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Abstract: FLT3 mutations are the most common genomic alteration detected in acute myeloid
leukemia (AML) with a worse clinical prognosis. The highly frequent FLT3 mutations, together
with the side effects associated with clinical prognosis, make FLT3 promising treatment targets
and have provoked the advancement of FLT3 inhibitors. Recently, numerous FLT3 inhibitors were
actively developed, and thus the outcomes of this aggressive subtype of AML were significantly
improved. Recently, midostaurin and gilteritinib were approved as frontline treatment of AML and
as therapeutic agents in the recurred disease by the United States Food and Drug Administration.
Recently, numerous promising clinical trials attempted to seek appropriate management in frontline
settings, in relapsed/refractory disease, or after stem cell transplantation in AML. This review
follows numerous clinical trials about the usefulness of FLT3 inhibitors as frontline therapy, as
relapsed/refractory conditioning, and as maintenance therapy of stem cell transplantation. The
cumulative data of FLT3 inhibitors would be important clinical evidence for further management
with FLT3 inhibitors in AML patients with FLT3 mutations.
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1. Introduction

The numerous molecular conformations of acute myeloid leukemia (AML) have
become obvious over the past decade. FMS-like tyrosine kinase 3 (FLT3) receptor-Internal
tandem duplications (ITD) and tyrosine kinase (TK) mutations can rise and predict worse
clinical outcomes [1].

FLT3 is a type III receptor tyrosine kinase (RTK) including KIT, FMS, and PDGFR. It
consists of five immunoglobulin-like domains in the extracellular region, a juxtamembrane
(JM) domain, a TK domain divided by a kinase insert domain, and a C-terminal domain in
the intracellular region [2].

FLT3 is represented on lineage-restricted progenitor cells and thus FLT3 ligand (FL)
could activate FLT3. Thus, induced FLT3 activation also stimulates the activations of
numerous signal pathways [3]. In this pathway, FLT3 could be expressed on leukemic blasts,
and activation of FL signaling could stimulate proliferation and reduce apoptosis of the
leukemic blasts [2,4]. Previously, an ITD has been found in the JM domain-coding sequence
of FLT3-ITD [5], while a missense point mutation at the D835 residue and deletions, and
insertions in D835 were identified in FLT3-TKD mutations [6].

FLT3-ITD and -TKD mutations possess about 25 and 5% of AML patients [7–9]. Due
to the fact that FLT3 mutations are the most common mutations with a worse outcome,
FLT3 mutation is one among several significant molecular markers for management of
AML [10]. Despite this disparity, until now standard 7 + 3 induction therapy has remained
the front-line standard chemotherapy for AML.
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Recently, the advent of FLT3 inhibitors has made possible the expansion of therapeutic
schemes for application in FLT3-mutated AML patients. In 2017, the Food and Drug
Administration (FDA) approved the addition of the targeted therapeutic agent midostaurin
for patients treated with chemotherapy and for patients with newly diagnosed FLT3-
mutated. Additionally, gilteritinib, a small-molecular inhibitor of FLT3, was approved by
the FDA for the management of relapsed or refractory (R/R) AML with FLT3 mutation
according to the randomized phase III ADMIRAL study.

Although FLT3 inhibitors have the potential to improve the clinical outcome of pa-
tients in a high-risk subset with FLT3 mutations, questions surrounding the therapeutic
applications of these agents in several complicated conditions remain. FLT3 inhibitors
were applicated for leading to an increment of therapeutic efficacies in FLT3 mutated
AML patients. In this review, we would summarize the characteristics of FLT3 mutations
and discuss frontline therapy, R/R management, and maintenance therapy involving
FLT3 inhibitors.

2. FLT3 Genetic Aberrations

FLT3 is represented in the acute leukemic cells and the incidence of the mutation occurs
in about 30% of patients [11]. The incidence of the FLT3-ITD mutation is about 25%, while
the FLT3-TKD mutation is about 5%. Both FLT3 mutations are active mutations, associated
with ligand-independent, or linked with FLT3 receptor signaling, thereby stimulating
proliferation and survival of the leukemic cells. Signal aberration onsets in correlation with
retained FLT3-ITD in the endoplasmic reticulum (ER), with trafficking of the receptor out
of the ER-Golgi impaired by the presence of the duplicated domain [12].

Between mutation mechanisms, both FLT3 mutations read to systemic activation of
FLT3 signaling, and the signal pathways between individual mutations were different.
The presence of ITD could read to activation of TKD, and FLT3 signal by ITDs is aberrant,
particularly stimulating STAT5 and the downstream effectors, such as Pim-1 [13].

Activation of FLT3-ITD mutation is relevant to STAT5, PI3K/Akt, and MAPK/ERK [13].
Meanwhile, activation of FLT3-TKD mutation is associated with Akt and ERK, not STAT5.
Thus, FLT3-mutated AML clinically showed worse relapse-free survival (RFS) and overall
survival (OS) [12].

Interestingly, prognostic scoring is affected by both the mutation of allele burden and
co-existing other mutations. According to the FLT3 mutation risk stratification system, a
high allelic ratio (high AR; high FLT3-ITD), typically identified as an FLT3-ITD to FLT3-WT
ratio of ≥0.5, is correlated with poorer prognostic risk [14,15]. A low AR (low FLT3-ITD)
is correlated with favorable risk in the intermediate-risk group with coincident nucle-
ophosmin 1 (NPM1) mutation [10]. The associations are reflected in the 2017 European
LeukemiaNet (ELN) risk stratification of AML [16]. Meanwhile, FLT3-TKD mutations
mean point mutations within the receptor’s activation loop stabilizing and activating the
kinase conformation. However, the clinical prognosis of FLT3-TKD mutation in AML risk
assessment is less obvious.

3. Clinical Influence of FLT3 Aberrations in Newly Diagnosed or
Relapsed/Refractory Settings

The FLT3-ITD mutated group is relevant to a notably poor outcome, with an increasing
risk of relapse and decreasing OS. The analysis showed that FLT3-ITD mutated group had
shorter OS and RFS. In numerous data analyses, only a weak association between FLT3-TKD
and survival (OS or RFS) was shown [17–19].

