispersion of
the nanoparticles after a range of resting times was displayed. Only Au@MPA displayed
strong aggregation. After modification with HA and PEG, the AuNPs displayed excellent
dispersibility, a characteristic that was retained after standing for 24 h.
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Figure 1. Representative transmission electron microscopy (TEM) images of (a) Au@MPA, (b) Au@MPA-HA-PEG-ADH,
and (c) Au@MPA-HA-PEG-ADH-Dox.

Optical properties of the nanoparticles were characterized by UV–Vis spectroscopy.
Figure 2 demonstrates that the gold nanoparticles exhibited an ultraviolet absorption peak
at 520 nm, and absorption at 530 nm after modification with 3-mercaptopropionic acid
(MPA). Figure S7 displays the UV–Vis spectrum of Dox. The ultraviolet absorption peak
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of Dox shifted from 480 nm to 530 nm following its incorporation into the NPs, while
the ultraviolet absorption peak of gold was red-shifted from 520 nm to 680 nm. The
UV absorption peaks of all substances are shown in the final products Au@MPA-PEG-
HA-ADH-Dox. Therefore, it is likely that Dox was successfully incorporated into the
MPA-HA-PEG-ADH modified Au nanoparticles.
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2.2. Cytotoxicity Testing

Cytotoxicity was measured using an MTT assay. Calculated IC50 values of the original
and modified AuNPs are displayed in Table 1. It can be seen that the unmodified AuNPs
inhibited the cell growth of normal and tumor cells to only a small extent. The ligand
PEG-HA-ADH exhibited little toxicity toward cells. The IC50 value of Au@MPA-PEG-HA-
ADH was lower than that of Au@MPA and PEG-HA-ADH because the toxicity of the
nanoparticles increased with the increase in chain length. However, Dox loaded AuNPs
strongly inhibited the cell growth of the tumor cells, especially AuNPs loaded with Dox,
which displayed greater toxicity to HCT-116 and HepG2 cells than the other cells tested.
This was because the surface of the HTC-116 and HepG2 cells had large numbers of
CD44 receptors, which specifically bind HA. Conversely, Dox-loaded AuNPs inhibited cell
growth to only a limited degree when cultured with normal HL-7702 cells. This indicates
that AuNPs loaded with Dox displayed specific cancer cell selectivity.

Table 1. IC50 of gold nanoparticles (AuNPs) before and after modification.

Compounds IC50 (µg/mL)

HCT-116 Hela HL-7702 HepG2

Au 643.1 ± 2.6 667.6 ± 1.9 690.9 ± 2.1 632.3 ± 3.1
Au@MPA 513.5 ± 1.5 536.5 ± 2.6 596.6 ± 3.6 497.1 ± 1.4

Au@MPA-PEG-HA-ADH 325.3 ± 1.1 362.1 ± 1.5 453.8 ± 1.9 329.6 ± 2.5
Au@MPA-PEG-HA-Dox 183.6 ± 2.3 147.2 ± 1.7 168.1 ± 2.1 169.4 ± 1.3

Au@MPA-PEG-HA-ADH-Dox 54.6 ± 3.2 86.3 ± 2.9 103.9 ± 2.0 67.3 ± 1.0
Dox 89.3 ± 1.3 91.6 ± 1.6 77.9 ± 1.2 80.6 ± 2.3

PEG-HA-ADH 783.2 ± 3.4 780.1 ± 1.4 806.1 ± 1.8 764.3 ± 2.0

2.3. Cellular Uptake In Vitro

Intracellular uptake of NPs was determined by confocal laser scanning microscopy.
First, the intracellular uptake of Au@MPA-PEG-HA-ADH-Dox and Au@MPA-PEG-HA-
Dox was compared in HepG2 cells. As shown in Figure 3, Au@MPA-PEG-HA-ADH-Dox
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was absorbed by the cells to a greater degree than Au@MPA-PEG-HA-Dox. This was
because Dox attached to Au@MPA-PEG-HA-ADH nanoparticles via hydrazone bonds,
which break easily to release Dox in an acidic environment inside specific cells. Therefore,
Au@MPA-PEG-HA-ADH-Dox was selected for investigation in subsequent experiments.
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The concentration-dependency of cellular uptake of Au@MPA-PEG-HA-ADH-Dox
was measured. As shown in Figure 4, intracellular uptake and distribution was evaluated
in Au@MPA-PEG-HA-ADH-Dox at different concentrations. The fluorescence intensity
increased as the concentration of Au@MPA-PEG-HA-ADH-Dox increased. Au@MPA-
PEG-HA-ADH-Dox was ingested by cells, becoming distributed within the cell cytoplasm.
Subsequently, the intracellular uptake of Au@MPA-PEG-HA-ADH-Dox in different cells
was assessed. Their intracellular uptake in different cells was evaluated after 6 h (Figure 5).
Au@MPA-PEG-HA-ADH-Dox was ingested more by HCT-116 and HepG2 cells than other
cell types, probably due to the large number of CD44 receptors on the cell membranes
compared with other cells. Thus, hyaluronic acid preferentially targeted HCT-116 and
HepG2 cells.
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2.4. Apoptosis Study

