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Background: Invasive mechanical ventilation plays an important role in the prognosis

of patients with sepsis. However, there are, currently, no tools specifically designed to

assess weaning from invasive mechanical ventilation in patients with sepsis. The aim of

our study was to develop a practical model to predict weaning in patients with sepsis.

Methods: We extracted patient information from the Medical Information Mart for

Intensive Care Database-IV (MIMIC-IV) and the eICU Collaborative Research Database

(eICU-CRD). Kaplan–Meier curves were plotted to compare the 28-daymortality between

patients who successfully weaned and those who failed to wean. Subsequently,

MIMIC-IV was divided into a training set and an internal verification set, and the eICU-CRD

was designated as the external verification set. We selected the best model to simplify

the internal and external validation sets based on the performance of the model.

Results: A total of 5020 and 7081 sepsis patients with invasive mechanical ventilation

in MIMIC-IV and eICU-CRD were included, respectively. After matching, weaning was

independently associated with 28-day mortality and length of ICU stay (p < 0.001 and

p = 0.002, respectively). After comparison, 35 clinical variables were extracted to build

weaning models. XGBoost performed the best discrimination among the models in the

internal and external validation sets (AUROC: 0.80 and 0.86, respectively). Finally, a

simplified model was developed based on XGBoost, which included only four variables.

The simplified model also had good predictive performance (AUROC:0.75 and 0.78 in

internal and external validation sets, respectively) and was developed into a web-based

tool for further review.

Conclusions: Weaning success is independently related to short-term mortality in

patients with sepsis. The simplified model based on the XGBoost algorithm provides

good predictive performance and great clinical applicablity for weaning, and a web-based

tool was developed for better clinical application.
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INTRODUCTION

Difficult weaning or prolonged invasive mechanical ventilation is
more common in patients with sepsis (1, 2). Lung susceptibility
to ventilatory injury is thought to be increased by sepsis (3, 4),
and mechanical ventilation may also lead to the exacerbation of
pulmonary infection (5). Prolonged mechanical ventilation can
lead to a poor prognosis (6, 7). However, insufficient duration
of mechanical ventilation is unfavorable for patients. Weaning in
unprepared patients leads to increased mortality and prolonged
ICU stay (8). Therefore, the choice of an appropriate weaning
time is of great importance.

Previous studies on weaning have evaluated numerous
methods on weaning, such as rapid shallow breathing index
(RSBI) (9), spontaneous breathing experiment (SBT), and
compliance, oxygenation, respiratory rate, and pressure (CROP)
index. Nevertheless, weaning factors specific to patients with
sepsis are scarce. Unfortunately, the accuracy of these factors
in predicting weaning is unsatisfactory (10, 11). Moreover,
weaning from mechanical ventilation has also been shown to
be related to consciousness, diaphragmatic function, and cardiac
function (12–14). Traditional prediction of weaning has several
limitations. On the one hand, traditional methods of weaning as
a complex process are inadequate for the use of clinical indicators
utilization. On the other hand, traditional methods have deficits
in predictive performance due to disease-related differences in
the target population, as there are no specific target populations.

Given the rapid development of clinical medicine, a refined
weaning scheme is needed to meet the demands of clinical
development. A simple and reliable weaning program could
not only effectively assist clinicians but also improve the
patient prognosis, especially in patients with sepsis with
ventilator dependence.

In this study, we aimed to develop a reliable model for
predicting weaning success in patients with sepsis. To this end,
we extracted data within 24 h from patients with sepsis before
weaning from a large dataset. Features were selected based on
their clinical availability and explained by their importance. In
addition, our model was further validated using datasets from
various sources.

METHODS

Data Source
Our study was a retrospective cohort study based on the
MIMIC-IV (version 1.0) database. This database contains over
40,000 ICU patients from Beth Israel Deaconess Medical Center
between 2008 and 2019. Moreover, we used an independent
external validation set called eICU-CRD Collaborative Research
(eICU-CRD) Database (version 2.0), which is a multicenter
database of over 200,000 ICU admissions in the United States.
We carefully studied the courses and obtained permission
to use the database (record ID 39691989). Because the
patient privacy information was encrypted in the database, the
ethics committee at the two medical centers did not require
informed consent.

