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Abstract

Purpose

PET and SPECT voxel kinetics are highly noised. To our knowledge, no study has deter-

mined the effect of denoising on the ability to detect differences in binding at the voxel level

using Statistical Parametric Mapping (SPM).

Methods

In the present study, groups of subject-images with a 10%- and 20%- difference in binding

of [123I]iomazenil (IMZ) were simulated. They were denoised with Factor Analysis (FA).

Parametric images of binding potential (BPND) were produced with the simplified reference

tissue model (SRTM) and the Logan non-invasive graphical analysis (LNIGA) and analyzed

using SPM to detect group differences. FA was also applied to [123I]IMZ and [11C]flumazenil

(FMZ) clinical images (n = 4) and the variance of BPND was evaluated.

Results

Estimations from FA-denoised simulated images provided a more favorable bias-precision

profile in SRTM and LNIGA quantification. Simulated differences were detected in a higher

number of voxels when denoised simulated images were used for voxel-wise estimations,

compared to quantification on raw simulated images. Variability of voxel-wise binding esti-

mations on denoised clinical SPECT and PET images was also significantly diminished.

Conclusion

In conclusion, noise removal from dynamic brain SPECT and PET images may optimize

voxel-wise BPND estimations and detection of biological differences using SPM.
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Introduction

Molecular imaging using Positron Emission Tomography (PET) and Single Photon Emission

Tomography (SPECT) is a powerful tool in the in vivo study of neuroreceptor systems in

human and small-animal research. Quantification is most often performed on dynamic images

(i.e. serial acquisitions of images with a very short duration) that permit the extraction of the

temporal kinetic pattern of the radiotracer. Quantification is subsequently based on modeling

of radiotracer kinetics. Quantitative analysis of dynamic PET and SPECT images is performed

either at the regional level or at the voxel level: regional analysis of radiotracer kinetics implies

an a priori definition of volumes-of-interest (VOI) in which radioactivity across voxels is aver-

aged and examined as a whole. Alternatively, given the advances in the domain of instrumen-

tation and image reconstruction, kinetic analysis may be performed on tissue-activity curves

(TACs) from individual brain voxels to create binding parameter images that can be used for

statistical analysis of differences at the voxel level [1–3].

Dynamic images, being composed of serial images of a very short duration, naturally suffer

from high noise. This is a considerably limiting factor for the application of kinetic analysis at

the voxel level, inducing bias and augmenting the variance of parameter estimates. In particu-

larly noisy voxels, fitting the kinetic model may not be possible at all [1–3]. As a consequence,

the statistical power to detect group differences in binding in the context of biological studies

is seriously compromised and this is probably the main reason why VOI analysis still remains

in the first line of neuroreceptor quantitative imaging. It is a serious impediment to the in-

depth investigation of brain chemistry across the physiological and pathological spectrum.

Indeed, subtle variations in neuroreceptor binding may be confined to cellular populations

much smaller in size than the anatomically defined VOIs that do not necessarily correspond to

the anatomical organization of neurotransmitter systems [4, 5] or the localization of other phe-

nomena that affect the Central Nervous System (CNS), such as amyloid deposition [6], neu-

roinflammation [7] or epileptogenic foci [8]. VOI-wise analysis may confirm voxel-wise

analysis or possibly underestimate biological differences [9, 10] and lead to type II statistical

errors. In a similar way, functional and structural Magnetic Resonance Imaging (MRI) have

had a major contribution in the understanding of brain function and pathology exactly

because statistical inferences became possible at the voxel level.

The optimization of voxel-wise quantification in molecular imaging through noise reduc-

tion has been the aim of extensive research effort, the objective being to facilitate the applica-

tion of kinetic models and the extraction of robust parameter estimates. Among these

methods, factor analysis (FA) has shown its potential in denoising cardiological [11] and,

more recently, small-animal brain imaging data [12, 13]. FA separates the signal of dynamic

images into a finite number of factor-images [11, 14–16]. The rest of the signal is considered

noise and discarded. Many other denoising approaches, have been developed over the years

for denoising of PET and SPECT studies. Our group, for instance, has experience with wavelet

denoising of brain PET studies [3]. Denoising of dynamic PET images has also been described

using a non-local means denoising (NLM) approach [17], highly constrained backprojection

(HYPR) [18], nonlinear spatio-temporal filtering [19] and context modelling using local

neighborhood correlation [20]. Denoising techniques are extensively reviewed in [21, 22].