It is well known that annexin V-FITC detects the early stages of apoptosis. The
capability of Dox-loaded AuNPs to induce apoptosis was evaluated using annexin V-FITC
staining by flow cytometry. As shown in Figure 6, the percentage of apoptotic cells in those
cultured with Dox-loaded AuNPs was 47.15%, while the percentage of apoptosis induced
by Dox alone was 43.06%. The percentage of apoptotic cells was significantly greater in
response to the Dox-loaded AuNPs than the control cells (2.49%). Thus, Dox-loaded AuNPs
were found to be more effective at inducing apoptosis.

2.5. Effect of Dox-Loaded Gold Nanoparticles (AuNPs) on Cell Mitochondrial Membrane Potential

Dox-loaded AuNP-mediated mitochondrial dysfunction in HepG2 cells was examined
by staining the cells with JC-1 dye then analysis by flow cytometry. As shown in Figure 7,
as the concentration of Dox-loaded AuNPs increased, green fluorescence moved to the right
and the red fluorescence moved to the left. This indicates that Au@MPA-PEG-HA-ADH-
Dox caused the mitochondrial membrane potential to decrease, while higher concentrations
caused a greater decrease in membrane potential. Compared with Dox-loaded AuNPs,
Dox alone did not cause a greater decrease in membrane potential. In particular, Dox
caused a higher ratio of red/green fluorescence than Dox-loaded AuNPs. In other words,
Dox-loaded AuNPs induced apoptosis to a greater extent than Dox alone. Compared with
the control group, the red/green ratio in cells treated with Dox-loaded AuNPs increased
significantly, suggesting that Dox-loaded AuNPs were capable of inducing apoptosis.
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2.6. Change in Intracellular Reactive Oxygen Species (ROS)

The mechanism of action of 2,7-dichlorofluorescein (H2DCF-DA) is itself not one that
is fluorescent. When entering cells, the change in reactive oxygen species (ROS) within the
intracellular environment changes the color of dichlorofluorescein. When reactive oxygen
species increase in concentration, H2DCF-DA is converted to DCF, which has a green
fluorescence. The intracellular levels of ROS in HepG2 cells cultured with Au@MPA-PEG-
HA-ADH-Dox at concentrations of 20, 50, and 100 µg/mL for 6 h are displayed in Figure 8.
As the concentration of AuNPs increased, intracellular ROS increased correspondingly.
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3. Materials and Methods
3.1. Materials

All reagents and solvents were purchased from commercial suppliers and used with-
out further purification. HAuCl4 (98%) and 3-mercaptopropionic acid (MPA; 98%) were
purchased from Sigma-Aldrich, while polyethylene glycol (PEG 2000) (N/A), hyaluronic
acid (HA; 403, 97%), adipic dihydrazide (ADH; 98%), 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide (EDC; 99%), and N-hydroxy succinimide (NHS; 98%) were purchased from
J&K Scientific, while doxorubicin (Dox; 97%) was from Aladdin. Human normal hepa-
tocytes (QSG-7701), human hepatocellular liver carcinoma cells (HepG2), cervical cancer
cells (HeLa), and colon cancer cells (HCT-116) were purchased from the Chinese Academy
of Sciences Shanghai Cell Bank.

3.2. Instruments
1H NMR spectra were recorded using a Bruker AV-400 spectrometer. An Arrary Scan

VTI HCS 600 (Thermo, USA) was used for live-cell imaging. Analytical experiments were
conducted using a multi-function microplate reader (BioTek, Winooski, VT, USA), and
Fourier transform infrared (FTIR) spectra were measured with a NEXUS FTIR spectrom-
eter (Thermo Nicolet Co., Santiago, MA, USA). Analytical instrumentation included a
Varian Cary 300 BIO UV spectrophotometer, LCQDECA-XP mass spectrometer (Thermo,
Santiago, MA, USA), DMi8 inverted fluorescence microscope (Leica, Weztlar, Germany),
FACSCalibur flow cytometer (Becton Dickinson & Co., Franklin Lakes, NJ, USA), R1001-N
low-temperature rotary evaporator (Zhengzhou Changcheng Branch Industry and Trade
Co., Ltd., Zhengzhou, China), JEOL JEM-200CX TEM, and fluorescence spectrophotometer
(Agilent, Palo Alto, CA, USA).