Patients and Definitions
In this study, sepsis was diagnosed based on the Sepsis-3 criteria
[(15); SOFA score≥ 2, and suspicious infection]. The contents of
a recent guideline had been considered before implementing the
criteria for successful weaning (16). The definition of weaning
success (WS) was as follows: (a) no intubation or invasive
ventilation within 48 h after weaning, (b) no death within 48 h
after weaning, and (c) noninvasive ventilation time was shorter
than 48 h after weaning. The patients who experienced invasive
mechanical ventilation and met the criteria for Sepsis-3 were
included in both datasets. The exclusion criteria were as follows:
(a) repeated ICU admissions and (b) age < 18 years (Figure 1).

Data Collection and Variable Extraction
For modeling, we preferred variables with a single measurement.
Clinical importance and shapley additive explanations (SHAP)
values were used to further reduce the amount of data. Patient
demographics were collected, including age, sex, and body
mass index (BMI). Clinical and chemical variables had been
extracted within 24 h prior to weaning to create models. The
extracted variables were the worst value of the day, which
was as follows: arterial blood gas [pH value, arterial oxygen
partial pressure (PaO2), arterial carbon dioxide partial pressure
(PaCO2), base excess (BE)], full blood count [white blood cell
count (WBC), hemoglobin (HB), platelet (PLT)], laboratory
index (creatinine, anion gap), vital signs [heart rate, respiratory
rate, mean arterial pressure (MAP), peripheral oxygen saturation
(SPO2), temperature, oxygenation index (OI)], and urine output.
In addition, data on therapeutic measures [days of invasive
ventilation, days of antibiotic use, days of continuous renal
replacement therapy (CRRT), and vasopressor therapy within
24 h]. The variables in the matched data were from the first
day of ICU admission and included the variables listed above
(Supplementary Table 1). To further balance the differences in
baseline data between the patients with weaning failure (WF) and
patients with weaning success, comprehensive indicators were
extracted, such as the sequential organ failure assessment (SOFA)
score, Glasgow coma scale (GCS) score, and simplified acute
physiology score (SAPS II). Comorbidities, as well as infection
classification (Supplementary Table 4), were also considered
based on the recorded International Classification of Diseases
codes (ICD-9 and ICD-10), and the Charlson comorbidity index
was also calculated.

Data Analysis
Continuous variables are described as median and interquartile
range (IQR). The Mann–Whitney U-test was used for statistical
comparison between the two groups. Categorical variables were
described as total number and percentage, and the chi-square
test or Fisher’s exact test was used for comparison between
groups. Propensity score matching (PSM) was used to balance
the differences between successful and unsuccessful weaning
groups. Inverse probability weighting (IPW) (17) was used to
further adjust for possible imbalances between the variables of
the two groups. The Kaplan–Meier (K–M) curve was used to
describe the 28-day survival rate between the two groups, and
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FIGURE 1 | The flow chart of data extraction. eICU-CRD, eICU-CRD Collaborative Research Database. MIMIC-IV, Medical Information Mart for Intensive Care-IV; ICU,

intensive care unit.

the differences in survival rates between groups were compared
using the log-rank test.

After comparison, we divided the MIMIC-IV data into
two parts: 80% as a training set and 20% as an internal
validation set, and the integrated machine-learning algorithm
eXtremely Gradient Boosting (XGBoost) to construct a weaning
prediction model, which is based on multiple decision trees with
gradient boost as a learning framework. The hyperparameters
were optimized using a grid search (Supplementary Table 3).
Other models, such as KNearest Neighbor (KNN), Multi-
Layer Perceptron (MLP), Random Forest (RF), Support Vector
Machine (SVM), and Logistic Regression (LR), were also derived
from the training set and applied to the test set. The prediction
efficiency of the models was compared using a receiver operating
characteristic (ROC) curve. In addition, the model was further
explained by the SHAP value, demonstrating a linear relationship
through local weighted regression scatter smoothing (LOWESS).

Variables with more than 50% missing data were
excluded. The missing features of the matched data and
model data are shown in Supplementary Figure 1A and
Supplementary Table 2. Missing values were input using the
multiple imputation method. Due to the different missing
datasets, we had extracted only the CROP and RSBI 24 h before
weaning in MIMIC-IV, and the predictive performance was
also compared with XGBoost in the internal validation set. In
addition, the model was further simplified using the recursive
feature elimination algorithm (RFE).

