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Abstract

Background

Predictive models can serve as early warning systems and can be used to forecast future

risk of various infectious diseases. Conventionally, regression and time series models are

used to forecast dengue incidence, using dengue surveillance (e.g., case counts) and

weather data. However, these models may be limited in terms of model assumptions and

the number of predictors that can be included. Machine learning (ML) methods are designed

to work with a large number of predictors and thus offer an appealing alternative. Here, we

compared the performance of ML algorithms with that of regression models in predicting

dengue cases and outbreaks from 4 to up to 12 weeks in advance. Many countries lack suffi-

cient health surveillance infrastructure, as such we evaluated the contribution of dengue sur-

veillance and weather data on the predictive power of these models.

Methods

We developed ML, regression, and time series models to forecast weekly dengue case

counts and outbreaks in Iquitos, Peru; San Juan, Puerto Rico; and Singapore from 1990–

2016. Forecasts were generated using available weekly dengue surveillance, and weather

data. We evaluated the agreement between model forecasts and actual dengue observa-

tions using Mean Absolute Error and Matthew’s Correlation Coefficient (MCC).

Results

For near term predictions of weekly case counts and when using surveillance data, ML mod-

els had 21% and 33% less error than regression and time series models respectively. How-

ever, using weather data only, ML models did not demonstrate a practical advantage. When

forecasting weekly dengue outbreaks 12 weeks in advance, ML models achieved a maxi-

mum MCC of 0.61.

Conclusions

Our results identified 2 scenarios when ML models are advantageous over regression

model: 1) predicting dengue weekly case counts 4 weeks ahead when dengue surveillance
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data are available and 2) predicting weekly dengue outbreaks 12 weeks ahead when den-

gue surveillance data are unavailable. Given the advantages of ML models, dengue early

warning systems may be improved by the inclusion of these models.

Author summary

Accurate and timely forecasts of dengue fever can help mitigate the impact of the disease.

Currently, regression and time series models are frequently used to predict dengue cases

and outbreaks. However, these models may be limited in terms of model assumptions and

the number of predictors that can be included. Machine learning (ML) models offer an

appealing alternative as they have a nonlinear framework and can be applied to high

dimensional data. In this study, we compared the performance of ML algorithms with

that of regression and time series models in predicting dengue cases and outbreaks from 4

to up to 12 weeks in advance in 3 dengue-endemic regions. Model predictions were based

upon local dengue surveillance (e.g., case counts), population, temporal, and weather

data. Many countries lack sufficient health surveillance infrastructure, as such we evalu-

ated the contribution of dengue surveillance and weather data on the predictive power of

the models. Our results identified 2 scenarios when ML models performed better than

conventional models: 1) predicting dengue weekly case counts 4 weeks ahead when den-

gue surveillance data are available and 2) predicting weekly dengue outbreaks 12 weeks

ahead when dengue surveillance data are unavailable. This research suggests that ML

models can be a beneficial tool for dengue early warning systems.

Introduction

Dengue fever, a mosquito-borne disease, poses a significant public health concern due to its

re-emergence in tropical and sub-tropical regions [1]. In many countries where dengue is pres-

ent, the disease is endemic. Globally, researchers estimate that dengue infects 390 million peo-

ple per year [2]; however, only 50–100 million cases are detected due to the high asymptomatic

rate [1–6]. Estimating dengue burden can be problematic due to delays in case identification,

strong intra- and inter-annual variation in incidence, and the majority of cases being clinically

mild or asymptomatic [7–10]. As a result, implementing effective vector control operations

can be challenging [11]. To overcome these issues, the development of accurate and timely

early warnings systems capable of predicting future dengue incidence that do not depend

upon current dengue case data remains an active area of research [5].

Several modeling approaches have been evaluated as early warning models for various

infectious diseases. Time series and regression models are commonly used but have had vari-

ous levels of success [5,7,12–28]. These models offer a robust and easily interpretable frame-

work; however, these approaches can be limited by the underlying model assumptions (e.g.,

linear relationships between predictors and outcome) and the number of predictors that can

be included [29,30]. Mechanistic models, which model individual components of a dynamic

system, have accurately described outbreaks of influenza and mosquito borne diseases [31–

37]; yet, the data required to parameterize these models are difficult to obtain, and the neces-

sary model assumptions (e.g., disease infectivity) may not be clear until after the outbreak [7].

Ensemble approaches, which integrate multiple forecasting methods, have performed well and

lately have received increased interest. Using dengue and climate data from Iquitos and San
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Juan, Buczak et al. [38] developed an ensemble of 300 models, which included Method of Ana-

logs and Holt-Winters models, to predict various characteristics of dengue outbreaks (e.g.,

peak week, peak week incidence, and total cases in a season). The approach employed by Buc-

zak et al. performed well when predicting peak week and total number of cases in a season but

had difficulty predicting when the peak week would occur [38]. Yamana et al. [39] integrated

multiple models, including a mechanistic model among others, to forecast dengue incidence

in San Juan. In this study, the authors used Bayesian model averaging to integrate model

results and found that the ensemble approach outperformed each of the individual models.

In contrast to the previously described approaches, machine learning (ML) models offer an

appealing alternative and have already been used to successfully predict infectious disease case

counts and outbreaks [40–46]. Similar to mechanistic models, ML models have a nonparamet-

ric and nonlinear modeling structure, but unlike regression and mechanistic models, ML

approaches are independent of a priori specification of variable relationships, and can accom-

modate high dimensional data. Additionally, several ML models employ an ensemble frame-

work to improve model accuracy. Though ML models have demonstrated good accuracy, the

performance of these models have typically not been compared with the performance of more

conventional approaches [45].