3.3. Synthesis of Au

A 156 µL volume of 150 mM HAuCl4 was dissolved in 80 mL of triple-distilled water
then heated in the dark and boiled for 10 min. Sodium citrate solution (92 mg dissolved in
3 mL of triple-distilled water) was then added. The solution was stirred while boiling for
30 min, after which it was cooled to room temperature. Particles of Au were collected by
centrifugation at 8000 rpm for 15 min, which were then resuspended in 2 mL triple-distilled
water, then stored in a refrigerator at 4 ◦C.
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3.4. Synthesis of Au@MPA

The gold nanoparticles fabricated in the previous step were uniformly suspended
in 50 mL of triple-distilled water, the pH of which was adjusted to 11. Three mL of MPA
solution in ethanol (0.01 M) were added and allowed to react for 2 h, which yielded
Au@MPA that was collected by centrifugation at 9000 rpm for 5 min.

3.5. Synthesis of PEG-HA-ADH

HA (1.0 g, 2.5 mmol) was dissolved in 30 mL phosphate buffered saline (PBS) (pH = 5.0)
in a 250 mL round bottomed flask, then ADH (0.1742 g, 1 mmol), EDC (0.192 g, 1 mmol),
and NHS (0.119 g, 1 mmol) were added and reacted at 25 ◦C for 24 h within an atmosphere
of nitrogen for protection. After completion of the reaction, PEG (0.040 g, 0.02 mmol), EDC
(0.096 g, 0.5 mmol), and NHS (0.059 g, 0.5 mmol) were added to continue the reaction
for a further 24 h within nitrogen for protection. At the end of the reaction, the products
were purified using dialysis, with PEG-HA-ADH obtained by vacuum distillation using a
rotary evaporator.

3.6. Synthesis of Au@MPA-PEG-HA-ADH

Au@MPA nanoparticles were uniformly dispersed in 50 mL triple-distilled water, the
pH of which was adjusted to 6.5 using MES (2-(N-morpholino)ethanesulfonic acid, 50 mM).
EDC (0.007 g) and NHS (0.011 g) were added and the reaction mixture was stirred for
30 min at 25 ◦C. Ten mg of PEG-HA-ADH was added and the mixture was stirred at 25 ◦C
for 24 h. The final product, Au@MPA-PEG-HA-ADH, was collected by centrifugation at
10,000 rpm for 5 min.

3.7. Synthesis of Au@MPA-PEG-HA-ADH-Dox

A 6.8 mg quantity of Au@MPA-PEG-HA-ADH and 5 mg of Dox were dissolved in
15 mL absolute ethanol and reacted for 30 min. A 50 µL aliquot of trifluoroacetic acid was
added after which the mixture was incubated overnight within an atmosphere of nitrogen.
Au@MPA-PEG-HA-ADH-Dox was obtained by centrifugation at 12,000 rpm, after which
the product was washed with absolute ethanol to remove unincorporated Dox. The final
product was obtained by vacuum drying. The supernatants from all centrifugation and
washing steps were collected, and the concentration of Dox was measured in order to
quantify drug loading, and therefore the drug loading ratio was calculated.

The standard curve equation for Au@MPA-PEG-HA-ADH-Dox was: y = 39.074x + 2.137
(R2 = 0.9978). Three mg of Dox was added to 30 mL of the reaction solution. Final Dox
concentration in the reaction solution was measured as 72.471 µg/mL, and thus final drug
loading was 27.52% (Figure S1).

3.8. Synthesis of Au@MPA-PEG-HA-Dox

Au@MPA nanoparticles were uniformly dispersed in 50 mL of triple-distilled water,
the pH of which was adjusted to 6.5 with MES (ethanesulfonic acid, 50 mM). EDC (0.007 g),
and NHS (0.011 g) were added and the reaction mixture was stirred for 30 min. PEG
(22 mg) was then added to the reaction mixture, which was stirred for a further 30 min.
The mixture was then centrifuged to obtain Au@MPA-PEG. HA (1.0 g, 2.5 mmol) in 30 mL
PBS (pH = 5.0), EDC (0.192 g, 1 mmol) and NHS (0.119 g, 1 mmol) were placed in a
250 mL round-bottomed flask, and Au@MPA-PEG added, then stirred in the dark for 24 h.
Au@MPA-PEG-HA was obtained after centrifugation. Au@MPA-PEG-HA and Dox were
dissolved in an appropriate volume of N,N-dimethylformamide (DMF), after which the
reaction mixture was reacted within an atmosphere of N2 for 24 h. After completion of the
reaction, centrifugation was used to yield Au@MPA-PEG-HA-Dox.