Structured query language was used to extract the data from
these two databases. All statistical analyses were performed

using R 3.6.2 (Chicago, Illinois) and Python (version 3.6.6), and
statistical significance was set at p < 0.05.

RESULTS

Matching Baseline and Clinical Outcomes
As shown in Figure 1, 5,020 patients with sepsis who received
invasive mechanical ventilation were ultimately included in the
MIMIC-IV database. The baseline characteristics on the first
day of ICU admission are shown in Supplementary Table 1.
PSM and IPW were used to better balance the differences
between the two groups. A total of 1,676 patients were
included (Supplementary Table 1), and the standardized mean
difference (SMD) between groups was significantly reduced
(Supplementary Figure 1B). In comparison, there was a
significant difference in the length of stay in the ICU between the
two groups (Figure 2B, p= 0.002). Similarly, theWS group had a
significantly lower 28-day mortality rate (Figure 2A, p < 0.001).

Baseline Characteristics of Models
In the MIMIC-IV cohort, successful weaning was associated with
reductions in highest WBC, highest creatinine, highest anion
gap, highest heart rate, highest respiratory rate, highest body
temperature, highest PEEP level, antibiotic duration, invasive
mechanical ventilation (IMV) duration, and vasopressor use 1
day before weaning (Table 1). Consequently, the performance
of these indicators behaved similarly in the eICU-CRD cohort,
except for age and the highest FiO2 (Table 1). Regarding
comorbidity, it was observed that successful weaning benefited
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FIGURE 2 | (A) K-M curves estimated 28-day survival probability of weaning failure and weaning success patients. (B) Box-plot of weaning failure and weaning

success patients.

chronic pulmonary disease, congestive heart failure, renal
disease, and diabetes in the MIMIC-IV cohort. However, except
for severe liver disease, other comorbidities were inconsistent
between the WS and WF groups (Table 1).

Comparison and Explanation of Models
We trained the models using the training set from MIMIC-
IV. As shown in Table 2, the XGBoost model with all available
variables had a striking AUROC of 0.80 [95% confidence interval
(CI): 0.77–0.82 in the internal validation set, and 0.86 (95% CI:
0.85–0.87)] in the external validation set, while the other five
representative models had the highest AUROC, 00.74 (95% CI:
0.71–0.77) in the internal validation set, and 0.83 (95% CI: 0.82–
0.84) in the external validation set. The final hyperparameter
settings for XGBoost are listed in Supplementary Table 3. The
SHAP values for the XGBoost model were assessed and are shown
in Figure 3A. The importance of the variables was sorted by
the gap value and is shown in Figure 3B. Figures 4A,B show
the comparison between the XGBoost model and the other five
models or predictive factors. As can be seen, the XGBoost model
significantly outperformed the other five models or predictive
factors in both the internal validation and external validation.
Due to the extensive missing data, we did not show the ROC
curves of CROP and RSBI in the external validation set. In
addition, we performed a decision curve analysis (Figure 4C) and
a calibration plot (Figure 4D) to illustrate the performance of the
XGBoost model.

SHAP Values Depending on Variables
The probability of successful weaning increases with an increase
in the following indicators: urine output, lowest base excess, GCS,
lowest SPO2, congestive heart failure, lowest pH, lowest map,
highest PaCO2, renal disease, lowest platelet count, BMI, and
OI (Figure 3A). The contribution of each feature in the internal

validation set is shown in Figure 3B in order of importance.
Finally, we performed a partial dependency plot of the four
contributing continuous variables to explain the impact of the
change in value of each variable on the patients with WS,
as shown in Figure 5. The remaining variables are shown in
Supplementary Figures 2, 3. As shown in the partial dependency
plot, feature values are indicated by a blue scatter plot, with
the linear relationship represented by a red curve, where SHAP
values represent an increase in the probability of WS when the
value is positive and vice versa.

Figure 5 shows the change trend of WS probability
with the change in variables. For some variables, there is
a discernable trend where the WS probability increases
with an increase in the value of variables. These variables
are urine output (Figure 5C), lowest BE (Figure 5D),
GCS (Supplementary Figure 2B), and lowest SPO2

(Supplementary Figure 2D). In contrast, the decrease in
some indicators, such as the highest PEEP level (Figure 5B),
the highest anion gap level (Supplementary Figure 2A),
and age (Supplementary Figure 2H), suggests a decrease in
WS probability. Additionally, some variables seem to have a
reasonable value, and the best cut-off value for these variables
can be roughly judged by the LOWESS curve (Figure 5A;
Supplementary Figures 2C,E–G). To obtain the best WS
possibility, the values of these variables should be kept close to
the cut-off value.