Regardless of the selected statistical framework, dengue prediction models typically use 2

types of inputs–a measure of prior dengue case counts and local weather conditions [7]. Prior

dengue cases counts are included because there is strong relationship between current and

subsequent levels of dengue, given the infectious nature of the disease. A weather component

is included to describe how short-term changes in atmospheric conditions affect dengue vec-

tors, hosts, and the infectious agent itself. In the case of dengue, rainfall plays an integral role

in creating suitable breeding conditions for its vector, the Aedes mosquito [47–49]. Tempera-

ture also is known to affect larvae development, adult biting behavior, and the replication rate

of the dengue virus [4,47,50–53]. Likewise, humidity improves egg longevity by preventing

environmental desiccation [54–56].

In this study, we developed models using dengue surveillance (e.g., case counts), popula-

tion, and weather data from 3 dengue-endemic locations to predict dengue case counts and

outbreaks (i.e., where the number of reported cases exceeded a predefined threshold) 4 to 12

weeks in advance. We selected these 2 outcomes because case counts are an objective predic-

tion measure where uncertainty can be easily quantified, while weekly outbreak occurrence is

more relevant within the context of public health decision making [7]. We used forecast hori-

zons of 4 and up to 12 weeks to develop models that can provide real-time updates and to pro-

vide timely warnings to give governmental authorities adequate response time, respectively

[11]. We then used these models to examine 3 questions: (1) “How well do ML models (i.e.,
Random Forest [RF] and Random Forest-Univaraite Flagging Algorith [RF-UFA]) forecast den-
gue, relative to commonly used prediction models (i.e., Poisson regression, Logistic regression and
autoregressive integrated moving average [ARIMA] models)?” (2) “How is model accuracy
impacted by the availability–or lack of–current dengue surveillance data?” and (3) “Among data
used in our models, what were the strongest predictors of the weekly number of reported dengue
cases?”

Materials and methods

Study areas

We predicted dengue case counts and outbreaks in 3 endemic locations: Iquitos, Peru; San

Juan, Puerto Rico; and Singapore. Iquitos is a geographically isolated port city located on the

Amazon River with a population of approximately 400,000 people [57,58]. Rainfall occurs year
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round and is heaviest between November and May. The mean daily temperatures of the cool-

est and hottest months are 25.6˚C and 27.5˚C, respectively. San Juan is the capital and largest

city in Puerto Rico. It is located on the Northeastern coast of the island, and has an approxi-

mate population of 400,000 people. Rainfall primarily occurs between April and November,

leaving the other months relatively dry. The mean daily temperatures of the coolest and hottest

months are 25.3˚C and 28.7˚C, respectively. Singapore is a city state off the Southern-most tip

of the Malay Peninsula, and has approximately 5.6 million inhabitants. Rainfall is heaviest dur-

ing the Northeast monsoon season, which typically occurs from November to March [59]. A

second drier monsoonal period occurs between June and October. The mean daily tempera-

tures of the coolest and hottest months in Singapore are 26.5˚C and 28.4˚C, respectively.

Dengue surveillance data, predictors, and outcomes

Weekly dengue case counts for Iquitos were available between June 2000 and June 2013 from a

passive surveillance network representing approximately 40% of the Iquitos population

[57,60,61]. Weekly case counts for San Juan were available from April 1990 to April 2013 and

were ascertained from a combination of active and passive surveillance systems [62]. All con-

firmed dengue cases, regardless of severity were reported in Iquitos and San Juan. Further,

when the number of samples exceeded local testing capactiy, the number of positive cases

among those not tested was estimated by multiplying the number of untested cases by the rate

of laboratory-positive cases amongst those that were tested [57,60,62]. In both locations, all

dengue and DHF cases were reported together. For Singapore, weekly dengue and DHF cases

[63] for were reported separately and available between January 2000 and December 2016

from the Ministry of Health. Dengue is a nationally notifiable disease in Singapore, meaning

that all clinically diagnosed and laboratory-confirmed cases must be reported to the Ministry

of Health within 24 hours [28,63]. Clinically confirmed cases were then confirmed with sero-

logic or virologic testing by the Ministry of Health. Data from each of the 3 study locations are

publically available [61,64].

Using weekly case counts, we created surveillance-based predictors for our models (S1

Table). We summarized observed dengue case counts with weekly and cumulative totals start-

ing from the beginning of the year. We also summarized the annual number of dengue cases

in the past 1 to 3 years.

These data also served as the prediction outcomes, “weekly case counts” and “weekly out-
breaks.” We created the binary outcome variable, weekly outbreaks, to indicate whether or not

weekly case counts exceeded a predefined threshold. For this study, the outbreak threshold

was set at 1.5 standard deviations above the mean weekly reported cases and is defined as:

Weekly OutbreakW ¼
1;CasesW � Outbreak threshold

0;Otherwise
ð1Þ

(

where CasesT is the number of reported dengue cases for week “T” (the week of interest). The

outbreak threshold was defined as:

Outbreak threshold ¼ Casestraining þ 1:5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

W¼1
ðCasesT;training � CasestrainingÞ

2

n � 1

s

ð2Þ

where CasesT,training is the number of cases reported for week T in the training data (a subset of

the study data, including outcome [e.g,. weekly outbreaks] and predictor variables [e.g., 7-day

average temperature, 7-day average absolute humidity], used to develop the predictive model

and is discussed in more detail in section Prediction Approach); Casestraining is the average
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weekly case counts in the training data; and n is the number of observed weeks in the training

data.