The AR, ITD length, chromosome, and NPM1 mutation seem likely to further affect
the clinical influence of FLT3-ITD mutations [20]. In some data, allelic burden reflected
by the FLT3-ITD mutation might be associated with clinical outcomes. For instance, in a
study evaluating the clinical impact of FLT3-ITD in subgroups with newly diagnosed AML
with AR > 0.78 was significantly linked to lower OS and disease-free survival (DFS) [21]. In
another similar study in a group with newly diagnosed AML with FLT3-ITD mutation, a
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high AR (>0.51) and FLT3-ITD insertion site in TKD1 were associated with low complete
remission (CR) and worse prognosis [22]. Particularly, patients did not receive FLT3
inhibitors. In the RAFITY study, OS was increased by midostaurin therapy versus placebo
in groups with high FLT3-ITD and low ITD allelic burdens, demonstrating that both groups
with high and low mutant-to-wild type ratio might gain a profit from the addition of an
FLT3 inhibitor [23]. However, other studies demonstrated that the risk of relapse is not
correlated with AR [24]. In contrast, the FLT3-ITD burden was shown to reflect worse OS
and RFS.

Clonal evolution such as FLT3-ITD is especially important because FLT3 mutations in
relapsed conditions have been associated with inferior OS than that of FLT3-wild-type (WT).
In particular, FLT3-ITD mutations at relapse were shown to be a negative prognostic factor
independent of other factors in AML patients who failed induction therapy. Moreover,
other data demonstrated that FLT3-ITD mutated AML patients showed a high relapse
rate in salvage chemotherapy and even after a potentially curative allogeneic stem cell
transplantation (allo-SCT).

The FLT3-ITD mutations in R/R AML is correlated with decreased durability of CR,
increased risk of relapse, and lowered OS after standard-of-care (SOC) therapy [25–27].

4. FLT3 Inhibitor Classifications

The development of first-generation FLT3 inhibitors was not naturally associated with
FLT3 specificity. Therefore, first-generation FLT3 inhibitors were relatively non-specific
inhibitors with additional receptor targets such as c-Kit, platelet-derived growth factor
receptor (PDGFR), and vascular endothelial growth factor receptor (VEGFR). The second-
generation FLT3 inhibitors were developed to have more potent FLT3 inhibitory activity.

Moreover, FLT3 inhibitors are separated into type I and II classifications on the basis
of the interaction mechanism with the receptor. All FLT3 inhibitors interrupt the binding
of ATP to the tyrosine kinase domain, inhibiting phosphorylation and activation of the
FLT3 receptor [6,28]. Type I inhibitors such as lestaurtinib, midostaurin, crenolanib, and
gilteritinib, bind to FLT3 with active or inactive forms of molecular structures, while type II
inhibitors such as sorafenib, quizartinib, and ponatinib, connect with a hydrophobic area of
FLT3 in the only inactive form of molecular structure. In the genetic data, D835 aberrations
in the TKD induce FLT3 to favor the active conformation, inhibiting the activity of type
II FLT3 inhibitors to interact and block FLT3-TKD. Thus, type II FLT3 inhibitor therapy
over time might select for D835 mutations and result in acquired resistance, while type I
inhibitors could retain activity at both FLT3 mutations [29].

5. Front-Line Therapy for FLT3-ITD-Mutated AML
5.1. Sorafenib

Sorafenib is a first-generation inhibitor of FLT3 with various kinase inhibitory activities,
such as RAF-1, VEGFR, c-KIT, PDGFR, ERK, and FLT3 [30,31]. Moreover, it has a potent
anti-cancerous effect on AML cells with FLT3 mutation. The completed FLT3-ITD inhibited
activity is with an IC50 of 69.3 ng/mL [32].

Numerous mechanisms can interpret the clinical impact of sorafenib in managing AML.
First, sorafenib could stimulate secretion of IL-15 by AML cells with FLT-ITD mutations and
increase the survival duration of AML patients with FLT3-ITD mutation [33]. Moreover,
persistently low blast rate, highly proportioned CD8 + lymphocytes in the bone marrow
(BM), and highly expressed COL4A3, TLR9, FGF1, and IL-12 genes have been shown in
patients who received sorafenib therapy [34].

In addition, sorafenib was shown to inhibit Src kinase-mediated STAT3 phosphoryla-
tion and reduce the representation of apoptosis regulatory proteins, Mcl-1 and Bcl-2 [35].
Finally, sorafenib could decrease treatment-triggering of Smac mimetic-induced necroptosis
in AML cells resistant to apoptosis [36].

Sorafenib in combination with conventional therapy was studied for AML therapy.
Rolling et al. showed that a randomized, placebo-controlled SORAML trial investigates



Int. J. Mol. Sci. 2022, 23, 12708 4 of 19

the addition of sorafenib to standard chemotherapy in 276 newly diagnosed AML patients
younger than 60 years [37]. The addition of sorafenib led to improved event-free survival
(EFS) (median, 21 vs. 9 months) compared to the placebo. Additionally, 3-yr EFS was
superior to sorafenib (40% vs. 22%, p = 0.013). Moreover, RFS was higher in the sorafenib
group (56% vs. 36%). However, OS was not different (Table 1). OS seemed to improve with
sorafenib treatment in those with higher FLT3-ITD ARs or receiving transplants in the first
CR, but the study was not powered to detect statistical significance.

Serve et al. showed a phase III study of sequential sorafenib therapy after intensive
chemotherapy to older patients [38]. The data showed no differences between the overall
response rate (ORR), EFS, and OS in the overall group and FLT3-ITD-positive group.
Sorafenib with conventional chemotherapy was not beneficial in the elderly population.

AML cells with FLT3-ITD mutations showed meaningful responses in sorafenib ther-
apy in several in vitro and ex vivo data. A phase I study of 50 patients with R/R AML,
including 28 with FLT3-ITD mutations and 6 with both ITD mutated and TKD mutated,
administered sorafenib therapy. Five of the patients with FLT3-ITD mutations achieved
CR/CRi (complete responses [CR]/complete responses with incomplete hematologic re-
covery), while BM or peripheral blood (PB) blasts were significantly reduced in the other
17 patients [39]. Therefore, sorafenib showed significant activity in AML with FLT3-ITD
mutations. However, to obtain more effective data, further data such as combination
therapy with other agents are needed.

Sorafenib was combined with standard therapy in the SORAML phase II trial. In the
study, 134 patients were randomized to be treated with sorafenib plus chemotherapy and
the other 133 patients did not receive sorafenib [40]. In the data, 23 patients have AML with
FLT3-ITD mutations (17%). Sorafenib group had higher 5-year EFS (41% vs. 27%; p = 0.011)
and higher RFS (53% vs 36%; p= 0.035) compared to the placebo group. However, 5-year
OS was not different (61 vs 53%; p = 0.282) (Table 1).

Furthermore, sorafenib has been studied combined with hypomethylating agents in
FLT3-mutated patients. The phase II trial of sorafenib with 5-azacitidine (5-AZA) have been
studied in FLT3-mutated AML patients with both R/R and newly diagnosed disease [41,42].
These data demonstrated hopeful efficacy and safety profiles but phase III trials are needed
to further confirm the benefits.