The Web-Based Tool and an Example
Scenario
We simplified the previous XGBoost model according to
the variable importance. The four variables (IMV duration,
highest PEEP level, urine output, and lowest base excess) with
the highest importance were used to develop a simplified

Frontiers in Medicine | www.frontiersin.org 4 January 2022 | Volume 8 | Article 814566

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


L
iu

e
t
a
l.

W
e
a
n
in
g
M
o
d
e
lfo

r
S
e
p
sis

P
a
tie
n
ts

TABLE 1 | Baseline characteristics of the MIMIC-IV and eICU cohorts.

Variables MIMIC-IV cohort eICU cohort

Overall

(n = 5,020)

Weaning failure

(n = 2,159)

Weaning success

(n = 2,861)

p Overall

(n = 7,081)

Weaning failure

(n = 938)

Weaning success

(n = 6,143)

p

n 5,020 2,159 2,861 7,081 938 6,143

Age (years) 68 (57, 78) 68 (56, 79) 68 (57, 78) 0.335 64 (53, 74) 68 (57, 77) 63 (52, 73) <0.001

Male 2,944 (58.6) 1,241 (57.5) 1,703 (59.5) 0.154 3,976 (56.2) 511 (54.5) 3,465 (56.4) 0.283

BMI (kg/m2) 28 (24, 33) 28 (24, 33) 28 (24, 32) 0.428 28 (23, 33) 27 (23, 33) 28 (23, 33) 0.02

Chronic pulmonary disease (n, %) 1,719 (34.2) 689 (31.9) 1,030 (36.0) 0.003 1,334 (18.8) 175 (18.7) 1,159 (18.9) 0.914

Congestive heart failure (n, %) 2,155 (42.9) 788 (36.5) 1,367 (47.8) <0.001 1,174 (16.6) 158 (16.8) 1,016 (16.5) 0.852

Dementia (n, %) 239 (4.8) 88 (4.1) 151 (5.3) 0.056 207 (2.9) 40 (4.3) 167 (2.7) 0.012

Severe liver disease (n, %) 547 (10.9) 286 (13.2) 261 (9.1) <0.001 209 (3.0) 60 (6.4) 149 (2.4) <0.001

Renal disease (n, %) 1,463 (29.1) 574 (26.6) 889 (31.1) 0.001 949 (13.4) 151 (16.1) 798 (13.0) 0.011

Rheumatic disease (n, %) 211 (4.2) 84 (3.9) 127 (4.4) 0.375 165 (2.3) 21 (2.2) 144 (2.3) 0.934

Diabetes (%) 1,665 (33.2) 675 (31.3) 990 (34.6) 0.014 2,129 (30.1) 283 (30.2) 1,846 (30.1) 0.971

Charlson comorbidity index 6 (4, 8) 6 (4, 8) 6 (4, 8) 0.082 3 (2, 5) 4 (3, 6) 3.00 (2, 5) <0.001

GCS 14 (10, 15) 13 (7, 15) 14 (10, 15) <0.001 8 (6, 10) 4 (3, 8) 9 (6, 10) <0.001

Highest WBC (×109/L) 14.1 (9.8, 19.9) 14.7 (9.8, 21.3) 13.8 (9.9, 18.9) <0.001 11.9 (8.7, 16.4) 14.7 (9.7, 20.5) 11.7 (8.6, 15.8) <0.001

Lowest hemoglobin (g/L) 9.2 (8.0, 10.6) 9.1 (7.9, 10.6) 9.3 (8.1, 10.6) 0.002 9.7 (8.4, 11.3) 9.3 (7.9, 10.8) 9.8 (8.5, 11.4) <0.001

Lowest platelets (×109/L) 143 (89, 213) 136 (75, 212) 147 (100, 215) <0.001 167 (113, 233) 141 (76, 212) 170 (118, 236) <0.001

Highest creatinine (mg/dL) 1.3 (0.9, 2.3) 1.6 (1.0, 2.7) 1.2 (0.8, 1.9) <0.001 1.1 (0.7, 1.8) 1.7 (1.0, 3.0) 1.0 (0.7, 1.6) <0.001