Population data and predictors

We used government data to generate population estimates for each study area. Population

estimates for the Iquitos metropolitan area (2000–2014) and the San Juan-Carolina-Caguas

Metropolitan Statistical Area (1990, 1999–2014) came from the National Statistical Institute of

Peru and the U.S. Census Bureau, respectively [61]. Population estimates for Singapore (2000–

2016) were obtained from the Ministry of Trade and Industry, Department of Statistics and

are derived from registry-based administrative data [65,66]. For years without population esti-

mates, we imputed the missing data with a linear regression model where total population was

regressed by year.

Singapore is unique in that it has a highly mobile population with large influxes of travelers.

To account for the variation in nonresidents, we identified government data detailing the

monthly number of air passenger arrivals at Changi Airport (1999–2016) [67]. With these pop-

ulation and air travel data we created additional predictor variables for our models (S2 Table).

Temporal predictors

Inter- and intra-annual variations in dengue cases have been observed across the globe, pro-

viding evidence for multi-year periodicity which has been estimated to be approximately 3

years [57,68–70]. To account for the temporal variation in dengue cases, we summarized time

by including the month that the week of interest occurs in and 1 to 4 year periodic components

as predictor variables (S2 Table). The periodic components were sine and cosine functions

described below:

sin
2pt

12 � a

� �

ð3Þ

cos
2pt

12 � a

� �

ð4Þ

where t is the number of months since the start of the study period and a is the inter-annual

period length in years.

Weather data and predictors

We ascertained daily temperature, humidity, and rainfall summaries (i.e., averages, mini-

mums, maximums, and totals) from the National Oceanic and Atmospheric Administration

and the National Environment Agency, Singapore (Table 1). We obtained weather measure-

ments from weather stations, remote sensed imagery, and meteorological reanalysis to account

for the various strengths and limitations of each data source (see Weather data limitations in

Supplemental S1 Text for a brief overview of these limitations) [12,71–77]. Daily weather sum-

maries obtained from remote sensed imagery and meteorological reanalysis were collected

from the gridded cell surrounding the weather station used for each study area. We collected

daily weather summaries from January 1999 to March 2014 for Iquitos, January 1989 to April

2013 for San Juan, and January 1999 to December 2016 for Singapore.

We created weather-based predictors for our models (S3 Table) by aggregating daily

weather summaries into multi-day and multi-week summaries. Temperature and humidity

predictors included 7-, 14-, 21-, and 28-day moving averages and standard deviations. As
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temperature alone does not account for the optimal temperature ranges for the Aedes mos-

quito and may not accurately represent the temperature-dengue relationship, we created addi-

tional temperature predictors based upon the Temperature Suitability Index (TSI) [78].

Rainfall predictors included 7-, 14-, 21-, and 28-day moving averages, standard deviations,

and total number of days with any recorded rainfall. We also summarized daily total rainfall

for cumulative periods of 1- to 20-weeks. Since the effect of rainfall on mosquito abundance

has been found to differ across seasons [70,79] we created additional rainfall predictors that

summarized daily total rainfall for cold, warm, and hot periods which were based upon average

daily temperature and the extreme minimum and maximum TSI thresholds [70,78].

Missing weather data

We observed missing daily weather measurements in each area due to non-reporting or instru-

ment failure (S1 Fig). We imputed missing weather data using multiple imputation by chained

equations with the MICE R package [80]. For this study, we created 10 imputation sets which

we then averaged to obtain a final value for each missing observation [81].

Prediction approach

In our analysis, we developed models to predict dengue case counts and outbreaks based upon

the temporal variation in dengue activity, regional population, and weather. Fig 1 reflects the

general framework, used in this study, for developing a predictive ML (i.e., RF, RF-UFA) and

regression-based models (i.e., Poisson regression, Logistic Regression) using historical and

near-real time data as input. In our approach, we trained (i.e., fit to data) models with a subset

of the study data (i.e., training data) and evaluated the accuracy of model forecasts on the last 4

years’ worth of data (i.e., testing data) that had been withheld during model training. We eval-

uated each model on 1 year’s worth of testing data at a time and in chronological order. After

model evaluation, the test set was then added to the training data and the process was repeated

for the subsequent year of test data. This resulted in each model being redeveloped and

Table 1. Weather variables obtained by data source.

Variable Units Resolution Source

Daily minimum air temperature Celsius NA Weather Station

Daily average air temperature Celsius NA Weather Station

Daily maximum air temperature Celsius NA Weather Station

Daily diurnal air temperature range Celsius NA Weather Station

Daily total rainfall millimeters NA Weather Station

Daily total rainfall millimeters 0.25x0.25 degrees Remote Sensed

Daily absolute humidity g/m3 0.5x0.5 degrees Meteorological Reanalysis

Daily relative humidity % 0.5x0.5 degrees Meteorological Reanalysis

Daily specific humidity g/kg 0.5x0.5 degrees Meteorological Reanalysis

Daily dew point Kelvin 0.5x0.5 degrees Meteorological Reanalysis

Daily minimum air temperature Kelvin 0.5x0.5 degrees Meteorological Reanalysis

Daily average air temperature Kelvin 0.5x0.5 degrees Meteorological Reanalysis

Daily maximum air temperature Kelvin 0.5x0.5 degrees Meteorological Reanalysis

Daily diurnal air temperature range Kelvin 0.5x0.5 degrees Meteorological Reanalysis

Daily average surface temperature Kelvin 0.5x0.5 degrees Meteorological Reanalysis

Daily Total Rainfall Kelvin 0.5x0.5 degrees Meteorological Reanalysis

� Temperature measurements reported in Kelvin were converted to Celsius.

https://doi.org/10.1371/journal.pntd.0008710.t001
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retrained for each year of testing data. Each model made 4 and 12 week prospective forecasts

from week “T” using the previous 26 weeks of predictor data (T-1, T-2, . . ., T-26).