5.2. Midostaurin

Midostaurin is a first-generation inhibitor targeting both ITD and TKD mutations with
widely inhibition effect against protein kinase C, c-KIT, VEGFR, and PDGFR-β [43,44].

It is an orally administered type I inhibitor with broad specificities that include WT
and mutated FLT3, VEGFR, c-KIT, and PDGFR. Midostaurin could prevent the signaling
pathways regulated by several kinases, and thus growth arrest was led. It could be activated
on FLT3-ITD and TKD-derived kinases. It is also metabolized by CYP3A4, leading to several
drug interactions [45].

Midostaurin was introduced as a therapeutic agent for R/R AML patients and cytore-
duced or killed PB leukemic blasts in FLT3-mutated or FLT3-WT patients. It was approved
in 2017 by the US FDA for the management of AML patients with FLT3 mutations and
has also recently been accepted for those newly diagnosed with the FLT3 mutation and or
systemic mastocytosis.

In one data point, therapeutic schedules of different dosing midostaurin combined
with chemotherapy in 69 AML patients younger than 60 years with FLT3 mutation or
FLT-WT showed CR rates, 80% in a twice daily 50 mg dose cohort (n = 40) [43]. The
1-year OS possibility and 2-year OS possibility were 85% and 62% in the group with FLT3
mutation, and 78% and 52% in AML those with WT, respectively. The median OS of the
FLT3 mutation group was not different from the WT group, resulting in the assumption
that the added midostaurin counteracts the negative influence of the mutations and the
rising clinical outcomes of the disease group.
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The RATIFY study showed adding midostaurin to standard chemotherapy followed
by maintenance therapy for 1 year led to a significant improvement in OS (74.7 months vs.
25.6 months, p = 0.009) and EFS (8.2 months vs 3.0 months, p = 0.002) but not CR between
midostaurin arm and placebo arm [44]. Moreover, the survival benefits were not different
based on the kind of FLT3 aberrations, including high FLT3-ITD, low FLT3-ITD, and FLT3-
TKD (Table 1). The data allowed the approval of midostaurin for the management of AML
patients with FLT3 mutations.

5.3. Lestauritinib

Lestauritinib is an orally administered polyaromatic indolocarbazole, which was
grown as an inhibitor of tropomyosin receptor kinase. Lestauritinib could target TrkA,
TrkB, and FLT3 and also inhibits JAK2 and JAK3 [23,46,47].

In a study, AML patients with FLT3 mutations were randomized to receive lestaurtinib
or to receive a placebo during intensive chemotherapy. No difference was seen between
lestauritinib and placebo in 5-year OS (46% vs. 45%; p = 0.3) and 5-year RFS (40% vs. 36%;
p = 0.3) (Table 1) [48]. In a survey analysis, improved OS with concomitant azole antifungal
use was associated with sustained FLT3 inhibition of >85%. The findings indicate clinical
benefit according to the degree of FLT3 inhibition. Although impressive overall, the
remission rates were similar between the cohorts (p = 0.4).

5.4. Crenolanib

Crenolanib is FLT3 inhibited against ITD and TKD mutations. Moreover, it could
inhibit PDGFR but not c-KIT [49]. The dual FLT3 inhibitory characteristic is interesting
because it was observed that relapse after an initial response to an FLT3 inhibitor could
appear from acquired TKD mutations such as D835 and F691 positions. The results showed
high efficacy in treating patients with newly diagnosed FLT3-mutated AML, showing an
ORR of 96% (CR, 88%) and an OS rate of 88%, with a median follow-up of 6.2 months
(Table 1) [50].

Table 1. Clinical trials of FLT3 inhibitors as front-line therapy in AML patients.

Agent (Reference
Number)

Study Design and
Population Therapeutic Schedule Treatment Outcomes Adverse Effects

First generation FLT3 inhibitors

Sorafenib [37]

Phase II (n = 276)
ND AML, ≤60 yrs
FLT3 mutation, not
required
Median age, 50 yrs

Induction
-Cytarabine 100 mg/m2/d
D1–7
-Daunorubicin 60 mg/m2/d
D3–5
-Sorafenib 400 mg bid
D10–19

vs. placebo
Consolidation (or Allo-SCT)
-HDAC +/− sorafenib
400 mg bid

D8 to 3 days before next
cycle
Maintenance
sorafenib 400 mg bid vs.
placebo

In the overall group, in placebo vs.
sorafenib,

mOS, not different
3 yr-EFS 22% vs. 40% (p = 0.013)

In FLT3-ITD+ group,
mEFS (5 vs. 6 mo), mRFS (18 vs.

6 mo) and
mOS (not reached vs.

19 mo)—all not different
→≤60 yrs, sorafenib with
standard CTx
→ anti-leukemic effect.

Diarrhea
Bleeding
Cardiac event
Hand-foot-skin
reaction

Sorafenib [38]

Phase III (n = 211)
ND AML
Age > 60 yrs
FLT3 mutation not
required
Median age, 68 yrs

Standard
induction/consolidation
+/− sorafenib
Cytarabine, 100 mg/m2/d,
D1–2
Daunorubicin 60 mg/m2/d.
D3–5
Sorafenib 400 mg bid on D3
vs. placebo

CR, sorafenib vs. placebo→ 48%
vs. 60% (p = 0.12)
ORR, 57% vs. 64% (p = 0.34)
In FLT3-ITD+, CR 40% vs. 72%
(NS)
Overally, median EFS, 5 vs. 7 mo
(p = 0.88)
Median OS 13 vs. 15 mo (p = 0.12)
→ standard CTx with sorafenib,
not beneficial in elderly AML pts.

Not determined
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Table 1. Cont.