Given the well-established gains of denoising in terms of generating unbiased and precise

estimates of binding parameters in PET and SPECT imaging, it is important to evaluate if

noise removal increases the statistical power for the detection of group differences in voxel-

wise parameter binding estimates with Statistical Parametric Mapping (SPM). A considerable

number of studies have established the impact of noise [23–25] and processes related to noise,

such as reconstruction [26, 27] on the detection of statistically significant differences at the
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voxel level. Wimberley et al. [28] evaluated the impact of denoising on voxel-wise calculations,

but not with SPM, which is perhaps the most validated and certainly the most widely used

approach in this domain [29]. In this study, we evaluate denoising of two GABAA-binding

radiotracers, in [123I]iomazenil (IMZ) SPECT and [11C]flumazenil (FMZ) PET images in

healthy human subjects. Using a simulation study of radiotracer binding augmentation, we

determine the capacity of this approach to ameliorate the statistical power for the detection of

biological differences. Importantly, kinetic analysis with and without FA is performed using

two of the most widely used and best-established kinetic approaches, the Simplified Reference

Tissue model (SRTM) [30, 31] using the basis function approach and Logan non-invasive

graphical analysis [32]. We thus make the hypothesis that denoising optimizes the detection of

significant differences in binding at the voxel level. Thus, a statistically significant difference in

radiotracer binding between groups of scans that would otherwise remain undetected because

of noise, is highlighted with SPM when denoising is applied.

Materials and methods

Subjects

Four male healthy subjects with ages ranging from 23 to 36 years (mean 27.4 ± 5.6) undertook

one PET and one SPECT study each, with a two-to-three month interval between the scan ses-

sions. All subjects gave their informed consent before scanning and the Research Ethics Com-

mittee of Geneva Hospital approved the study on the basis of cantonal and federal legislation

in accordance with the Helsinki Declaration of 1975 (and as revised in 1983).

PET and SPECT experiments

In this paper, we employed PET and SPECT images from a previous study of our group [33].

Acquisition and image reconstruction procedures have been described in detail elsewhere

[33]. A whole body scanner (ADVANCE, GE, Medical System, Waukeska, WI) was employed

for PET studies and the reconstruction of transaxial images was performed with a voxel size of

2.34 x 2.34 x 4.25 mm3. Photon attenuation was corrected with a 10-min transmission scan

and the data were corrected for decay. The PET and SPECT scans employed in this paper con-

sist of the first parts of a multi-injection procedure protocol [33]. For PET studies, an injection

of [11C]FMZ (about 148 MBq) was followed by a 30-min scan of 17 frames of augmenting

duration: 2 x 0.5 min; 10 x 1 min; 2 x 2 min; 3 x 5 min.

SPECT scan acquisitions were performed using a Toshiba GCA-9300A/HG triple-headed

SPECT system in continuous rotation mode, using a super-high-resolution fan beam

(SHR-FB) collimator. The triple-energy window method for scatter correction and the Chang

filtered method of attenuation correction were applied as previously described [33]. Images

were reconstructed with a final voxel size of 1.72 x 1.72 x 3.44 mm3. For the SPECT study, a

single injection of 111 MBq of [123I]IMZ was used. A set of 25 sequential frames was collected

over 170 min according to the following protocol: 5 x 2 min; 10 x 5 min; 10 x 11 min.

Image processing

PET and SPECT images were processed using PMOD software (version 3.7, 2016, PMOD

Technologies Ltd, Zurich, Switzerland). For anatomical localization of the cortical structures, a

T1-weighted MR brain image volume was obtained for each subject (PICKER Eclipse 1.5T,

TR = 15 ms, TE = 4 ms, pixel size, 0.98 x 0.98 x 1.10 mm3). Automatic co-registration of PET

and SPECT images to the respective MRI images was performed using a normalized mutual
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information algorithm in the PMOD image fusion tool [34]. Motion correction was also

applied on dynamic PET and SPECT images using the same tool.