For each trained ML and regression model, we analyzed the predictor variables and

assessed their importance. The variable analysis allowed us to (1) identify the strongest predic-

tors of dengue case counts for each study area and (2) to perform variable reduction, a conven-

tional approach to improve model accuracy. During variable reduction, we removed weak and

non-informative predictors by ranking each variable according to the variables measure of

importance, which is defined later. After ranking each variable, we removed all non-informa-

tive variables and selected the top 1%, 5%, and 10% most important variables. We then

retrained each model using the 3 subsets of predictors and evaluated the predictive accuracy of

these models. This process was performed for each test set.

For this study, all models and statistical analyses were implemented in the R programming

environment version 3.3.3.[82]

Predicting weekly outbreaks

We observed substantial imbalance in the proportion of outbreak and non-outbreak weeks for

each study area. Class imbalance can cause a predictive model to classify all predictions as the

same class in an effort to maximize model accuracy, resulting in an uninformative model. To

overcome the limitation of class imbalance [83], we trained the models on a “balanced” dataset

where we under-sampled non-outbreak observations to create a 1:1 ratio of outbreak to non-

outbreak observations in the training set. To account for sampling variability, we created 500

training sets which we used to train each model and averaged the predictions. Additionally, we

optimized model performance by selecting the classification threshold (i.e., the minimum pre-

diction value required for an observation to be classified as “outbreak”) that maximized model

performance.

Machine learning models

In our study we used RF to predict weekly case counts and weekly outbreaks and RF-UFA to

predict weekly outbreaks only. RF is an ensemble ML algorithm based upon decision trees and

has been previously used to analyze time series data [40,45,84]. RF-UFA is an extension of the

RF algorithm where the Univariate Flagging Algorithm (UFA) is used to transform continuous

predictors into binary predictors [85]. UFA transforms continuous predictors by identifying

an optimal threshold that is associated with a statistically significant (p� 0.01) higher (“high-

Fig 1. General framework to develop RF and regression prediction models. To assess how each model’s predictive accuracy was affected by the lack of current dengue

surveillance data, we trained models to predict dengue case counts and outbreaks using only population, temporal, and weather predictor variables. We compared the

performance of these models with the performance of the same models when surveillance data inputs were included.

https://doi.org/10.1371/journal.pntd.0008710.g001
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risk”) or lower (“low-risk”) risk of the outcome. All RF models were fitted with the randomFor-
est R package [86]. A more detailed explaination of both models is available in Supplemental

S1 Text “Overview of machine learning models.”

Regression models

We used 2 types of generalized linear regression models in our study: Poisson regression to

predict weekly case counts and Logistic regression to predict weekly outbeaks. Unlike RF,

regression models are not well suited for high dimensional data analysis and requires addi-

tional measures to prevent overfitting. To minimize this risk, we used the Least Absolute

Shrinkage and Selection Operator (LASSO) algorithm [87–89]. We identified the optimal pen-

alty parameter using 10-fold cross validation and selecting the parameter that minimized the

cross validation mean absolute error (MAE), for Poisson regression models, and the misclassi-

fication error rate, for Logistic regression models [89]. All Poisson regression and Logistic

regression models were implemented with the glmnet R package [90].

Time series model

We developed an autoregressive integrated moving average (ARIMA) model to forecast

weekly dengue case counts in each study location. As ARIMA models cannot be applied to

high dimensional data, model predictions were based upon the time series of observed case

counts only. In this study, we also evaluated seasonal ARIMA (SARIMA) models and found

that the added seasonal component did not consistently improve model performance, as such

we do not present the results of the SARIMA model.

The ARIMA model parameters were identified by finding the parameters that resulted in

the best fit of the training data. To identify the best fitting parameters, we performed a stepwise

search and selected the parameters which minimized the model Akaike Information Criterion

(AIC). The ARIMA model was implemented using the forecast R package [91].

Variable importance

Variable importance is a measure of how much a single variable contributes to the overall pre-

dictive accuracy of a model. For RF-based models, we ranked variables according to their “per-
centage increase in mean squared error” when predicting weekly case counts and by their

“mean decrease in accuracy” when predicting weekly outbreaks [92]. Both metrics measure

how much error would be introduced into the model’s predictions if the variable were to be

removed from the model. For Poisson regression and Logistic regression, we ranked variables

according to the absolute value of the standardized coefficient, a conventional ranking

approach for regression models [93].

