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ARTICLE INFO ABSTRACT

Keywords: Progression to a severe condition remains a major risk factor for the COVID-19 mortality. Robust
COVID-19 o models that predict the onset of severe COVID-19 are urgently required to support sensitive de-
Severe disease onset prediction cisions regarding patients and their treatments. In this study, we developed a multivariate sur-

Artificial-intelligence analysis vival model based on early-stage CT images and other physiological indicators and biomarkers

using artificial-intelligence analysis to assess the risk of severe COVID-19 onset. We retrospec-
tively enrolled 338 adult patients admitted to a hospital in China (severity rate, 31.9%; mortality
rate, 0.9%). The physiological and pathological characteristics of the patients with severe and
non-severe outcomes were compared. Age, body mass index, fever symptoms upon admission,
coexisting hypertension, and diabetes were the risk factors for severe progression. Compared with
the non-severe group, the severe group demonstrated abnormalities in biomarkers indicating
organ function, inflammatory responses, blood oxygen, and coagulation function at an early
stage. In addition, by integrating the intuitive CT images, the multivariable survival model
showed significantly improved performance in predicting the onset of severe disease (mean time-
dependent area under the curve = 0.880). Multivariate survival models based on early-stage CT
images and other physiological indicators and biomarkers have shown high potential for pre-
dicting the onset of severe COVID-19.
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1. Introduction

To date, over 12 million people worldwide have been confirmed to have coronavirus disease (COVID-19) and more than 2.6 million
people have died from the disease [1]. This high mortality rate has placed tremendous pressure on medical institutions worldwide.
Progression into a severe condition is an important risk factor of death, especially for patients without obvious severe symptoms [2,3].
For such patients, owing to the lack of effective decision support tools, medical decisions are limited by the doctors’ clinical experience,
which makes them prone to miscalculations and may delay the best treatment opportunity [4]. To reduce the mortality rate of
COVID-19, there is an urgent need for a pragmatic risk stratification tool that will allow the early identification of patients with the
highest risk of severe COVID-19 onset to guide management and optimize resource allocation [5,6].

Previous studies explored risk factors associated with the disease severity [7,8]. For example, Zhou et al. [9] found that older age
and a high D-dimer levels are associated with in-hospital death. Shi et al. [10] found that abnormalities in the manifestation of chest CT
imaging correlate with disease states. In addition, Wang et al. [11] found that the percentage of pulmonary infection volume was larger
in cases with hypertension and was a considerable risk factor for severe COVID-19 in patients with hypertension. Furthermore, Alberca
et al. [12] clarified that obesity is a risk factor for the development of severe COVID-19 with the need for hospitalization and me-
chanical ventilation. Previous research findings have enhanced the understanding of the SARS-CoV-2 etiology and pathophysiology of
the disease, but they only identified that a certain factor (older age, high D-dimer level, CT imaging, hypertension, or obesity) may lead
to severe disease development in patients with COVID-19; however, there is no simultaneous analysis of multiple factors, which is
limiting, and the early prediction of severe cases is poor. Nevertheless, comprehensive risk prediction of severe conversion may be the
best way to reduce the COVID-19 mortality. Many clinical prediction models of COVID-19 have been developed; they vary in their
setting, predicted outcome measures, and included clinical parameters, but most of them show moderate performance and no benefit
to clinical decision-making. In addition, a joint analysis of the timing and progression of events and the integration of multiple types of
input data into risk prediction have not been investigated thoroughly. In this study, we aimed to develop and validate a pragmatic
prediction model for onset of severe disease based on early-stage CT images and other physiological indicators and biomarkers in
patients without obvious severe symptoms at an early stage. We retrospectively collected data on a cohort that was characterized by a
large proportion of imported cases and used these cohort data to develop a statistical model that can provide the real-time risk of severe
disease onset for COVID-19 patients through an artificial-intelligence analysis of multivariate factors (Fig. 1).