Dynamic images were then processed in the Pixies software (Apteryx, Issy-les-Moulineaux,

France) as previously described [12, 14–16, 35–38]. Briefly, FA is used for the decomposition

of a series of dynamic images into a few elementary component-images. The decomposition is

based on the distinct kinetic pattern of each component-image and is performed at the voxel

level. Thus, the kinetic pattern of radioactivity in its voxel of the original (raw) dynamic image

series, TAC raw
i ðtÞ, is expressed as a function of a finite number (k) of curves called factors fk,

each one corresponding to a distinct radioactivity kinetic pattern and a set of factor-images αk

that represent the spatial distribution of the factors. Overall, the decomposition of the radioac-

tive signal may be expressed using the following equation:

TACraw
i ðtÞ ¼

PK
k¼1

akðiÞfkðtÞ þ eiðtÞ ð1Þ

where ei(t) represents the error term for each voxel i at time t including both noise and model-

ing errors. In the present study, noise removal was the objective of FA, so all the component-

images extracted from FA were examined together in one image and no individual compo-

nent-image analyses was performed.

Simulation study

A simulation study (schematically described in Fig 1) was designed to evaluate: 1) the potential

of FA to denoise dynamic images, and 2) its impact in voxel-wise quantification and detection

of biological group differences using SPM. Whole-brain dynamic SPECT synthetic volumes

were generated using the PMOD Anatomy tool [39]. A set of VOIs defining the simulated

images’ anatomy and a set of TACs defining the radioactivity kinetics in all the voxels of each

corresponding VOI are required as input to the Anatomy tool. Pre-defined VOIs from the

Automatic Anatomic Labeling (AAL) human brain atlas [40] included in PMOD were used.

To simulate [123I]IMZ kinetics, TACs were extracted from one of the human dynamic SPECT

studies using PMOD. These TACs were then fitted with SRTM in the PKIN tool [41] using the

TAC from the pons VOI as a reference-region, as previously described [12], and model curves

of this fit were extracted. The true simulated parameters are presented in S1 Table. The PKIN

tool allows a simulation of a SRTM fit curve by modifying the binding potential (BPND)

parameter. So, we simulated model curves with a +10% and +20% difference in BPND com-

pared to the original model curves in two of the brain VOIs, a high-binding (middle occipital

cortex) and a low-binding region (thalamus). Three sets of model curves (baseline, +10% and

+20%) were generated and subsequently employed in the Anatomy tool as the simulated

images’ kinetics. The three un-noised simulated images thus represent human brain dynamic

SPECT scans in which all voxels in a given VOI have identical kinetics, these of the input-

curve that corresponds to this particular VOI.

Then, Gaussian noise was added [42–48] at four distinct levels α (10, 15, 20 and 25) with

zero mean and variance s2
i :

s2

v ¼ a2CSPECTðtvÞ=ðDtve� ltvÞ ð2Þ

where λ is the decay constant λ = ln2/T1/2 and T1/2 is the half-life of the radiotracer (= 13.2

hours). CSPECT(tv) is the voxel activity corresponding to image frame v, tv is the midtime and

Δtv is the duration of each frame. In order to perform statistical analysis of the simulated bio-

logical differences in radiotracer binding, ten synthetic dynamic images were simulated at

each noise level for the baseline simulated image and these with the 10 and 20% augmentation

in binding in the middle occipital cortex and the thalamus.
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All dynamic images were processed with FA as described in the image processing section.

Two prevalent factors (k = 2) were retained and the rest of the signal was considered as noise

(images are thus designated as FA2c).

Voxel-wise kinetic analysis was performed in PXMOD [49] pixel-wise quantification tool

in PMOD software, as previously described [12]. Two model configurations were used: the

SRTM [30, 31] using the basis function method (hereon SRTM) and the Logan non-invasive

graphical analysis [32] (hereon LNIGA) to generate parametric images of BPND [50]. For both

models, PXMOD requires a preliminary fit of a VOI-extracted target-region TAC whose

results serve as initial parameters for subsequent fitting of voxel TACs. Thus, a middle occipital

cortex TAC was employed at this stage, along with a pons TAC that served as a reference-

region for both models.