Agent (Reference
Number)

Study Design and
Population Therapeutic Schedule Treatment Outcomes Adverse Effects

Midostaurin [43]

Phase IB (n = 69)
Age of AML, 18–60 yrs,
KPS ≥ 70
FLT3 mutation not
required
Median age, 39 yrs

Cytarabine 200 mg/m2/d,
D1–7
Daunorubicin, 60 mg/m2/d,
D1–3
Midostaurin 50/100 mg bid
D1–7
→ D15–21 or D8–21

Overally, CR—80%
In FLT3 mutation+→ CR 12/13
(92%)
In FLT3 mutation+→
1-yr-DFS—50%/1-yr-OS—85%
2-yr-OS—62%

Nausea,
vomiting,
Diarrhea

Midostaurin [44]

Phase III (n = 717)
Age of AML, 18–59 yrs
FLT3 mutation, required
Median age, 47.9 yrs

Cytarabine 200 mg/m2/d,
D1–7
Daunorubicin 60 mg/m2/d
D1–3
Midostaurin or
placebo—D8–21
Midostaurin D 8–21 with
HDAC
Midostaurin maintenance
for 12/28
for 28-day cycles

CR, 59% in midostaurin vs. 54%
in placebo (p = 0.15)
mOS, 74.7 mo vs. 25.6 mo
(p = 0.009)
4-yr OS, 51.4% vs 44.3% (NS)
mEFS, 8.2 vs. 3.0 mo (p = 0.002)
4-yr EFS, 28.2% vs. 20.6% (NS)

Anemia, rash,
nausea

Lestaurtinib [48]

Phase III (n = 500)
ND AML/high risk
MDS
Suitable for intensive Tx
Presence of FLT3
mutation,

Various intensive Tx
Lestaurtinib 80 mg bid
starting,
Increase to 100 mg bid If
tolerable.

ORR—not different, lestauritinib
group vs. control
5-yr OS, 46% in lestauritinib vs.
45% in control (p = 0.3)
5 yr-RFS, 40% vs. 36% (p = 0.3)
Lestaurtinib with IC, feasible but
no clinical benefit

Nasea, Diarrhea,
Bilirubin ↑

Second generation FLT3 inhibitors

Crenolanib [50]

Phase II (n = 26)
Newly diagnosed AML,
≥18 yrs
FLT3 mutations,
required
Median age, 55 yrs

Induction
Cytarabine 100 mg/m2/d,
D1–7
Daunorubicin 90 mg/m2/d
or idarubicin 12 mg/m2/d
D1–3
crenolanib 100 mg tid start
on D9 until 72 hrs before
next cycle

ORR, 96%, (CR, 88%)
During median F/U 6.2 mo, OS
rate, 88%

Periorbital
edema,
LFT elevation,
Nausea, Rash

ND, newly, diagnosed; R/R, relapsed/refractory; CR, complete remission; CRp, Complete Remission with
incomplete platelet recovery; DFS, disease-free survival; OS, overall survival; ORR, overall response rate; HDAC,
high-dose ara-C; RFS, relapse-free survival.

6. FLT3 Inhibitors in Patients with Relapsed/Refractory Disease Unsuitable for
Standard Therapy
6.1. Sorafenib

Ravandi et al. showed the efficacies of combined therapy with sorafenib and 5-
AZA in 43 AML patients. In the data, 40 patients had FLT3-ITD mutations [51]. In all
patients, 5-AZA was intravenously administered at 75 mg/m2/day for seven days and
oral sorafenib was continuously administered. The response rate (RR) was 46%, the CR
rate with incomplete count recovery (CRi) was 16%, and the partial response (PR) rate
was 3% (Table 2). The combination therapy was well-tolerated, although several patients
experienced grade 3–4 rashes.

Another study also showed the efficacy and tolerability of combination therapy in
newly diagnosed AML patients with FLT3 mutations inappropriate to standard chemother-
apy [52].

FLT3-mutated AML patients who received frontline therapy were analyzed. Twenty-
seven patients with untreated AML with FLT3 mutations (median, 74 years) were enrolled
in 2 separate protocols of 5-AZA with sorafenib. The ORR was 78% (CR, n = 7 [26%];
CRi (complete response with incomplete count recovery)/CRp (CR except for incomplete
platelet recovery), n = 12 [44%]; PR, n = 2 [7%]). The patients were treated during a median
of 3 therapeutic cycles (1– 35 cycles). The median remission duration of CR/CRp/CRi
was 14.5 months (range, 1.1–28.7 months). Three patients including 1 with CR and 2
with CRi, received allo-SCT. The median OS for the entire group was 8.3 months, and
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9.2 months in 19 responders. The regimen was well-tolerated by elderly patients with
untreated FLT3-mutated AML with no early deaths.

6.2. Midostaurin

In a phase II study, the patients received midostaurin (50 mg bid or 100 mg bid) in
patients with R/R AML or high-risk MDS with FLT3 mutations or WT [53]. In the data,
none of the patients achieved CR. However, the blast counts were reduced in 71% of the
FLT3-mutated AML patients and 42% of those without the mutations. The data showed
the clinical impact of midostaurin in both patients with FLT3 mutations and WT (Table 2).

In the other phase I/II study, the combination of midostaurin and the hypomethylating
agent AZA in 54 untreated and R/R AML and high-risk MDS patients showed a modest
overall response rate of 26% (1/54 CR, 6/54 CRi, 6/54 morphologic leukemia-free state,
and 1/54 PR) [41]. The median response duration was 20 weeks, and the median overall
survival was 22 weeks at a median follow-up of 15 weeks (range, 1–85 weeks). The longest
response duration was noted in patients without prior exposure to FLT3 inhibitors and
patients who did not have a previous SCT.

6.3. Gilteritinib

Gilteritinib is a dual FLT3/AXL inhibitor with clinical effects against TKD mutations,
but without working against KIT. The increased Axl-1expression is also associated with a
resistance mechanism to other FLT3 inhibitors, such as midostaurin and quizartinib [42].

In comparative phase I/II data in dose-escalation and dose-expansion cohorts with
R/R AML patients received gilteritinib, it was administered once a day in dose-escalation
and dose-expansion cohorts (20 mg, 40 mg, 80 mg, 120 mg, 200 mg, 300 mg, or 450 mg) [54].
In the expansion cohort, 120 mg and 200 mg gliteritinib were administered to R/R AML
patients with FLT3 mutations. Twenty-three patients were present in the dose-escalation co-
hort and 229 patients were in the dose-expansion cohort. In the data, ORR was 40% (Table 2).
Dose-limiting adverse effects of grade 3 diarrhea and elevated aspartate aminotransferase
(ALT) levels at 450 mg/day were observed.

To investigate the clinical efficacy of gilteritinib in a phase I study in Japanese patients
with R/R AML, gilteritinib was administered in daily escalating doses in 6 cohorts (20,
40, 80, 120, 200, and 300 mg/day) [55]. In one patient, grade 3 tumor lysis syndrome was
seen at 120 mg/day. In two patients, grade 3 elevated lactate dehydrogenase, amylase,
and creatine phosphokinase levels, and syncope occurred at 300 mg/day. Of the five FLT3-
mutated patients, ORR was 80%. In this study, 120 mg/day of gilteritinib was established
as the recommended dose in Japanese patients.