With this strategy, 76 (31.9%) patients progressed to severe conditions, and 3 (0.9%) died. The mean time from hospital admission
to onset of severe COVID-19 was 3.7 days. Age, body mass index (BMI), fever symptoms upon admission, coexisting hypertension, and
diabetes were the risk factors for severe progression. Compared with the non-severe group, the severe group had abnormalities in
biomarkers indicating organ function, inflammatory responses, blood oxygen and coagulation function at an early stage. The cohort
was characterized by an increasing cumulative incidence of severe disease progression for up to 10 days after hospitalization. The
competing risks survival model, incorporating one CT imaging feature and baseline information, showed significantly improved
performance for predicting the onset of severe disease (mean time-dependent area under the curve (AUC) = 0.880). Multiple pre-
dispositional factors can be utilized to assess the risk of severe COVID-19 onset at an early stage. Multivariate survival models can
reasonably estimate progression risk based on early-stage CT images, which can be easily misjudged in qualitative analysis.

2. Materials and methods
2.1. Study cohort

The cohort included all adult inpatients admitted to the Third People’s Hospital of Shenzhen (Shenzhen, China) between January
11, 2020, and February 29, 2020. The hospital is a designated center for the admission of COVID-19 patients from other hospitals in
Shenzhen—a city in southern China characterized by a large proportion of migrant workers. All patients had tested positive for SARS-
CoV-2 infection at other local hospitals, and these results were confirmed at the Shenzhen CDC during patient admission. Upon
hospitalization, all patients were confirmed to have SARS-CoV-2 infection but at different stages of the disease. As of March 8, 2020,

g \ j\, (@M

, ¢ 27/
® @ icaiod <4
o h® o L/ﬁ/g

| AN

Artificial-intelligence
Analysis

COVID-19 patients
without obvious severe Multivariate factors
symptoms

Risk warning at
early stage

Fig. 1. Severity-onset prediction of COVID-19 via an artificial-intelligence analysis of multivariate factors.
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290 (85.8%) of 338 patients had recovered from COVID-19 and were discharged from the hospital. In general, patients received
antiviral therapy upon admission, and if severe progression occurred, they received ventilation support and/or glucocorticoid-related
therapies according to the WHO guidelines [13]. This study was approved by the Ethics Committee of the Third People’s Hospital of
Shenzhen (2020-099). Written informed consent was obtained from all participating patients.

2.2. Statistical analysis

Continuous and categorical variables are presented as mean (standard deviation (SD)) and number (%). The significance of
between-group differences was evaluated using a one-way analysis of variance (ANOVA), chi-square test, or Fisher’s exact test. We
checked the normality assumption of the ANOVA test using both quantile-quantile plotting and Shapiro-Wilk testing of the residuals
generated by the ANOVA model. For the quantile-quantile plot, the normality assumption was considered not violated if most of the
data points followed the straight y = x line. For the Shapiro-Wilk test, a p value greater than 0.05 suggested that the residuals were
normally distributed. The Wilcoxon rank-sum test was used when data did not meet the assumption of normality. Multiple testing was
corrected using the Benjamini-Hochberg procedure [14] to control the false discovery rate and to obtain adjusted p values. An adjusted
p value smaller than 0.01 was considered statistically significant. Multivariate logistic regression was used to test the significance of the
interaction effects, whenever possible. All statistical analyses were performed using R software (version 3.6.1).