Highest anion gap (mEq/L) 15.0 (13.0, 19.0) 17.0 (14.0, 22.0) 14.0 (12.0, 17.0) <0.001 10.0 (8.0, 14.0) 13.0 (10.0, 18.0) 10.0 (7.7, 13.0) <0.001

Lowest pH level 7.3 (7.3, 7.4) 7.3 (7.2, 7.4) 7.3 (7.3, 7.4) <0.001 7.4 (7.3, 7.4) 7.3 (7.2, 7.4) 7.4 (7.3, 7.4) <0.001

Lowest PaO2 (mmHg) 80 (53, 106) 75 (48, 99) 84 (60, 110) <0.001 85 (69, 115) 78.00 (61, 102) 86 (69, 117) <0.001

Highest PaCO2 (mmHg) 45 (39, 51) 44 (38, 52) 45 (40, 50) 0.837 43 (37, 49) 42 (36, 52) 43 (37, 49) 0.977

Lowest base excess (mEq/L) −3.0 (−7.0, 0.0) −4.0 (−10.0, 0.0) −2.0 (−5.0, 0.0) <0.001 −1.0 (−5.4, 2.0) −5.5 (−12.4,0.6) −0.6 (−5.0, 2.2) <0.001

Highest heart rate (/min) 103 (90, 119) 108 (94, 124) 100 (88, 115) <0.001 103 (90, 118) 112 (97, 129) 102.00 (89, 116) <0.001

Highest respiratory rate (/min) 27 (23, 31) 29 (24, 33) 26 (22, 30) <0.001 25 (21, 31) 30.00 (25, 35) 25.00 (21, 30) <0.001

Lowest MAP (mmHg) 60 (54, 65) 59 (52, 64) 60 (56, 66) <0.001 65 (57, 73) 59 (49, 68) 66 (59, 74) <0.001

Highest body temperature (◦C) 37.4 (37.0, 38.1) 37.5 (36.9, 38.2) 37.4 (37.1, 37.9) 0.021 37.4 (37.0, 37.9) 37.4 (36.9, 38.1) 37.4 (37.1, 37.9) 0.362

Lowest SPO2 94 (91, 96) 93 (89, 95) 94 (92, 97) <0.001 94 (91, 97) 91 (82, 94) 94 (91, 97) <0.001

Highest PEEP (cmH2O) 7 (5, 10) 9 (5, 12) 6 (5, 10) <0.001 5 (5, 8) 5 (5, 10) 5.00 (5, 6) <0.001

Lowest tidal volume (ml) 397 (328, 455) 395 (325 452) 398 (329 459) 0.154 422 (343, 497) 423.50 (356, 493) 422.00 (340, 498) 0.591

Lowest OI 174 (105, 250) 152 (91, 232) 188 (120, 260) <0.001 206 (144, 282) 161 (98, 227) 212 (150, 288) <0.001

Highest FiO2 (%) 50 (40, 80) 50 (40, 90) 50 (40, 80) <0.001 50 (40, 100) 60 (40, 100) 50 (40, 80) <0.001

Antibiotic duration (day) 1 (1, 4) 2 (1, 5) 1 (1, 3) <0.001 0 (0, 2) 1 (0, 4) 0 (0, 2) <0.001

CRRT duration (day) 0 (0, 0) 0 (0, 0) 0 (0, 0) <0.001 0 (0, 0) 0 (0, 0) 0 (0, 0) <0.001

IMV duration (day) 1.5 (0.6, 3.7) 1.9 (0.7, 4.4) 1.2 (0.6, 3.2) <0.001 2.0 (1.0, 5.0) 3.0 (2.0, 6.0) 2.0 (1.0, 5.0) <0.001

Urine output (ml/kg/h) 0.6 (0.2, 1.2) 0.5 (0.1, 1.1) 0.7 (0.4, 1.3) <0.001 0.6 (0.3, 1.1) 0.3 (0.1, 0.8) 0.64 (0.3, 1.1) <0.001

Vasopressor used 1 day before

weaning (n, %)

3,882 (77.3) 1,712 (79.3) 2,170 (75.8) 0.004 2,337 (33.0) 511 (54.5) 1,826 (29.7) <0.001

Values are presented as median and interquartile range (IQR); BMI, body mass index; GCS, Glasgow coma scale; WBC, white blood cell count; PaO2, arterial oxygen partial pressure; PaCO2, arterial carbon dioxide partial pressure;