Model evaluation

We evaluated the performance of each model with the withheld testing data. To quantify

model accuracy, we selected accuracy metrics that measure how well model predictions

approximate observed outcomes. When predicting weekly case counts, we used mean absolute

error (MAE) which measures how far a prediction deviates from the observed outcome. The

MAE is defined as follows:

MAE ¼
1

n
Pn

i¼1
jyi � ŷij ð5Þ

where n is the number of observations, yi is the observed number of dengue cases for week i,
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and ŷi is the predicted number of dengue cases for week i. The MAE is considered to be an

unbiased estimator because it only considers the variance and not the magnitude of the errors

[45]. Since the magnitude of reported dengue cases varied widely by study area, we also report

the normalized MAE (nMAE). The nMAE provides an estimate of the prediction error relative

to the average number of weekly cases in the testing data and allows for better comparisons of

model accuracy between study areas and forecast horizons. We calculated the nMAE by divid-

ing the MAE by the average weekly number of dengue cases. The nMAE is defined as follows:

nMAE ¼
MAE

1

n

Pn
i¼1

yi
ð6Þ

where n is the number of observations yi is the observed number of dengue cases for week i,
and MAE is the mean absolute error. The best value that can be obtained for both MAE and

nMAE is 0, while the worse value is unbounded.

For models forecasting weekly outbreaks, we quantified how well model predictions

approximated observed outcomes with Matthew’s Correlation Coefficient (MCC) [94]. MCC

measures the correlation between a binary outcome and prediction and unlike other measures

MCC is insensitive to class imbalance [95,96]. MCC is defined as follows:

MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ � ðTPþ FNÞ � ðTN þ FPÞ � ðTN þ FNÞ

p ð7Þ

where TP is the number of true positives; TN is the number of true negatives; FP is the number

of false positives; and FN is the number of false negatives. The best value that can be obtained

for MCC is +1, while the worse value is -1.

Results

Weekly dengue case counts for each study area are presented in Fig 2. We observed substantial

inter-annual variation as well as wide ranges in the number of weekly reported cases during

the observational periods by study area. Reported weekly case counts ranged from 0 to 116 in

Fig 2. Weekly observations of reported dengue cases by study area. In this figure, left-hand panels (red curves) represent training

data, while right-hand panels (blue curves) represent the testing data.

https://doi.org/10.1371/journal.pntd.0008710.g002
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Iquitos, 0 to 461 in San Juan, and 3 to 888 in Singapore. The average number of weekly cases

varied greatly by study area as well. The average number of weekly cases was 7.57, 38.84, and

115.96 for Iquitos, San Juan, and Singapore, respectively. In 2013, we observed a notable

increase in the number of reported dengue cases in Singapore, which was the result of a large

dengue outbreak throughout all of Southeast Asia [97–100].

In our study, we developed multiple ML, regression-based, and time series models under

various data availability and forecast horizon settings. Since the objective of this study was to

compare ML (i.e., RF and RF-UFA) models with conventional forecasting models, we only

describe the results for models with the best performance under each data-forecast horizon

scenario. In our evaluation, models with the smallest nMAE or largest MCC were defined as

the best performing models.

Forecasting dengue case counts

In Iquitos (4 week ahead forecasts: Fig 3; 12 week ahead forecasts: S2 Fig), both RF and Poisson

regression models did not fully capture the sharp increase in dengue cases in 2011. Interest-

ingly, during the typical peak dengue period the predictions made by the Poisson regression

model had the highest level of uncertainty as demonstrated by the wide confidence intervals.

Unlike the Poisson regression model’s predictions, RF model forecasts had small confidence

intervals regardless of the transmission period (peak or non-peak season). Forecasts made by

ARIMA model (S3 Fig) typically captured the transmission dynamics (i.e., increased cases dur-

ing the peak season and fewer cases during the low dengue season); however, ARIMA model

forecasts did not marginally vary from year to year, indicating an inability to differentiate

between large and small epidemics.

In San Juan, both RF and Poisson models captured the general trend in dengue case counts

regardless of the inclusion of surveillance data (Fig 4). When surveillance data were included,

both RF and Poisson model forecasts were more similar to observed case counts as when sur-

veillance data were not included. As was observed in Iquitos, Poisson model forecasts showed

Fig 3. 4 week forecast accuracy of the temporal pattern of dengue case counts, Iquitos, Peru, June 2009 –June 2013. Observed

weekly cases counts (black area) are compared with 4 week ahead forecasts made by Random Forest and Poisson regression models.

Dotted lines represent 95% confidence intervals around the model’s prediction. RF model standard errors were estimated using the

infinitesimal jackknife for bagging approach [101].

https://doi.org/10.1371/journal.pntd.0008710.g003
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higher levels of uncertainty, especially during the peak dengue period. Confidence intervals

around RF model forecasts remained consistent throughout the testing period. When forecast-

ing dengue cases 12 weeks in advance (S4 Fig), RF and Poisson regression models again

reflected the general trends in dengue cases. Similarly, the ARIMA model (S5 Fig) at times cap-

tured the general dynamics; however, there were several occasions where the model predicted

increases in dengue cases several weeks after the observed peak week.

In Singapore (Fig 5), when surveillance data were included in the model, RF and Poisson

regression 4 week ahead predictions did not reflect the general trend in dengue cases for the

first 2 sets of testing data (2013 and 2014). In the last 2 test sets (2015 and 2016) 4 week ahead

forecasts for both RF and Poisson regression captured the general trend in dengue cases, sug-

gesting that the training data was not representative of the first 2 test sets (2013 and 2014). A

Fig 4. 4 week forecast accuracy of the temporal pattern of dengue case counts, San Juan, Puerto Rico, April 2009 –April 2013.