2.3. Computer-aided CT image processing and feature extraction

We used “simple ITK” [15] to read the original CT sectional images and then reconstructed them into 3D images. Six hundred
images were used for model training and ninety-seven images were used for model testing. The input images were transformed into 3D
images that were subsequently computed as voxels. The voxels were resized to Imm x 1mm x 1mm to ensure equal distances between
neighboring voxels in all directions. Otsu’s method, which was fine-tuned using a Laplacian filter, was applied to segment the lung
tissue area in a 3D context. A morphological operation was used to polish the segmentation results. Part of the lung airways was
identified and eliminated as previously described [16]. The features were computed on the original image or on images that were
further processed using a 3D Laplacian of Gaussian filter with different sigma values (1, 2, 3, 4, and 5 mm). For each derived image, we
quantified 18 first-order features, 24 Gy-level co-occurrence matrix features, and 16 Gy-level size zone matrix features, resulting in 348
features for each patient. These features are listed in Table S4. The image analyses were performed using Python software (version
3.7.6) with the “scikit-image” [17] and “Py Radiomics” [18] packages. To extract features from the original CT images, we designed an
artificial-intelligence model to analyze the multivariate factors. The model is based on convolutional neural networks. First, we used
three convolutional neural network layers for feature extraction and a rectified linear unit as the activation function. Two residual
neural network blocks were used for the analysis of multivariate factors. We used the softmax function as the output layer to obtain the
results. All the frameworks were constructed using PyTorch and an NVIDIA A6000 GPU.

2.4. Time-to-event data analysis and survival modeling

We let T be the time of event occurrence and D be the event type or cause. The competing risks were handled by the cause-specific
hazard function, which is the hazard of developing an event of a given cause in the presence of competing events, and can be written as

Prit<T<t+At,D=k|T >t
ﬂk(t):Ahmo =T < +At7 724
t—s

The cumulative incidence function of cause k, I(t), interpreted as the cumulative probability Pr(T < t,D = k) of developing an event
of cause k before time t, can be expressed as

()= /0 A (0S(s)ds

where the survival function can be defined as S(t) = exp(— fé Ak (t)ds). To analyze the underlying risk pattern of the time-to-event data,
we used the Fine-Gray model [19,20], in which patients with an event of another cause remain in the risk set for parameter estimation.

To incorporate the covariate Z, we applied the strategy of imposing the proportional hazard assumption on cause-specific hazards
[21], which can be defined as

(t1Z) = Ao (t)exp(BZ)

where 4k o(t) is the baseline hazard for cause k, and g, are the covariate coefficients for cause k. The features were selected by applying
the Lasso [22] or elastic net [23] shrinkage methods to the cause-specific approach mentioned above. The optimal shrinkage parameter
was selected based on three-fold cross-validation results. We computed the risk prediction score by multiplying the selected features
and their coefficients and further assessed the significance of the score using the Fine-Gray model, where the proportional hazard
assumption is imposed on the cumulative incidence function. We used time-dependent receiver operating characteristic [24] and
bootstrapping of 632+ prediction error curves [25] for prediction performance evaluation. Because of the limited sample size, we only
report the internal cross-validation results. The analyses and modeling were performed using R software (version 3.6.1) and with R
packages “survival,” “cmprsk,” “pec,” and “risk Regression.” The algorithms are publicly available through the website medicinedata.
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3. Results

3.1. Disease process and clinical outcomes

All 338 adult patients enrolled in this study were treated at Shenzhen Third People’s Hospital. The typical disease progression of a
patient is shown in Fig. 2. After hospital admission, the patient either progresses to a severe condition or recovers from pneumonia
without severe progression. Among the 76 (31.9%) patients who developed severe disease, 18 (5.3%) progressed to critical condition.
As of March 8, 2020, 3 (0.9%) patients had died, and 45 (13.3%) remained hospitalized. All the other patients were discharged from
the hospital with in a cured state. The mean duration from symptom onset to hospital admission was 5.1 days, and the mean time from
admission to the onset of the severe disease was 3.7 days (Table S1).

3.2. Characteristics of the study cohort

To evaluate progression-related features, we classified the patients into severe and non-severe groups based on disease severity. The
time intervals between symptom onset and hospital admission were not significantly different between the two groups (p = 0.264).
Patient age was bimodally distributed, with one mode located at approximately 35 years and the other at 60 years (Fig. 3 A). As shown
in Table S2, the mean age of patients in the severe group was significantly higher than that of patients in the non-severe group (58.7
and 46.1, respectively; Fig. 3 B). Moreover, the severe group included patients that were more overweight (Fig. 3C). Most patients
(79%) had a travel history to the Wuhan region, the epicenter of the initial outbreak, within 14 days of symptom onset. Sex was not
strongly associated with the disease severity. Blood type was not associated with the severity outcome.