The phase III ADMIRAL trial was compared with gilteritinib and salvage chemother-
apy in 371 R/R AML patients with FLT3 mutations [56]. The median age of the 371 patients
was 62 years (range, 19–85 years). Gilteritinib (n = 247) was given at 120 mg/day, and the
patients were randomized 2:1 to one of four salvage chemotherapy regimens (LDAC, AZA,
MEC, or FLAG-IDA) (n = 124). In the interim analysis of the gilteritinib group, the CR/CRh
(CR/complete remission with partial recovery of peripheral blood counts) rate was 21%, the
CR rate was 11.6%, and the CRh rate was 9.4% (Table 2). The median DOR was 4.6 months
(range, 0.1–15.8 months). In the final analysis, the gilteritinib group hadsignificantly higher
OS than the SC group (9.3 months vs 5.6 months, p = 0.0007). Additionally, the CR/CRh
rate in the gilteritinib group was higher than in the SC group (34% vs. 15.3%, p = 0.0001).

6.4. Quizartinib

Quizartinib is a second-generation TKI that has more selected activity for FLT3 than
first-generation inhibitors. However, it has still non-specific efficacy to other targets such
as c-KIT and PDGFR. The excellent efficacy of quizartinib as an FLT3 inhibitor was proved
in clinical data of R/R AML groups that received single-agent quizartinib.

Quizartinib was shown to have a highly selective impact on FLT3 in both FLT3-ITD-
mutated and WT cell lines [57–59]. A phase I dose-escalation trial of quizartinib was
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investigated in 76 R/R AML patients, regardless of FLT3-ITD mutation status (Table 2) [60].
In the data, ORR in with FLT3-ITD mutated group was higher than WT group (53% vs.
14%, respectively). The data demonstrated that quizartinib has more specific activity in
patients with R/R AML with FLT3-ITD mutations [61].

In addition, a randomized, open-label, phase IIb study evaluated to perform the
potency and security of quizartinib in 76 R/R AML patients with FLT3-ITD mutations
who received second-line remedial therapy or transplantation [62]. The patients were
randomized to take quizartinib at 30 mg/day or 60 mg/day. In the data, both groups had
CRc (composite CR, CR + CRp + CRi) rate of 47%. The ORR of each group was 61% and
71% and the continuation of CRc was 4.2 and 9.1 weeks, and the median OS time was
20.7 and 25.4 weeks, respectively (Table 2). The results showed that 60 mg/day was more
effective than 30 mg/day.

In addition, a phase II trial investigated the combined therapy of quizartinib with
low-dose cytarabine (LDAC) or 5-AZA in numerous untreated and R/R myeloid neoplasms
including AML, myelodysplastic syndrome, and chronic myelomonocytic leukemia. In the
interim analysis, an ORR was 67% (77% in 5-AZA, 23% in LDAC) and the median survival
was 14.8 months (not reached in 5-AZA, 7.5 months in LDAC). Based on these results, it
was concluded that quizartinib had efficacy in patients with FLT3-ITD-mutated myeloid
neoplasms without D835 mutations [63]. However, a phase III study is needed to confirm
these findings. Numerous phase I or II combination studies in newly diagnosed AML
patients with FLT3-ITD mutations with quizartinib are summarized in Table 2.

6.5. Crenolanib

Crenolanib is a second-generation FLT3 inhibitor capable of inhibiting both FLT3-ITD
and TKD mutations, with other signaling activity against c-KIT and PDGFR [63–65]. In a
phase I trial in R/R FLT3 mutated AML, patients received idarubicin 12 mg/m2 for 3 days
with HDAC, 5 g/m2 for 4 days, or 3 days in older than 60 years), followed by crenolanib
starting on D5 and continued until 72 h [66]. The ORR of 36% was achieved in 18 patients
without previous exposure to FLT3 inhibitors. The ORR was 36% in 36 patients who had
previously received FLT3 inhibitors.

In a phase II clinical trial, crenolanib was administered at 200 mg/m2/d 3 times in
10 patients with R/R AML who progressed after SCT [63]. After receiving the drug, the ORR
was 47%. Interestingly, crenolanib was shown to have synergistic anti-leukemic activity.

Iyer et al. reported the results of eight patients with R/R AML who received com-
bination therapy with crenolanib and high-dose cytarabine/mitoxantrone. Four patients
achieved CR/CRi after one cycle (CR, 2; CRi, 2). Only one patient showed a transient
elevation in total bilirubin levels (Table 2) [67].

Maro et al. used salvage idarubicin and HDAC and crenolanib to treat patients with
R/R FLT3-mutated AML. The ORR was 36% and the median OS was 259 days [68]. No
dose-limiting toxicities were observed. Grade I gastrointestinal toxicities including nausea,
vomiting, diarrhea, and abdominal pain were the major non-hematological AEs.
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Table 2. Clinical trials of FLT3 inhibitors in relapsed or refractory disease or patients not suitable for
standard therapy.

Agent (Reference
Number)

Study Design and
Population Therapeutic Schedule Treatment Outcome Adverse Effects

First generation FLT3 inhibitors

Sorafenib [51]

Phase I/II (n = 43)
FLT3 mutation, not
required
Median age, 64 yrs

AZA 75 mg/m2/d D1–7
Sorafenib 400 mg bid

ORR 46%, CR 16%, CRi 27%, PR 3%
DoR of CR/CRi, 2.3 mos
Median OS—6.2 mos
→ Sorafenib with AZA, effective in
relapsed AML pts
with FLT3-ITD (+)

Fatigue,
LFT elevation,
Diarrhea

Sorafenib [52]

Phase II (n = 27)
FLT3 mutated
Unsuitable for standard
CTx
Median age, 74 yrs
(61–86 yrs)

AZA 75 mg/m2/d D1–7
Sorafenib 400 mg bid

ORR, 78% (CR, 26%; CRi/CRp, 44%;
PR, 7%)
mDoR—14.5 mos
3 pts, received allo-SCT
OS—8.3 mo in entire group, 9.2 mos
in responder
→ the regimen, well tolerable in
elderly pts with FLT3 (+)

Infection,
Hyperbilirubin
Anemia,
Diarrhea,
Fatigue

Midostaurin [53]

Phase IIB (n = 95)
AML, MDS (RAEB,
CMML
FLT3 mutations, not
required
64%, ≥ 65 yrs

Midostuarin, 50 or 100
mg bid

FLT3 mutation +—blast reduction,
71%
FLT3-WT—blast reduction, 49%
CR/Cri—0; PR—1/35
Blast reduction (≥50%)—49%
→midostaurin, clinical efficacy in
both
pts with FLT3 (+) and WT.