3.9. Antitumor Activity Assays of AuNPs

HL-7702, HeLa, HepG2, and HCT-116 cells were used to evaluate the antitumor activity
of the AuNPs using a modified MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium
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bromide) assay. After incubation of the samples with cell cultures for 48 h, a Tecan Infinite
F200 M200 multimode reader was used to measure the absorbance of the solutions in each
well at 570 nm.

3.10. Cellular Uptake of AuNPs

After 6 h with different concentrations of Au@MPA-PEG-HA-ADH-Dox, HL-7702,
HeLa, HepG2, and HCT-116 cells were stained with Hoechst 33342 (10 µg/mL) for 30 min.
The cells were analyzed using an inverted fluorescent microscope.

3.11. Early Cell Apoptosis

HepG2 cells were cultured with Au@MPA-PEG-HA-Dox (50 µg/mL, 100 µg/mL) or
Au@MPA-PEG-HA-ADH-Dox (50 µg/mL or 100 µg/mL) for 6 h. Cells were then stained
with annexin V-FITC for 30 min. Apoptosis of the cells was measured using a FACSCalibur
flow cytometer (Becton Dickinson Co.).

3.12. Analysis of Mitochondrial Membrane Potential (MMP)

After 24 h culture of cells with Au@MPA-PEG-HA-ADH-Dox (20 µg/mL, 50 µg/mL)
at 37 ◦C in an incubator, HepG2 cells were then incubated with JC-1 (10 µg/mL) for 15 min.
The mitochondrial membrane potential was then measured using a flow cytometer.

Twenty-four hours after culture of HepG2 cells with Au@MPA-PEG-HA-ADH-Dox
(20 µg/mL, 50 µg/mL) at 37 ◦C in an incubator, they were then incubated with Rh123
(5 µg/mL) for 30 min prior to analysis by flow cytometry.

3.13. Measurement of ROS

2′,7′-dichlorodihydrofluorescein diacetate (H2DCF-DA) reagent was used to measure
the cellular accumulation of ROS. HepG2 cells were treated with Au@MPA-PEG-HA-ADH-
Dox samples (20, 50, 100 µg/mL) for 24 h, then incubated with H2DCF-DA (10 µM) for
30 min in a cell incubator at 37 ◦C. The fluorescence due to ROS was determined using a
flow cytometer and fluorescence microscopy.

4. Conclusions

In conclusion, dispersed gold nanoparticles were synthesized by boiling. After modi-
fication with HA, PEG, and ADH, the AuNPs with a diameter of 15 nm displayed good
stability in aqueous solution that better prevented agglomeration. MTT assays demon-
strated that the gold nanoparticles alone were slightly toxic at high concentration. As the
modified chain was increased in length, the toxicity of the nanoparticles increased. After
loading with the drug Dox, the AuNPs exhibited good anti-tumor properties. Cellular
uptake experiments demonstrated that AuNPs modified with HA were more readily in-
gested by HepG2 and HCT-116 cells, as they have a large number of CD44 receptors. A
series of experiments measuring apoptosis indicated that the modified AuNP Au@MPA-
PEG-HA-ADH-Dox was effective in inducing the formation of excessive intracellular ROS,
causing initiation of the apoptosis process. The results demonstrate that the modified
AuNPs represent a potent therapeutic agent for the treatment of different types of cancer
using fluorescent imaging.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-8
247/14/2/101/s1, Figure S1: Standard UV–Vis absorption curve of Au@MPAPEG-HA-ADH-Dox,
Figure S2: 1H NMR of HA, PEG, and PEG-HA-ADH, Figure S3: FTIR spectra of Au, PEG-HA,
PEG-HA-ADH, and Au@MPA-PEG-HA-ADH, Figure S4: FTIR spectra of Au@MPA-PEG-HA-ADH
and Au@MPA-PEG-HA-ADH-Dox, Figure S5: FTIR spectra of Dox, Figure S6: The variation of
dispersion of nanoparticles at different resting times, Figure S7: UV–Vis spectra of Dox.

https://www.mdpi.com/1424-8247/14/2/101/s1
https://www.mdpi.com/1424-8247/14/2/101/s1
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