The patients’ medical histories were not significantly worse in the severe group; however, coexisting hypertension or diabetes was
significant. The most common symptoms upon admission were fever (60.7%) and cough (52.4%). The severe group had a significantly
higher rate of fever than the non-severe group.

3.3. Laboratory testing results

The testing was performed on blood samples that were collected immediately after hospital admission. The severity classifications
of patients are summarized in Table S3. The severe group had a significantly lower number of platelets and lymphocytes and increased
levels of coagulation function indicators, such as fibrinogen, D-dimer and activated partial thromboplastin time. In the blood
biochemistry tests, the biomarkers that were significantly increased in the severe group compared with the non-severe group included
lactate dehydrogenase, myoglobin, aspartate transaminase, mitochondrial aspartate transaminase, creatine kinase myocardial band,
troponin I, N-terminal brain natriuretic peptide, y-glutamyl transpeptidase, and alpha-hydroxybutyrate dehydrogenase; however, the
biomarkers that were decreased included albumin and prealbumin. For infection-related biomarkers, we observed significant increases
in C-reactive protein, interleukin-6, procalcitonin, and erythrocyte sedimentation rates in the severe group, all of which had mean
levels beyond the upper limit of the normal reference range. We also observed abnormal blood oxygen levels, as indicated by the PaOy/
FiO, ratio, and increased levels of kidney function indicators, including glomerular filtration rate, cystatin C and 2-microglobulin.
Lactic acid tests in patients during the early stage were not associated with severity outcome.

To investigate the pattern of dynamic variation in the representative biomarkers and immune T cells, we plotted these biomarker
concentrations and T cell counts against time since symptom onset, stratified by severity classification. Compared with the non-severe
group, the severe group had increased levels of C-reactive protein, which tended to converge at the late stage during hospitalization for
the two groups (Fig. 3 D). The D-dimer levels in the severe group gradually increased 7 days after symptom onset and were significantly
higher than those in the non-severe group (Fig. 3 E). Interleukin-6 in the severe group gradually decreased during the first 10 days after
symptom onset, which was equivalent to that in the non-severe group, and then continued to increase (Fig. 3 F). The lactate dehy-
drogenase levels in the severe group increased in the first 10 days and decreased in the next 10 days. Subsequently, they increased

Fever 2. Severity onset
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1. Hospital 3. Hospital

e & OVID-19 disch
Cough Runny nose  admission a ‘ ischarge

Nonseverity onset

Fig. 2. Diagram of the disease process for patients with COVID-19. The hospital discharge of patients with no disease progression after admission (1
to 3) poses a competing risk for those patients who are progressing to a severe condition (1 to 2).
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Fig. 3. Analysis of the representative features that were significantly associated with the severe group. A, the age distribution of the study cohort,
which is overlaid with the kernel density estimates (solid curve); B and C, boxplot summary of the age and BMI as stratified by the severe and non-
severe group; D-I, the levels of the individual laboratory biomarkers (C-reactive protein, D-dimer, interleukin-6, lactate dehydrogenase) and immune
T cells (Cytotoxic T cell, Helper T cell) are plotted along with the time after the symptom onset; I, cumulative probability for the patients in the study
cohort of developing a severe condition or being discharged from hospital after hospital admission. Data from multiple patients on the same day
were combined, and only the median value (solid dots) is shown.

again (Fig. 3 G). In addition, the severe group showed decreased numbers of cytotoxic and helper T cells in the first 10 days after
symptom onset. This number increased within the next 10 days and plateaued thereafter (Fig. 3 H-I).