Bias compared to the simulated BPND value and coefficient of variance (CV) of the BPND

estimations were the criteria for the evaluation of FA-denoising in parametric quantification.

Estimated BPND values over the voxels of the high-binding region, the middle occipital cortical

VOI (n = 2098) and the low-binding one, the thalamic VOI (n = 1057) were extracted from

one simulated “subject”-simulated dynamic image of each noise and simulated BPND value

(baseline, +10% and +20%).

Parametric images of the two groups of simulated increase in BPND (+10% and +20%) were

compared to baseline simulated images with SPM. This comparison was performed for every

noise level separately. The evaluation criterion in this case was the percentage of voxels in

which the simulated statistically significant difference was highlighted with SPM (hereon, the

recovery). SPM12 (Wellcome Trust Centre for Neuroimaging, UCL, London, UK), integrated

in Matlab (R2016, Mathworks Inc, USA), was used. Comparison was performed by means of

two-sample t-test with differences being considered significant at a p<0.001 with cluster size

>100 voxels. This threshold was fixed after a preliminary series of SPM statistical comparisons

between two independent groups of simulated images with no simulated difference in BPND.

These comparisons were performed for all levels of noise. A threshold of 10 voxels already

eliminated all type I statistical errors arising from multiple comparisons, thus a threshold of

100 voxels was considered far more adequate [51]. No normalization or spatial smoothing was

applied as all the simulated images were created on the basis of the same VOI template.

To verify that the SPM-highlighted voxels were not merely an artifact of a bias in radio-

tracer kinetics induced by FA and that retaining two factors is a valid configuration for FA that

does not distort the original simulated raw signal, we plotted the averaged voxel-wise TACs

from the middle occipital and thalamic regions of one simulated raw scan and the respective

FA-corrected one. An analysis of the average percent normalized residuals between the true

simulated and FA-denoised dynamic simulated images’ TACs was also performed [45]. For a

given voxel i, the residual at time-point (t), is

RiðtÞ ¼ TAC true
i ðtÞ � TAC FA2c

i ðtÞ ð3Þ

and the percent normalized residuals

¼
RiðtÞ

TAC true
i ðtÞ

x 100 ð4Þ

The study described above in this section simulated low and high noise levels to evaluate if

denoising may benefit PET (low-noise) and SPECT (high-noise) imaging. However, IMZ and

Fig 1. Schematic presentation of the simulation experiment.

https://doi.org/10.1371/journal.pone.0203589.g001
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FMZ imaging described in this paper, employ quite distinct scanning protocols, with FMZ

PET requiring a much shorter scan (30 min) compared to IMZ SPECT (170 min). We thus

performed a secondary simulation study using TACs extracted from one of the subjects of the

PET study, using the same approach as described for the SPECT simulation. A +10% differ-

ence in BPND values was simulated in the middle occipital cortex and the thalamus. 10 simu-

lated brain volumes were generated for the baseline and the +10% BPND level. A Gaussian

noise with α = 10 was added (given that PET studies have lower noise levels than SPECT).

Denoising using FA was performed (two factors were retained). Voxel-wise quantification of

BPND was performed with the SRTM and parametric images were analyzed using SPM, as

described for the SPECT simulation study. The recovery (%) of voxels, in which a difference in

BPND was simulated, was the outcome of this study.

FA-denoising of human PET and SPECT data

This part of our study evaluated the effect of FA-denoising on the coefficient of variance of the

BPND estimates at the voxel level in real human PET and SPECT data. The FA-denoised

dynamic images from the four subjects were employed for quantification. Given that PXMOD

tool does not provide the estimated parameters’ coefficient of variation, voxel-wise estimations

were performed using PKIN tool. This procedure is computationally expensive and particu-

larly time-consuming. Thus, the estimations were limited to one axial slice of the images (slice

40 of the AAL atlas, comprised of roughly 3500 voxels that correspond to brain parenchyma).