Observed weekly cases counts (black area) are compared with 4 week ahead forecasts made by Random Forest and Poisson

regression models. Dotted lines represent 95% confidence intervals around the model’s prediction. RF model standard errors were

estimated using the infinitesimal jackknife for bagging approach [101].

https://doi.org/10.1371/journal.pntd.0008710.g004

Fig 5. 4 week forecast accuracy of the temporal pattern of dengue case counts, Singapore, January 2013 –December 2016.

Observed weekly cases counts (black area) are compared with 4 week ahead forecasts made by Random Forest and Poisson regression

models. Dotted lines represent 95% confidence intervals around the model’s prediction. RF model standard errors were estimated

using the infinitesimal jackknife for bagging approach [101].

https://doi.org/10.1371/journal.pntd.0008710.g005
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similar trend was also observed for the ARIMA model (S6 Fig) where the model was unable to

capture the general trend in the first 2 test sets (2013 and 2014) but improved in the last 2 test

sets (2015 and 2016). When surveillance data were removed, both models performed poorly.

When model forecasts were extended to 12 weeks in advance (S7 Fig), both RF and Poisson

regression performed poorly, even when the model inputs included surveillance data. Simi-

larly, the ARIMA model’s 12 week ahead forecasts did not reflect the general trend in dengue

cases.

Table 2 summarizes the nMAE and MAE of the residuals between observed weekly dengue

case counts and model predictions for the optimal RF, Poisson regression, and ARIMA models

by study area and the data used to make the predictions (results for all evaluated models are

available in S4 Table). When the evaluated models predicted dengue cases 4 weeks ahead and

surveillance data were included, RF had more accurate forecasts relative to both Poisson

regression and ARIMA models. We estimated RF nMAEs as 0.87, 0.27, and 0.40 in Iquitos,

San Juan, and Singapore respectively. On average, RF forecasts had 21% and 33% less error

than Poisson regression and ARIMA models. As model performance may differ by dengue

season, we also evaluated model accuracy during peak and non-peak dengue periods [102–

104]. During peak dengue season (S5 Table), the RF model had less error than Poisson regres-

sion and ARIMA models in San Juan (RF nMAE: 0.22) and Singapore (RF nMAE: 0.37). In

Iquitos, the ARIMA model had the least amount of error (ARIMA nMAE: 0.70). During the

non-peak dengue (S6 Table), Poisson regression had the least amount of error in Iquitos (Pois-

son nMAE: 0.91) while RF had the smallest nMAE in San Juan (RF nMAE: 0.37). In Singapore,

RF and Poisson regression had identical nMAEs, 0.43.

We evaluated each model’s ability to make long-term forecasts of dengue case counts. Com-

pared with RF and Poisson regression, ARIMA had a smaller nMAE in Iquitos and Singapore,

0.85 and 0.40 respectively. However, in San Juan, RF (nMAE: 0.48) had less error than Poisson

regression (nMAE: 0.59) and ARIMA (nMAE: 1.16). We observed similar trends in perfor-

mance during the peak-dengue season (S5 Table). During non-peak dengue season (S6 Table)

RF was more accurate than Poisson regression and ARIMA in Iquitos and San Juan (Iquitos

RF nMAE: 1.34; San Juan RF nMAE: 0.59). In Singapore, ARIMA performed better than both

RF and Poisson regression (ARIMA nMAE: 0.43).

To understand how model accuracy is affected when current surveillance data are unavail-

able, we retrained models using only population, temporal, and weather data inputs. We

Table 2. Optimal model performance when predicting weekly dengue case counts.

4 weeks ahead forecast accuracy 12 weeks ahead forecast accuracy

Iquitos San Juan Singapore San Juan Singapore

nMAE (MAE) nMAE (MAE) nMAE (MAE) nMAE (MAE) nMAE (MAE)

Surveillance Data Included

Random Forest 0.87 (6.26) 0.27 (17.53) 0.4 (126.12) 0.48 (32.46) 0.62 (192.76)

Poisson Regression 1.02 (7.30) 0.45 (29.41) 0.44 (135.98) 0.59 (39.50) 0.66 (205.65)

ARIMA� 0.94 (6.75) 0.67 (43.52) 0.58 (182.34) 1.16 (78.41) 0.40 (126.34)

Surveillance Data Excluded

Random Forest 0.96 (6.89) 0.59 (38.31) 0.61 (190.00) 0.57 (38.46) 0.62 (193.09)

Poisson Regression 0.88 (6.31) 0.50 (32.63) 0.58 (181.17) 0.56 (37.51) 0.65 (204.35)

� The ARIMA model was only developed using previously observed case counts, as such results are not shown when surveillance data are excluded for this model.

Abbreviations: nMAE: normalized mean absolute error; MAE: mean absolute error.

Results for all evaluated models are available in S4 Table.

https://doi.org/10.1371/journal.pntd.0008710.t002
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found that for near term forecasts RF nMAEs were equal to 0.96, 0.59, and 0.61 in Iquitos, San

Juan and Singapore respectively. We observed Poisson regression nMAEs equal to 0.88, 0.50

and 0.58 in Iquitos, San Juan, and Singapore. During peak dengue season RF had the least

amount of error in Iquitos (RF: 0.80; Poisson: 0.89) and Singapore (RF: 0.57; Poisson: 0.62) but

more error than the Poisson regression model in San Juan (RF: 0.58; Poisson: 0.45). During

the non-peak season, the Poisson regression model had smaller or similar nMAEs (Poisson

Iquitos: 0.85; San Juan: 0.59; Singapore: 0.55) relative to RF (RF Iquitos: 1.36; San Juan: 0.59;

Singapore: 0.63).