3.4. Pattern of disease progression

We performed a competing risk analysis of the time-to-event data to assess the risk pattern of disease progression during hospi-
talization. The cumulative probability (the cumulative incidence function) of the onset of severe disease continued to increase
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Fig. 4. Workflow of the development of the CT-based risk prediction model. A, Heatmap analysis of the quantitative features that were extracted
from the CT images, stratified by the progression outcome; B, the evaluation of the model prediction performance by the time-dependent ROC
method; C, evaluation of the model prediction performance by the time-dependent prediction error method; D. the prediction performance eval-
uation results of the laboratory testing-based risk assessment model by the time-dependent ROC (left) and E. by the time-dependent prediction
error (right).



Y. Fu et al. Heliyon 9 (2023) e18764

immediately after hospital admission but reached its change point on day 10 (Fig. 3 J). In contrast, the cumulative incidence of the
competing risk event, which was discharge because of recovery, was much lower during the high-risk period of onset of severe disease.
However, the incidence increased dramatically from approximately day 12 to 29.

3.5. Risk prediction of progression

To personalize the time-dependent risk assessment, we incorporated the CT imaging data with baseline information for statistical
modeling (Fig. 4). A total of 348 quantitative features were extracted from the 3D reconstructed chest CT images generated upon
admission. Cluster analysis revealed a subset of features that could distinguish the severe group from the non-severe group (Fig. 4 A).
We then computed the same features from the earliest CT scans generated after admission for each patient and trained a risk prediction
score using high-dimensional survival modeling. The model integrating the CT and baseline variables significantly outperformed the
univariate and multivariate models using only the baseline information (Fig. 4 B and C). The best model achieved a mean time-
dependent AUC of 0.880 (SD = 0.011) and a mean prediction error of 0.079 (SD = 0.024). We also developed a model that inte-
grated laboratory biomarkers tested within one day of admission. This model had a mean AUC of 0.884 (SD = 0.049) and mean
prediction error of 0.103 (SD = 0.031) (Fig. 4 D and E).

We present two cases to demonstrate the use of the CT image-based risk assessment tool (Fig. 5). Patients in cases I and II were
similar in terms of age and BMI (Table 1). The patient in case I had unilateral ground-glass opacities on CT images, whereas the patient
in case II had more obvious bilateral opacities (Fig. 5 A). However, the patient in case I, rather than that in case II, progressed to a
severe condition. Follow-up CT scans also showed deteriorating conditions for the patient in case I (Fig. 5C). Consistently, our model
predicted the cumulative probabilities of developing severe disease for case I within the next 1, 3, and 5 days as 0.032, 0.073, and
0.121, respectively, compared with 0.001, 0.003, and 0.005 for case II, respectively (Fig. 5 B). The presence of fever symptoms on
admission of the patient in case I added discriminative power to the model.

A.
0.00

Case ID 1 Case ID :II 0 20 40 60 80 100 120
Time after CT scan (h)
4

I Day 8 Day 12

B.ois; —uniizs

—11:-2.142

0.104

0.054
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Fig. 5. Illustration of applying the risk prediction model in a clinical setting. A, Baseline information about the example cases. The time interval
indicates the time between the CT scan and severity onset if there was severe progression or the time between admission and hospital discharge if
there was no such progression; B, representative CT scan of the example cases; C, Follow-up CT scans for case I and case II as presented. The title of
each figure is the days since the first scan; D, Risk prediction results of the example cases. The prediction score is shown in the figure legend.
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Table 1

Clinical characteristics of the example cases.
Case ID Age BMI Fever at admission Sever progression Time interval (h)
I 36 21 Yes Yes 167
I 37 19 No No 574

4. Discussion

We delineated the characteristics of a retrospective cohort of 338 adult patients from a single center in Shenzhen City, China, and
developed a noninvasive method to evaluate the risk of severe COVID-19 onset. Independent predisposing factors for disease pro-
gression include old age, high BMI, fever, and coexisting hypertension or diabetes [26,27]. However, using age as a single prognostic
factor could lead to erroneous results since young patients are not necessarily progression-free. In contrast to previous studies [28-30],
the severe group in this cohort had a significantly higher proportion of patients with fever symptoms at admission (82.9% vs. 54.2%).
These findings benefit the risk assessment analysis, as we showed that the model that combined these indicators can substantially
improve prediction performance compared with the model that only contains univariate predictors (mean time-dependent AUC =
0.824 versus 0.751).