Nausea, vomiting

Midostaurin [41]

Phase I/II (n = 54)
AML, high risk MDS
FLT3 mutation, not
required
Median age, 65 yrs

AZA D1–7
and Midostaurin 25 mg
bid (cohort I)
or 50 mg bid (cohort II)
(MTD 50 mg bid)

ORR—26%
(CR 1/54, CRi 6/54, MLFS, 6/54, PR
1/54)
mDoR—20 wks
-pts not exposed FLT3 inhibitor,
longer (p = 0.05)
-pts not received SCT, longer (p =
0.01)
mOS—22 wks
→midostaurin with AZA, effective
and safe
in AML and high-risk MDS pts

Neutropenia,
thromvocytopenia
Anemia,
EF reduction
Diarrhea
Nausea/vomiting

Second generation FLT3 inhibitor

Gilteritinib [54]

Phase I/II (n = 265), R/R
setting
FLT mutation, not
required
Median age, 64 yrs

Dose-escalation cohort
vs.
Dose-expansion cohorts
(120–200 mg, given)
-MTD of gilteritinib, 300
mg/d

ORR—40%
→ Gilteritinib—well tolerable

Diarrhea, Anemia,
Fatigue, LFT ↑

Gilteritinib [55]
Phase I (n = 24)
Japanes patient with
R/R AML

Dose-escalating,
20/40/80/120/200/300
mg
MTD of gilteritinib, 200
mg

ORR in FLT3 (+)—80%
ORR in FLT3 WT—4/11 (36.4%)
-120 mg/d gilteritinib, recommend
→ gilteritinib, well tolerated and
effective
in Japanese R/R AML pts.

Grade 3 LDH ↑,
Amylase ↑
Syncope

Giltertinib [56]
Phase III (n = 371)
R/R AML with FLT3
mutation

2:1 ratio received
gliteritinib, 120 mg/d or
1/4 salvages—MEC,
FLAG-IDA, LDAC,
AZA

OS in gilteritinib ↑—SC group
(9.3 vs. 5.6 mos; p < 0.001)
CR/CRh, gilteritinib > SC group (34
vs. 15.3%, p = 0.001)
→ Gilteritinib, longer survival and
higher remission rate than
salvage CTx in R/R pts.

Cytopenia,
QTc prolongation
Pancreatitis, PRES,
Differentiation
syndrome

Quizartinib [60]

Phase I (n = 76)
patients with R/R AML
FLT3 mutation, not
required
Median age, 59.5 yrs

MTD of quizartinib 200
mg/d

In 17 FLT3-ITD (+) pts,
-2CR, 3CRp, 5CRi, 13PR→ 23 pts.
In 37 FLT3-ITD (-) pts
-2CRp, 3PR→ 5 pts.
In 22 FLT3 intermediate/not-tested
status
-1CR, 1CRp, 5PR→ 7 pts.

Nausea, Vomiting,
QTc prolongation,
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Table 2. Cont.

Agent (Reference
Number)

Study Design and
Population Therapeutic Schedule Treatment Outcome Adverse Effects

Quizartinib [62]
Phase II (n = 76)
R/R FLT3-ITD mutated
AML after
second-line or allo-SCT

30 mg/d (A) or 60 mg/d
(B) Phase II (n = 76)
R/R FLT3-ITD (+) AML
after second-line
or allo-SCT

CRc, 47%, DoR—22–26 wks
30 mg/d group—ORR, 61%;
mOS—20.7 wks
60 mg/d group—ORR, 71%;
mOS—25.4 wks

QTc prolongation,
Nausea, Diarhea
Vomiting

Quizartinib [63]

Phase II (n = 52)
AML, high-risk MDS,
CMML,
FLT3-ITD required for
enrollment
Median age, 67 yrs

AZA, 75 mg/m2 SC/IV
for 7 days
LDAC, 20 mg SC twice
daily 10 days
Quizartinib, 60 or 90 mg

Response, 35
→ 8 of LDAC arm (23%), 27 of AZA
arm (77%)
ORR, 67% (CR-8, CRp-7, CRi-18,
PR-18, PR-2)
ORR, 73%—FLT3-ITD+ (n = 48)
11 received to allo-SCT

Hypokalemia,
Hypotension, Hy-
pophosphatemia,
Hyponatremia,
QTc prolongation

Crenolanib [66]
Phase I (n = 13)
R/R FLT3 mutated AML
Median age, 51 yrs

Idarubicin 12 mg/m2/d
D1–3
Cytarabine 1.5 g/m2/d
D1–4
Crenolanib 60–100 mg
tid start on D5
→ continued until 72
before next cycles

ORR—36% (CR, 1/CRi, 3)
mOS—259 days
→ full-dose crenolanib, safely
combined with idarubicin
and HDAC in R/R AML pts.

Nausea, Vomiting,
Diarrhea,
Abdominal pain

Crenolanib [67]

Phase II (n = 8), R/R
FLT3 mutation, not
rquired
Median age, 64 yrs

HAM—Cytarabine
1.0 g/m2/d D1–6
and mitoxantrone
10 mg/m2 D1–3
vs. Crenolanib 100 mg
tid start on D8

CR—2/6, CRi—2/6
→ full-dose crenolanib,
well-tolerable with HAM
in R/R elderly AML pts.

AST/ALT
elevation

AZA, azacitidine; ORR, overall response rate; CRi, complete remission with incomplete count recovery; PR,
partial remission l DOR, duration of remission; OS, overall survival; CRp, Complete Remission with incomplete
platelet recovery; MLFS, median leukemia-free survival; DOR, duration of response; EF, ejection fraction; MEC,
mitoxantrone, etoposide, cytoxane; HDAC, high-dose ara-C; FLAG, fludarbine, ara-C; all-SCT, allogeneic stem
cell transplantation; HI, hematologic improvement; EFS, event-free survival; NR, no response.

7. Maintenance Therapy for FLT3-ITD-Mutated AML
7.1. Midostaurin

In the recent phase II randomized RADIUS trial, maintenance therapy of midostaurin
following allo-SCT did not appear to improve the prognosis of the SOC therapy with or
without midostaurin after allo-SCT for AML patients with FLT3 mutations (Table 3) [69].
In the data, 60 adult patients (aged 18–70 years old) patients who received allo-SCT in
first CR, were randomly assigned to receive SOC with madostaurin or SOC only (50 mg
twice daily). The trial did not reach its primary endpoint because RFS was similar between
the two groups (89% in the Midostaurin group vs. 76% in SOC group; HR, 0.46 [95% CI,
0.12–1.86]; p = 0.27). The rate of adverse events including GVHD was also similar between
the two groups.