MAP, mean arterial pressure; SPO2, pulse oxygen saturation; PEEP, positive end expiratory pressure; OI, oxygenation index; FIO2, fraction inspired oxygen concentration; CRRT, continuous renal replacement therapy; IMV, invasive

mechanical ventilation.
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model; the performance of the simplified model is shown
in Figure 4 and Table 2. As shown, although the predictive
performance of the simplified model decreased slightly, the
model was greatly simplified. Subsequently, a web-based tool was
developed for clinicians to use a simplified model. The tool can
be accessed at http://49.235.211.121/frontdoc/sepweaning.html.
After submitting the required data, the probability of weaning
was calculated based on the simplified model.

When patients with sepsis are ready to be weaned from
invasive mechanical ventilation, clinicians can make a quick
decision using the SHAP dependency plots. For scenarios that
require precise calculation, the web tool can provide an accurate
probability of successful weaning based on the input indicators.

DISCUSSION

This retrospective analysis included two large study cohorts from
MIMIC-IV and eICU-CRD. First, we compared mortality and
length of ICU stay from WS and WF in patients with sepsis
using an effective balance method. Unfortunately, we found
significant differences in mortality between patients withWS and
WF. Therefore, the XGBoost model and the other five models
were applied and evaluated sequentially to identify the beneficial
factors associated with WS of patients with sepsis in the ICU.
To our knowledge, this is the first study to predict weaning in
patients with sepsis based on extensive public data. The difference
from previous studies is that we developed an integrated machine
learning model with high performance. In addition, we fully
evaluated our model using another equally large public dataset.
Finally, we explained the main variables and described the effects
of their changing trends on weaning.

The matched results showed that there was a significant
difference in the length of stay in the ICU between the WS and
WF groups (Figure 1B, p= 0.002). This trend was not confirmed
in the external validation set (Supplementary Figure 4C).
Nevertheless, successful weaning of patients with sepsis
significantly reduced mortality (Figure 1A, p < 0.001), and
the matched result from the external validation set showed
a similar trend (Supplementary Figure 4B). These results
were comparable to those of previous studies (18). Therefore,
successful weaning is a key factor in improving survival and
potentially shortening ICU stay.

In both the internal validation set and the external validation
set, our model showed excellent reliability and prospective
generalization ability, and the prediction performance
was significantly better than that of the traditional method
(Figure 4C). In the model, the contribution to the prediction
of WS varied with the variables. Previous studies have
shown that the duration of IMV plays an important role
in weaning (19–21). However, because IMV duration is
the strongest variable in our model, the contribution of
IMV duration to these models is inconsistent. We only
included patients with sepsis admitted to the ICU in our
study. Therefore, population diversity could lead to this
difference. Moreover, it was observed that the best IMV duration
was maintained for about 1 day according to the LOWESS
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FIGURE 3 | (A) Distribution of the impacts of each variable on the output of the XGBoost model estimated using the SHAP values. (B) Ranking of variables

importance.

curve (Figure 5A). Other variables with prospective cut-off
values were antibiotic duration (Supplementary Figure 2C),
highest body temperature (Supplementary Figure 2E), highest
heart rate (Supplementary Figure 2F), highest respiratory
rate (Supplementary Figure 3A), and highest PaCO2

(Supplementary Figure 3C). Although these variables have
also been mentioned in previous studies (19, 21, 22), the
trends and specific contributions of these variables have not
been clarified.

In our study, age showed a clear downward trend of
successful weaning ability with increasing value, especially in
patients aged >75 years (Supplementary Figure 2H). This trend
is supported by increasing evidence (19, 23). Interestingly, BMI
and congestive heart failure as low-contributing variables were
proportional to WS probability in our study. This finding is
supported by previous studies (24, 25). However, there is also an
opposite conclusion (19). In a study on viral infections, excessive
BMI may lead to worse clinical outcomes (26). However, in
another study, even a reasonably high BMI can help patients
improve their disease (27). In summary, these differences may
be due to the diversity of the population and the diversity
of diseases.