TACs were fitted with the SRTM and the LNIGA in PKIN tool using the pons as reference-

region and BPND and associated coefficients of variation were estimated. CV associated to the

BPND values, estimated in the voxel level on this particular axial slice were averaged across the

subjects and compared between raw and FA-denoised data by means of a two-sample t-test. In

addition, parametric images (corresponding to axial slice 40) of BPND and CV were produced

for visual comparison.

Results

Table 1 presents the bias as percent difference from true simulated values of voxel-wise esti-

mated BPND in the occipital and thalamic voxels of raw and FA-denoised simulated images,

for all noise levels, along with percent CV. BPND estimated with the SRTM presents a bias

ranging from -2.45 to 3.66% depending on the level of simulated noise. In FA-denoised

images, the bias induced in average BPND estimates is higher, ranging from -10.66 to 7.63%.

Regarding LNIGA, bias in BPND values was larger in raw data. Indeed, increased simulated

noise resulted in an–almost- linear increase in bias in LNIGA estimates, ranging from -.4 to

-22.9%. In FA-denoised simulated images, bias ranged from -4.82 to 3.88%. Variability of

voxel-wise estimated BPND values was consistently lower in FA-denoised simulated images

than in corresponding raw ones with the same level of simulated noise, for both kinetic models

(Table 1).

Fig 2A and 2B presents the result of statistical analysis of difference in voxel-wise estimated

BPND between 1) the group of simulated images with baseline values and 2) a simulated 10 or

20% increase in occipital and thalamic regions, using SPM. Recovery (%) is plotted against the

level of simulated noise and the simulated difference in parameter values between the groups

of images. In general, recovery was consistently higher for lower noise levels. Detection of dif-

ference in the occipital cortex (the high binding region) was consistently more efficient than in

the thalamus (low binding VOI) for all simulated increases in the parameter values (10 and

20%) and simulated noise levels. Application of FA ameliorated recovery for both models (Fig

2A and 2B). The impact of FA2c was higher in SRTM than in LNIGA. Indeed, concerning
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SRTM results, an increase of up to 50% in recovery was observed, notably in the occipital vox-

els for both simulated levels of BPND while the increase in recovery in thalamic voxels was

more evident for the 20% simulated increase in BPND (Fig 2A). On the other hand, FA-denois-

ing of simulated images before quantification with LNIGA gave a roughly 20% higher recovery

of voxels compared to raw ones (Fig 2B). SPM analysis of difference in voxel-wise estimates of

BPND is not only associated with a higher number of voxels where significant differences are

found between the two groups of simulated images but also with higher T-values as depicted

in Fig 2C. This figure presents an axial slice of an SRTM-derived parametric image of T-values

for a low- and high-noise level as compared in raw and FA-denoised images. Regarding the

Fig 2. Recovery (%) (vertical axis) of voxels, in which a difference in radiotracer binding was simulated, plotted against the level of simulated noise (horizontal

axis) and the simulated difference in simulated parameters between the groups of scans (represented by different colors). Continuous lines represent recovery from

FA-denoised images while dashed lines represent raw-image derived recovery. Two subplots (a-b) correspond to the different quantification approaches. (c) An axial

slice of a parametric image of T-values derived from SPM analysis of difference of binding of two groups of parametric images produced after voxel-wise application of

SRTM for a low- (α = 10) and high- noise (α = 20) level as compared in raw and FA-denoised images. Note that FA-denoising leads not only to an increase in recovery

of simulated voxels but in an increase in T-values associated with the recovered voxels.

https://doi.org/10.1371/journal.pone.0203589.g002
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secondary simulation study using PET data, voxel recovery was higher in FA-denoised images,

as was the case in the SPECT simulation study (0% in the middle occipital cortex and 21.5% in

the thalamus in raw vs 63% in the middle occipital cortex and 50.9% in the thalamus in FA-

denoised images).