SARS-CoV-2 enters the host cells through the angiotensin-converting enzyme 2 receptor [31], whose expression can be enhanced by
the use of hypertension medicine, such as angiotensin-converting enzyme inhibitors or angiotensin II type-I receptor blockers [32].
Whether such medications are a causal factor for a higher risk of COVID-19 progression is currently under investigation [33]. In our
study, we observed that the presence of underlying hypertension as a comorbidity was significantly related to severe progression;
however, we did not find an association between medications and severe outcomes among patients with hypertension.

COVID-19 pneumonia is a multistate disease with clinically relevant intermediate endpoints such as the onset of severe disease.
Most survival data analyses set the onset as the primary endpoint and censored patient recovery or hospital discharge. However, when
competing risks of severe disease onset are present, these analytical methods introduce bias. In this study, the risk of severe progression
was assessed without considering that these competing risks would be overestimated because patients who would never progress
(those who were discharged from the hospital without progression) were treated as if they could progress. The extent of such bias and
its adjustment by competing risk modeling have been evaluated in clinical virological and oncological research [34-37]. We incor-
porated high-dimensional variable selection techniques into competing risk modeling so that quantitative image features could be
extensively evaluated according to their contribution to risk prediction. Our evaluation results showed that incorporating CT images
into the model can significantly improve the prediction performance compared with models based only on demographic and clinical
information (mean time-dependent AUC = 0.880 versus 0.824). Such an improvement was achieved with additional image features,
suggesting the importance of using multimodal data in risk analysis.

The laboratory testing results in this study showed that, at the time of admission, patients in the severe group already had signs of
functional impairment in organs such as the liver (lactate dehydrogenase and prealbumin), heart (multiple types of myocardial en-
zymes including troponin I, N-terminal brain natriuretic peptide, creatine kinase myocardial band, mitochondrial aspartate trans-
aminase, and aspartate transaminase), and kidneys (glomerular filtration rate, cystatin C, and p2-microglobulin). Abnormalities in
blood oxygen levels were also observed, such as abnormalities in thePaO,/FiO,, which was used to determine the onset of severe
COVID-19 in this study, and this value was significantly, although not ideally, different between the two groups upon admission.
Consistent with previous studies [9,29,30,38,39], the severe group in this cohort had, at an early stage, a substantial increase in in-
flammatory factors, such as C-reactive protein and interleukin-6, and coagulation dysfunction. Incorporating laboratory biomarkers
tested at an early stage can also significantly improve the risk prediction performance compared with the best model that does not
include them (mean AUC = 0.884 versus 0.813).

Our study has a few possible limitations. First, laboratory testing data were not integrated into the CT image-based model because
blood samples were not collected along with imaging in the center. A more complicated statistical model is required to account for the
errors caused by inherent time differences in the input data. Second, the severity may depend on other factors, such as treatment, viral
load, or genetic factors. In the future, the model can include such additional covariates. However, the availability of well-processed
data on these factors is low. We have shown that the current model can achieve reasonable prediction performance even without
considering these factors. Third, because of the limited sample size of patients who progressed to severe disease, we only evaluated
model prediction performance using a cross-validation analysis. Further validation must be conducted using external datasets. Fourth,
we restricted our analysis to the severe group until the onset of severe disease. Factors related to recovery from severe conditions have
not been evaluated. Finally, this study did not include young patients (age <18 years).
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