Moreover, a recent ongoing phase II hypothesis-generating trial is being investigated
to determine whether adding midostaurin to intensive chemotherapy followed by allo-SCT
and single-agent maintenance therapy for 12 months was feasible and favorably influenced
EFS compared to the control group. Patients 18 to 70 years of age with newly diagnosed
AML and centrally confirmed FLT3-ITD were eligible for the study (NCT01477606).

Two hundred and eighty-four patients were treated, including 198 younger (18–60 years)
and 86 older (61–70 years) patients. The CR/CRi rate was 76.4% after induction therapy.
The majority of the patients (72.4%) in CR/CRi received allo-SCT. Maintenance management
was initiated in 97 patients (34%), including 75 after allo-SCT and 22 after consolidation
with HDAC. The median time of maintenance therapy was 9 months after allo-SCT and
10.5 months after HDAC. The 2-year EFS and OS rates were 39% and 34% in younger patients,
and 53% and 46% in older patients, respectively.
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Table 3. Clinical trials of FLT3 inhibitors as maintenance therapy after stem cell transplantation in
AML patients.

Agent (Reference
Number)

Study Design and
Population Therapeutic Schedule Treatment Outcomes Adverse Effects

First generation FLT3 inhibitors

Midostaurin [69]
Phase II (n = 60), 18–70
yrs
FLT3 mutation, required

Midostaurin
-50 mg bid/d for 12 d in
4-wk cycle

18-mo RFS—89% in midostaurin
arm
vs, 76% in Standard-Of-Care arm (p
= 0.27).
some pts with higher levels of FLT3
inhibition
-prolonged RFS (p = 0.06) and
improved survival (p= 0.048)
→midostaurin, clinical benefit in
some FLT-ITD+ pts.

Vomiting, Nausea,
Fatigue, Diarrhea

Sorafenib [70]
Phase II (n = 83)
FLT3-ITD+ pts in CR
after SCT

Sorafenib, 200–800
mg/d, +60–+100 d
after SCT. during 24
months,
Tx—continuously at 24
mo

Relapse/death risk, lower in
sorafenib arm
vs. placebo arm (HR = 0.39,
p = 0.013)
24 mo-RFS 53.3% vs. 85.0%
(HR = 0.256; p = 0.002)
→ Sorafenib maintenance, reduce
risk of relapse and death
after SCT for FLT-ITD+ AML.

Sorafenib [71] Phase III (n = 202), 18–60
yrs

400 mg bid/d at 30–60
post-SCT.

1-yr cumulative relapse in sorafenib
arm, 7.0%
vs. 24.5% in control arm (p = 0.0010)
→ sorafenib maintenance, reduce
relapse and well-tolerable

Infection,
Acute/chronic
GVHD,
Hematologic
toxicity

Midostaurin
(NCT01477606)

Phase II (n = 284), 18–70
yrs
18–60 yrs (n = 198)
61–70 yrs (n = 86)

CR/Cri—76.4% (younger,
75.8%/older, 77.9%)
2-yr CIR in SCT (18.1% and 17.6% in
younger and older)
-lower than CTx alone (39.2% and
56.4%)
2-yr CIR in maintenance group,
13.3%
-lower than HDAC CTx alone 43.5%
(p = 0.02)

QTc prolongation
Lung toxicity,
Diarrhea,
Mucositis,
Cytoepnia

RFS, relapse-free survival; HR, hazard ratio; SCT; relapse-free survival; SCT, stem cell transplantation; HR,
hazard ratio; CRi, complete remission with incomplete count recovery; GVHD, graft-versus-host disease; CIR, the
cumulative incidence of remission; HDAC, high dose ara-C.

7.2. Sorafenib

Whether maintenance therapy using FLT3 inhibitors, such as the multitargeted tyro-
sine kinase inhibitor sorafenib, increases prognosis after allo-SCT is not well-known. In a
randomized, placebo-controlled, double-blind phase II trial, 83 adult patients with FLT3-
ITD mutated AML in CR after SCT were randomized to receive either the multitargeted
and FLT3-kinase inhibitor sorafenib (n = 43) or placebo (n = 40) for 24 months [70]. With a
median follow-up of 41.8 months, the 24-month RFS probability was 53.3% (95% CI: 0.36 to
0.68) in the placebo group vs 85.0% (95% CI: 0.70 to 0.93) in the sorafenib group (HR = 0.256;
95% CI: 0.10 to 0.65; p = 0.002). The data showed that patients with undetectable minimal
residual disease (MRD) before SCT and those with detectable MRD after SCT has the
strongest benefit from sorafenib. Maintenance therapy of sorafenib reduced the risk of
relapse and death after SCT for FLT3-ITD mutated AML (Table 3).

Xian et. performed a randomized phase III trial at seven hospitals in China. Eligible
patients (range, age 18–60 years) had AML with FLT3-ITD mutations, received allo-SCT,
had an ECOG performance status below grade 2, were in a CRc state before and after SCT,
and had hematopoietic recovery within 60 days of SCT (Table 3) [71]. The patients were
randomized to receive sorafenib maintenance (400 mg bid/day) or were in a control group.

Two hundred and two patients were randomized to be assigned to sorafenib group
(n = 100) or control groups (n = 102). The 1-year cumulative incidence of relapse was 7.0%
(95% CI: 3.1–13.1) in the sorafenib group and 24.5% (95% CI: 16.6–33.2) in the control group
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(HR = 0.25, 95% CI: 0.11 to 0.57; p = 0.0010). Within post-SCT duration, the most common
grade 3 and 4 adverse effects were infections (25 of 100 patients in the sorafenib group
vs. 24 of 102 patients in the control group, acute graft-versus-host disease (GVHD) and
23 of 100 patients vs. 21 of 102 patients), and chronic GVHD (18 of 99 patients vs. 17 of
99 patients). Post-SCT maintenance therapy of sorafenib after SCT reduced relapse and
was well-tolerated in AML patients with FLT3-ITD mutations.

8. Resistance Mechanisms to FLT3 Inhibitor

Mechanisms of primary and secondary resistance to FLT3 inhibitors in AML cells with
FLT3 mutation are summarized in Figure 1.
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Schematic of FLT3 inhibitor resistance mechanism including several types of FLT3 mutations were
present. Several targeted agents such as venetoclax, proteasome inhibitors, multikinase inhibitors,
novel dual agents, and novel FLT3 inhibits biologic agents, could overcome and thus lead to cancer
cell growth, proliferation, and prolonged survival of the FLT3 mutations by several mechanisms.

The mechanism of primary intrinsic resistance to FLT3 inhibitors is the lack of depen-
dency of AML with FLT3 mutations to FLT3 signaling due to the coexistence of numerous
leukemic clones and low allelic cells of the FLT3 mutation [72]. The second mechanism
of primary intrinsic resistance is the presence of mutations preventing interaction with
specific agents, notably TKD mutations conferring resistance to type II FLT3 inhibitors [73].