For long-term forecasts in Iquitos and San Juan, the RF model (nMAE = 0.96 and 0.57

respectively) was less accurate than Poisson regression; we estimated Poisson regression

nMAEs as 0.87 and 0.56 for Iquitos and San Juan respectively. In Singapore, we estimated RF

and Poisson regression nMAEs as 0.62 and 0.65, indicating similar model accuracy.

The strongest predictors of dengue case counts

Using variable analysis, we identified the strongest RF model predictors of weekly dengue case

counts (Figs 6–8). When models included surveillance inputs, previous dengue levels were the

strongest predictors for near term forecasts. When model forecasts were based upon only pop-

ulation, temporal, and weather data, the strongest predictors included population size, 3- and

4-year periodicity, multi-week cumulative rainfall, peak daily rainfall (Iquitos only), the aver-

age and variation in minimum daily temperature (Iquitos only), and monthly air passenger

arrivals (Singapore only). Of note, these predictors were typically distributed over lag periods

greater than 15 weeks. Across all study areas, we found that the inclusion of surveillance pre-

dictors had a much smaller impact on the model’s long-term forecast accuracy.

Forecasting dengue outbreaks

Table 3 presents model MCCs, summarizing how well the optimal RF, RF-UFA, and Logistic

regression models correctly predicted weekly dengue outbreaks 4 and 12 weeks in advance

Fig 6. Top 10 most important predictors for the Random Forest model when predicting weekly dengue case counts, Iquitos,

Peru. The 10 most important predictors to the Random Forest model prior to variable reduction. Predictor importance was

quantified as the percentage increase in mean squared error. Red bars indicate the model included surveillance data inputs while

blue bars indicate the model did not include surveillance data inputs. Predictors are shown for forecasts made 4 (A) and 12 (B)

weeks in advance.

https://doi.org/10.1371/journal.pntd.0008710.g006
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(results for all evaluated models are available in S7 Table). When predictions were made 4

weeks in advance and based upon surveillance, population, temporal, and weather data, both

RF and RF-UFA performed worse than Logistic regression in San Juan and Sinagpore (Logistic

San Juan: 0.84; Singapore: 0.57). RF-UFA had the largest MCC in Iquitos (0.56). For long-term

forecasts, RF-UFA outperformed all other models where MCCs equaled 0.58, 0.61, and 0.30 in

Iquitos, San Juan, and Singapore, respectively. On average, RF-UFA MCCs were 125% and

79% larger than RF and Logistic regression model MCCs.

Fig 7. Top 10 most important predictors for the Random Forest model when predicting weekly dengue case counts, San Juan,

Puerto Rico. The 10 most important predictors to the Random Forest model prior to variable reduction. Predictor importance was

quantified as the percentage increase in mean squared error. Red bars indicate the model included surveillance data inputs while

blue bars indicate the model did not include surveillance data inputs. Predictors are shown for forecasts made 4 (A) and 12 (B)

weeks in advance.

https://doi.org/10.1371/journal.pntd.0008710.g007

Fig 8. Top 10 most important predictors for the Random Forest model when predicting weekly dengue case counts, Singapore.

The 10 most important predictors to the Random Forest model prior to variable reduction. Predictor importance was quantified as

the percentage increase in mean squared error. Red bars indicate the model included surveillance data inputs while blue bars indicate

the model did not include surveillance data inputs. Predictors are shown for forecasts made 4 (A) and 12 (B) weeks in advance.

https://doi.org/10.1371/journal.pntd.0008710.g008
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When model predictions were based upon population, temporal, and weather data only, we

found that RF-UFA was the most accurate model when predicting 4 weeks ahead, (Iquitos:

0.49; San Juan: 0.66; Singapore: 0.22). For long-term predictions, RF-UFA performed best in

Iquitos (MCC: 0.58) and Singapore (MCC: 0.27). While in San Juan, RF-UFA (MCC: 0.61)

and Logistic regression (MCC: 0.62) had similar performance.

To evaluate RF-UFA’s utility as an early warning tool, we compared the total number of

high and low-risk flags per week with weekly dengue case counts (Figs 9–11). Using Pearson’s

Fig 9. RF-UFA forecast accuracy of the temporal pattern of dengue outbreaks, Iquitos, Peru, June 2009–June 2013. The number

of high-risk (red) and low-risk (blue) flags per week that are met 12 weeks in advance are plotted against weekly dengue case counts

(black) in the testing data. Grey regions represent observed outbreak weeks. Thresholds were identified using UFA and are

associated with dengue outbreaks 12 weeks into the future. Black dashed lines indicate the beginning of a new test set.

https://doi.org/10.1371/journal.pntd.0008710.g009

Fig 10. RF-UFA forecast accuracy of the temporal pattern of dengue outbreaks, San Juan, Puerto Rico, April 2009–April 2013.