Fig 3 depicts the average TACs of the voxel-kinetics in the middle occipital and thalamic

regions, extracted from raw and FA-denoised simulated images. The respective TACs are

shown for all four levels of noise. Variability of radioactivity concentration in the VOIs was

consistently lower in FA2c simulated images than in raw ones for all noise levels. SD values of

radioactivity concentration are also shown in Fig 3. The average radioactivity kinetic profile in

the VOIs is highly similar in raw and FA-denoised simulated images for all noise levels, sug-

gesting that a minimal bias is introduced by the FA. This is further supported quantitatively by

the analysis of percent normalized residuals between TACs from raw and FA-denoised simu-

lated images that were close to zero for all four simulated noise levels (α = 10, 15, 20, 25) as

shown in Fig 4.

Parametric estimations of BPND and their associated CV values on one axial slice from a

real clinical scan are shown in Fig 5 for SPECT and Fig 6 for PET images. Upon visual inspec-

tion, FA2c application produces high-quality BPND images. The associated CV values are

remarkably smaller when binding is estimated on denoised images with respect to estimations

on raw images. For SRTM, average CV of BPND values estimated on raw data from four clini-

cal scans was 15.10% versus 3.57% in FA-denoised data. Similarly, for LNIGA, average CV val-

ues were 7.59% and 1.39%. In PET data, average CV of SRTM-derived BPND values in raw

data was 8.99% versus 3.26% in FA-denoised data. For LNIGA, respective average CV values

were 8.57% and 2.47%. Differences in CV values of BPND estimations from raw and FA-

denoised images were highly statistically significant (p<0.0001 for all differences).

Discussion

In this study, we evaluated the impact of a denoising method on the statistical analysis of dif-

ferences in radiotracer binding at the voxel level using SPM. Denoising methods are usually

evaluated on the basis of their effects on the variability of BPND. However, diminishing vari-

ability does not directly translate into more statistical power to detect differences at the voxel

level by SPM, as any possible (differential) bias that may be induced by the denoising method

is not taken into account. It is the reason for choosing to produce three-dimensional simulated

image studies and not just a set of TACs. Such a study is not feasible unless there is an a priori
knowledge of the true biological parameter values and group differences. For this reason, bio-

logical differences in binding in groups of simulated images were produced as a “ground

truth”. Levels of noise that were added in dynamic simulated images in this simulation study

were chosen to correspond to noise levels found in PET dynamic images (for α = 10 and 15)

and highly noised SPECT images (α = 20 and 25). This was verified by comparing median CV

of BPND values of SRTM applied in voxels from an axial slice of a real clinical SPECT and a

PET image of this study with corresponding values from simulated images (data not shown).

Regarding binding parameter estimates, FA2c and raw image-associated bias differed con-

siderably with respect to the kinetic model that was employed for quantification. BPND esti-

mates from SRTM in raw simulated images were minimally biased compared to estimates

from FA-denoised images. Biases from the application of FA in both series of simulated images

were noise-independent. On the contrary, binding estimates resulting from LNIGA on raw

simulated images presented the expected noise-dependent negative bias [1] that was minimal

and much less noise-dependent in estimates from FA-denoised simulated images. Consistently

Noise removal in parametric imaging
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Fig 3. Average TACs over the voxels in the occipital and thalamic VOI, extracted from raw (RAW-Occ and RAW-Thal respectively) and FA-denoised

(FA2c-Occ and FA2c-Thal, respectively) simulated images. The same TACs are shown for all four levels of noise simulation in comparison to

corresponding TACs from the simulated, un-noised dynamic image (SIMUL-Occ and SIMUL-Thal). FA application does not induce any considerable bias

in voxel-wise kinetics and markedly diminishes its variability.

https://doi.org/10.1371/journal.pone.0203589.g003
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across SRTM and graphical methods, variability of BPND estimates resulting from FA-

denoised simulated images was lower than that from corresponding raw ones.