PEEP, urine output, and SPO2, as the most commonly
measured indices, play a key role in predicting WS. In this
study, a low PEEP strategy was found to be more beneficial
for patients with sepsis weaning from ventilation. Although the
low-level PEEP strategy did not have a significant effect on
improving ventilator weaning in a cohort study (28), it still
has the potential to promote ventilator weaning (29). There is

increasing evidence that high levels of PEEP are a risk factor in
reducing the likelihood of WS (19, 30). As we have considered,
high levels of PEEP lead to lung congestion and increase the
respiratory burden of patients (31), which may explain why
high levels of PEEP play a positive role in the weaning process
(Figure 5B). Urinary output is the primary means for humans to
maintain fluid balance, and excellent fluidmanagement strategies
could significantly improve patient survival (32). Polyuria has
been shown to have no negative impact on weaning (33), but
negative fluid balance significantly impedes weaning success
(34, 35). These findings are consistent with those of the present
study (Figure 5C). The pH was an interesting finding in our
study. As the most important indicator of acid-base balance,
an abnormally high or low pH had a detrimental effect on
weaning in our study. Nevertheless, low pH was more likely to
cause weaning failure (Supplementary Figure 2G). This finding
is consistent with previous studies, as low pH of extracellular fluid
compromises the immune function of the body in patients with
sepsis (36). BE and PaCO2 are indicators closely related to pH.
Early studies have shown that removing PaCO2 from the body
effectively improves the success rate of weaning (37, 38). The
relationship between BE and weaning has not yet been studied.
In any case, extracellular acid-base balance is susceptible to the
interaction of several variables. For the three variables of BE,
PaCO2, and pH, we used an interactive effects plot to explain
the relationship between the three variables. As can be seen in
Supplementary Figure 3, the tendency of these three variables to
predict weaning tended to be consistent, which also shows the
rationality of using this model.
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FIGURE 4 | Receiver operating characteristic curves (ROCs) of the XGBoost, LRM, RF, MLP, SVM, KNN, and simplified model. (A) Internal validation set. (B) External

validation set. (C) Decision curve analysis of the XGBoost and simplified model. (D) Calibration curve of the XGBoost and simplified model. XGBoost, eXtremely

gradient boosting; KNN, KNearest neighbor; MLP, multi-layer perceptron; RF, random forest; SVM, support vector machine; LRM, logistic regression; RSBI, rapid

shallow breathing Index; CROP, compliance, oxygenation, respiratory rate, pressure index.

In clinical practice, weaning should be a medical behavior
that needs careful consideration. Inappropriate weaning may
lead to worsening of disease, higher mortality, longer hospital
stays, and higher hospital costs (7, 39, 40). Therefore, a simple
and effective prediction method is needed. Compared with the
traditional prediction model, our model has better prediction
performance (11, 41). Although some new weaning models have
been proposed in recent years (19, 20, 42, 43), the performance
of the model varies according to the target population. In
patients with sepsis, the developed model was able to predict
weaning well, as reflected by a high AUROC value of 0.80 and
0.86 in the internal and external validation sets, respectively.

Interestingly, the performance of the model was better in
patients with pulmonary infections than in the validation sets
(Supplementary Figure 5). Obviously, the performance of our
model was better in the external validation set. Apart from the
good generalization ability of our model, we believe that the
different data sources could explain this phenomenon, which also
occurs in other studies (44). Finally, we simplified our model
and developed a web-based tool that allows convenient use of
the model.

There are still potential limitations in our research. First,
because of the limitation of the database, other variables
that could have predictive value, such as lactate and central
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FIGURE 5 | SHAP dependency plots of IMV duration (A), highest PEEP level (B), urine output (C), and lowest base excess level (D).

venous pressure, with excessively high error rates, were
not included in the model. Considering the availability of
comprehensive clinical indicators, such as SOFA and SAPS,
were not included in the model, although these indicators
could improve the predictive performance of the model (19,
45, 46). Second, although our model was validated using
data from multiple data sources, we still need additional
data sources to further demonstrate the generalizability of
the model. Third, in our study, the positive predictive value
(PPV) and negative predictive value (NPV) were 0.81, 0.62,
0.79, and 0.77 in the internal and external validation sets,
respectively, which means that the model still has some
degree of false-positive and false-negative rates. More valuable
variables and dynamic prediction models could improve
the performance.

In conclusion, weaning success is independent of short-
term mortality in patients with sepsis. We developed a
prospective model for weaning from invasive mechanical
ventilation using the XGBoost algorithm. This model included
35 conventional clinical variables and proved to be more
interpretable and predictive. In addition, the model was
simplified, and a web-based tool was developed for better
clinical application.
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