Additionally, FLT3-ITD 627E mutation has been found that confers primary resistance
to FLT3 inhibitors by upregulating the antiapoptotic protein Mcl-1 [74], and upregulation
of the antiapoptotic protein, Bcl-xL, has been a demonstrated mechanism of resistance to
FLT3 inhibitors in leukemic cells with FLT3 mutations [75].

Induction of new TKD mutations occurs as a common secondary intrinsic mecha-
nism of resistance to type II FLT3 inhibitors, for example, in relapsed AML patients with
FLT3-ITD mutations received quizartinib or sorafenib therapy [73,76]. Moreover, genomic
instability is a frequent phenomenon in AML patients with FLT3-ITD mutations, treated
with FLT3 inhibitors at relapse [77].
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The oncogenic serine/threonine kinase Pim-1 is upregulated downstream of FLT3-ITD
and potentiates FLT3 signaling in a positive feedback loop [44,46]. For example, in AML
patients with FLT3-ITD mutations with acquired resistance to sorafenib, Pim-1, and the Pim
kinase were found to be upregulated [78]. Inhibition of Pim kinases restored the sensitivity
of FLT3-ITD cells to FLT3 inhibitors in a mouse model [79].

Increased fibroblast growth factor 2 (FGF2) secretion by the BM microenvironment af-
ter chemotherapy or FLT3 inhibitor therapy stimulates leukemic cells with FLT3 mutations
via binding to fibroblast growth factor receptor (FGFR) 1 on leukemic cells [80]. Further-
more, BM stroma–mediated resistance results from enhanced CXCL12–CXCR4 mediated
mechanism [81], at least in part due to Pim-1 overexpression, as Pim-1 phosphorylates
CXCR4, enabling its cell surface translocation and expression [82].

9. Overcoming Strategy for Resistance of FLT3 Mutations

Venetoclax, an inhibitor of the anti-apoptotic protein Bcl-2, particularly showed in-
teresting clinical data about combining therapy with FLT3 inhibitors. Preclinical data
demonstrated that leukemic cells with FLT3-ITD mutations had higher expressed and up-
regulated Bcl-2 proteins compared to cells with FLT3-WT [83]. The proteasome inhibitor
bortezomib was shown to promote the autophagosomal degradation of FLT3-ITD and was
cytotoxic to FLT3-ITD positive cells, such as leukemic cells with FLT3-ITD+ resistant to
quizartinib. Combination therapy with bortezomib, midostaurin, and chemotherapy had
effective cytotoxic efficacy, but it has clinical toxicity [84]. The STAT5 inhibitor pimozide
reduced the survival of FLT3-ITD-positive leukemic cells [85]. Pimozide decreased tyrosine
phosphorylation of STAT5 and induced apoptosis in leukemic cells. Moreover, it targets
deubiquitinating DUB enzyme in leukemic cells indicating that the effects of pimozide
on STAT5 activity might be indirect. Thus, this STAT5 inhibitor could inhibit growth of
leukemic cells. Additionally, the dual JAK/FLT3 inhibitor pacritinib demonstrated effi-
cacy in a phase I study [86]. The mTOR inhibitors including everolimus could target and
inhibit PI3K/AKT/mTOR pathway. The simultaneous inhibiting of both FLT3-ITD and
mTOR could be effective in tumor suppression in upregulated acute leukemic cells resistant
to single-agent FLT3 inhibitors [87]. Moreover, metformin could inhibit the PI3K/Akt/mTOR
pathways and be shown to be active synergistically with sorafenib in leukemic cell lines with
FLT3 mutations [88]. Ponatinib is permitted to target BCR-ABL in chronic myeloid leukemia
but it is also a type II FLT3 inhibitor with clinical efficacy against F691L. In a phase I study,
ponatinib in the first application showed modest efficacy in patients treated heavily with R/R
AML [89]. Cabozantinib is a multi-kinase inhibitor and has a selectively cytotoxic efficacy to
leukemic cells with FLT3-ITD mutations. A phase I trial showed that the drug sustained the
inhibition of leukemic cells with FLT3-ITD and F691 mutations [90]. Another multi-kinase
inhibitor, pexidartinib, has been studied in various solid tumors and showed clinical efficacy
against FLT3. Recently, a phase I/II study of pexidartinib in patients with R/R AML with
FLT3-ITD mutations showed an ORR of 21% and a CR of 11% [91]. FF-10101 as a novel
FLT3 inhibitor is beginning to be recognized as the first covalently binding FLT3 inhibitor. In
preclinical studies, FF-10101 demonstrated potent activity against quizartinib-resistant AL
and gatekeeper F691L mutations [92].

10. Conclusions

FLT3 inhibitors have become an essential component of the treatment for patients
with FLT3-mutated AML. However, owing to rapid changes in practice, many unresolved
issues exist.

First, there is insufficient data to determine which of several approved and unapproved
FLT3 inhibitors is preferable. For example, midostaurin is used in combination with
intensive chemotherapy for newly diagnosed patients as a de facto standard. However,
second-generation FLT3 inhibitors may be more useful considering their property of more
potent and selective FLT3 inhibition.
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Second, in elderly patients unsuitable for intensive chemotherapy, 5-AZA with vene-
toclax has recently become the treatment of choice for a newly diagnosed subset of pa-
tients [93]. In this context, FLT3 inhibitors could have a feasible clinical impact on the
therapeutic schedule. Thus, low-intensity combination therapy with the FLT3 inhibitors
venetoclax and 5-AZA could have beneficial clinical impacts in ineligible patients with
intensive chemotherapy.

Third, non-transplant patients received FLT3 inhibitors, while the transplant group
received FLT3 inhibitors before or after allo-SCT. When comparing the two study groups,
the prognosis of allo-SCT might be also improved by the clinical applications of FLT3
inhibitors. Therefore, novel FLT3 inhibitors to overcome common resistances are antici-
pated. FF-10101 is an FLT3 inhibitor covalently binding to the C695 residues of FLT3. It
is not affected by F691L gatekeeper mutations and has the characteristic potential impact
in quizartinib-resistant AML cells with F691 mutations [94]. Several highly selective FLT3
inhibitors with the potential to overcome resistances are in development.

Comprehensively, we tried to show the clinical data of FLT3 inhibitors for AML
patients with FLT3 mutations, which were arranged and compared according to the front-
line, the R/R setting, and maintenance therapy after allo-SCT in patients with FLT3-
mutated AML.
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