FA2c application on simulated dynamic images results in a considerable amelioration in

terms of detection of a BPND difference in the voxel level for SRTM and LNIGA with this effect

being particularly evident for high-binding voxels. Interestingly, the effect is more evident for

estimates resulting from the application of SRTM than it is for results of graphical methods,

perhaps due to the marked increase in precision of BPND estimates and in spite of the induc-

tion of bias. The basis function method SRTM [31] is already more resistant to noise than the

original SRTM [30] and the results of this study demonstrate that further amelioration is possi-

ble if FA-denoised images are quantified with the basis function method SRTM. Quantifying

raw simulated images with the SRTM was inferior to LNIGA in terms of voxel recovery. How-

ever, application of SRTM on FA-denoised simulated images proved not only superior to raw

but also to denoised-image LNIGA estimates. Denoising with FA substantially diminishes the

Fig 4. Average percent normalized residuals between the true simulated and FA-denoised dynamic simulated image TACs for all time-frames

and for the four levels of noise (marked with different colors).

https://doi.org/10.1371/journal.pone.0203589.g004
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variability of voxel-wise dynamic radioactivity concentration, as demonstrated in Fig 3 without

induction of any considerable systematic bias as TACs are highly similar for all simulated

noise levels. Moreover, a quantitative analysis of the possible bias that FA could induce to the

voxel kinetics confirmed that it is, indeed, negligible. Normalized residuals from the compari-

son of TACs from FA-denoised simulated images (Eqs 3 and 4) with the true simulated un-

noised dynamic image take average values close to zero for all noise levels (Fig 4). This rules

out that any distortion in radiotracer kinetics could underlie the increase in recovered voxels

and that this increase in voxel recovery indeed results from the higher precision of FA-derived

BPND estimates.

Beyond simulations, applying FA2c in real human SPECT and PET data demonstrated the

highly significant effect of denoising on the precision of BPND estimation. While BPND esti-

mated on raw images provides high quality images, the CV of these values is high, both in

SPECT and PET images. With respect to this parameter, denoising with FA not only provided

BPND images of excellent quality but also remarkably augmented the precision of these param-

eters, as shown in Figs 5 and 6.

Fig 5. Parametric BPND (ml/ml) and CV (%) values of binding parameters obtained from voxel-wise quantification using SRTM and LNIGA on an axial slice on a

[123I]IMZ SPECT image from one participant of the study. Denoising with FA gives equal, if not superior quality parametric images of BPND while markedly

diminishes its variability.

https://doi.org/10.1371/journal.pone.0203589.g005
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The choice of the number of factors in FA lies on the kinetic properties of the [123I]IMZ

and [11C]FMZ. In the present study, given the minimal non-specific component of the kinetics

of these radiotracers [52], the retention of only two prevalent factors seems biologically justi-

fied and should correspond to the specific and free component of the radioactive signal. This

argument is also supported by the resemblance of TACs from simulated average raw and FA-

denoised simulated images (Fig 3) and the analysis of residuals from the comparison of TACs

from FA-denoised simulated images (Eqs 3 and 4) with the true simulated un-noised dynamic

image take average values close to zero for all noise levels. Moreover, preliminary evaluation of

FA with retention of three and four prevalent factors gave results that were virtually indistin-

guishable from raw data in terms of recovery of voxel-wise differences in binding using SPM

(data not shown).

The number of image-factors that are decomposed by FA correspond to biologically mean-

ingful components of the radiotracer kinetics, even though the separate identification of the

different factors may need more complex scanning protocols [14]. Nevertheless, this is not

problematic in the context of a denoising study, in which the distinct image-factors are not

Fig 6. Parametric BPND (ml/ml) and CV values of binding parameters obtained from voxel-wise quantification using SRTM and LNIGA on an axial slice on a

[11C]FMZ PET image from one participant of the study. As with SPECT images of Fig 5, denoising with FA gives equal, if not superior quality parametric images of

BPND while markedly diminishes its variability.

https://doi.org/10.1371/journal.pone.0203589.g006
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examined separately but they are added together in one denoised image. Indeed, FA is a two-

step procedure: in the first step, a principal component analysis (PCA) is performed [45]. In

the second step, constraints are used to extract biologically meaningful image-factors. In the

context of noise removal, only the first step is performed. Consequently, the results FA-denois-

ing are essentially identical to the results of PCA.

The results of our study point to the potential for increase of statistical power of molecular

neuroimaging studies with FA-denoising. FA is, to our point of view, a powerful tool in both

SPECT and PET clinical imaging, as its positive impact was evident for the whole range of sim-

ulated noise levels, corresponding to low “PET-level” (α = 10) to high “SPECT-level” noise

images (α = 25). Interestingly, recovery of voxels from FA2c-processed images with a high

“SPECT-level” noise was comparable to the recovery from raw images with a low “PET-level”

noise, particularly when SRTM was employed for quantification (Fig 2A). Furthermore, the

secondary simulation study based on FMZ PET data demonstrated that the beneficial effect of

FA-denoising was observed even with dynamic images with a duration as short as 30 min, thus

further supporting the applicability of denoising in voxel-wise quantification. In the real clini-

cal imaging data (Figs 5 and 6), FA significantly augmented the precision of parametric bind-

ing estimations on both SPECT and PET real clinical images. Denoised SPECT and PET

images provided BPND values with nearly identical variability (in terms of CV). These findings

suggest that 1) both SPECT and PET could benefit from FA and 2) extending the use of

dynamic SPECT (that has the advantage of being cheaper and more available than PET) is fea-

sible in clinical neuroimaging research with comparable statistical power to PET, provided

that denoising is applied. In the present study, in terms of clinical utility, another potential

application of FA could be in radioactive dose reduction that is necessary to minimize expo-

sure of participants in longitudinal studies. Reducing dose is directly translated into aug-

mented noise, an effect that could be corrected for by FA. Finally, in the case of radiotracers

that have an inherently low binding in the brain (e.g. TSPO radiotracers) voxel-wise statistical

analysis may be considerably optimized.

There are several limitations in our study. First, no comparison of FA with other denoising

methods is performed. Indeed, the objective of this paper was to demonstrate the benefits of

denoising on voxel-wise quantification and SPM analysis in molecular neuroimaging, not nec-

essarily of FA in particular, which is employed here as an example of a denoising method. The

quality of other denoising methods that have been recently described for human and small ani-

mal imaging [17, 18, 28, 45, 53, 54] is not challenged. Nevertheless, these methods have funda-

mental differences with each other and they may thus have a different impact on voxel-wise

quantification. As a consequence, the results of this study may not be generalized to all denois-

ing methods without prior validation. A second limitation is that we used the scans from a pre-

vious study of our group that were reconstructed using a filtered backprojection (FBP) method

[33]. FBP has been largely replaced nowadays and noise characteristics may differ between the

various reconstruction methods. Nevertheless, in all types of image reconstruction, the impact

of noise on dynamic images and especially in voxel-wise quantification remains an important

issue [17, 18, 28, 45, 53] and, in accordance with the conclusion of the present work, denoising

dynamic images may enhance the statistical power of studies using SPM for voxel-wise quanti-

fication analysis. Another limitation is that the noise model was quite simple and added

directly on TACs. Indeed, more complex noise models, using Monte Carlo simulations as well

as using noise addition in the sinogram level should be more realistic [55, 56]. Overall, despite

the simplicity of the employed methods, the present paper presents a straightforward message,

that there is a need for further application of voxel-wise quantification in the study of brain

physiology and pathology. The results of this paper constitute a demonstration of the power of

denoising for this purpose.
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FA is based on the recognition of kinetic patterns of a radioactivity signal and thus is only

applicable to dynamic PET and SPECT studies. This means that static images may not be

denoised with FA. However, static images inherently have lower noise levels than the short-

duration frames of dynamic studies, maybe having no need for extra denoising. This does not

compromise the applicability of the proposed method. Indeed, dynamic scan protocols in

molecular neuroimaging are widely employed, particularly in the context of research neuro-

transmission studies.

Conclusion

In the current study, denoising of dynamic [123I]IMZ and [11C]FMZ images is employed. A

simulation study using [123I]IMZ dynamic images demonstrates that denoising ameliorates

the extraction of voxel-wise differences in radiotracer binding, detected using SPM, when

parametric quantification is performed with SRTM and LNIGA. Thus, dynamic image denois-

ing could, after appropriate validation for other radiotracers, considerably optimize clinical

studies and detection of biologically meaningful differences in the voxel level.
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