The number of high-risk (red) and low-risk (blue) flags per week that are met 12 weeks in advance are plotted against weekly dengue

case counts (black) in the testing data. Grey regions represent observed outbreak weeks. Thresholds were identified using UFA and

are associated with dengue outbreaks 12 weeks into the future. Black dashed lines indicate the beginning of a new test set.

https://doi.org/10.1371/journal.pntd.0008710.g010
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correlation, we estimated the correlation between high-risk flags and dengue cases being 0.60,

0.69 and 0.73 in Iquitos, San Juan, and Singapore. We observed a weaker and negative correla-

tion between the number of low-risk flags and dengue cases in Iquitos (-0.35) and Singapore

(-0.37), but a strong negative correlation in San Juan, (-0.79).

Discussion

In this study, we developed RF, regression, and ARIMA models to predict dengue cases and

outbreaks in 3 geographic locations. For near term forecasts, we found that RF performed bet-

ter than both Poisson regression and ARIMA when the model had access to prior dengue sur-

veillance data (Table 2). On average, RF predictions had 21% and 33% less error than Poisson

regression and ARIMA models respectively. These results are consistent with other studies

Fig 11. RF-UFA forecast accuracy of the temporal pattern of dengue outbreaks, Singapore, January 2013–December 2016. The

number of high-risk (red) and low-risk (blue) flags per week that are met 12 weeks in advance are plotted against weekly dengue case

counts (black) in the testing data. Grey regions represent observed outbreak weeks. Thresholds were identified using UFA and are

associated with dengue outbreaks 12 weeks into the future. Black dashed lines indicate the beginning of a new test set.

https://doi.org/10.1371/journal.pntd.0008710.g011

Table 3. Optimal model performance when predicting weekly dengue outbreaks.

4 weeks ahead forecast accuracy 12 weeks ahead forecast accuracy

Iquitos San Juan Singapore Iquitos San Juan Singapore

MCC MCC MCC MCC MCC MCC

Surveillance Data Included

Random Forest 0.26 0.53 0.14 0.32 0.51 0.08

Random Forest-UFA 0.56 0.67 0.27 0.58 0.61 0.30

Logistic Regression 0.44 0.84 0.57 0.57 0.60 0.09

Surveillance Data Excluded

Random Forest 0.28 0.43 -0.06 0.35 0.50 0.06

Random Forest-UFA 0.49 0.66 0.22 0.58 0.61 0.27

Logistic Regression 0.38 0.53 -0.01 0.40 0.62 -0.06

Abbreviations: MCC: Matthew’s correlation coefficient.

Results for all evaluated models are available in S7 Table.

https://doi.org/10.1371/journal.pntd.0008710.t003
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comparing the forecasting capabilities of RF with regression and time series models [40,45,84].

We believe that RF’s better performance is due to the model’s ability to capture the nonlinear

dynamics that are part of dengue ecology [105] and to learn the trajectory of an outbreak from

previously observed outbreaks. When forecasts were extended to 12 weeks in advance, the

ARIMA model had the least amount of error in Iquitos and Singapore. However, in San Juan,

RF performed better than Poisson regression and ARIMA. Our observation of the ARIMA

model outperforming both the RF and Poisson models may be due to the ARIMA model’s

ability to describe key underlying factors without being overly complex [106]. The perfor-

mance of these models in providing short- and long-term forecasts appar to indicate that for

short-term prediction, models benefit from an increase in complexity as the outcome is more

certain and the added complexity increases model accuracy. However, for long-term predic-

tions where the outcome is less certain, the additional model complexity appears to hurt

model accuracy.

In a forecasting challenge which used similar dengue and weather data from Iquitos and

San Juan; mechanistic, statistical and multimodel ensemble models were used to predict 3 den-

gue outcomes: peak incidence, week of peak incidence and total incidence [106]. Model per-

formance was highly variable where models did not consistently perform well across locations

and prediction targets. Similar to our study, the models did not perform well during high inci-

dence seasons–potentially due to only having a few high incidence seasons to train the model

on. Further, Johansson et al (2019) found that on average, models which included biologically

meaningful data and mechanisms had lower accuracy [106]. This result appears to support our

finding that ML models can at times, better leverage biologically meaningful data as they utilize

a more flexible framework and do not require a priori assumptions of the predictor-target

relationship.

Due to delays in case identification, current surveillance data may not be available in real

time. To evaluate this limitation, we removed model inputs related to surveillance data and

reassessed model performance. We found that predicted values generated by both RF and

Poisson regression were similar to the general trend in dengue case counts in Iquitos and San

Juan but not in Singapore. Our results show that both models were sensitive to the lack of sur-

veillance data and model error increases. The increase in error is most likely a result of the

combination of similar yearly weather patterns but high inter-annual variation in dengue

spread. As such, these models are unable to fully anticipate whether or not future dengue levels

will be high or low when surveillance data are unavailable.

In each study area, the random forest model had a high degree of confidence in its predic-

tions, as evidenced by the small confidence intervals. Though the confidence intervals were

small, the observed number of weekly cases were typically not included within the confidence

interval. This is due to the way that the random forest model estimates the standard error: as

the variation in predictions among the individual trees [102]. This result indicates that there

was little variation in predicted values between individual trees.

For some scenarios, such as vector control planning, the accurate prediction of outbreak

periods may prove sufficient to provide an early warning of an imminent dengue outbreak.

The RF-UFA model was able to forecast weekly dengue outbreaks 12 weeks in advance where

model MCCs ranged from 0.27 to 0.61 (Table 3). Further, the RF-UFA model was able to indi-

cate periods of low dengue risk 12 weeks in advance (Figs 9–11). Of interest, RF-UFA per-

formed well even when surveillance data inputs were removed from the model. In our analysis

of the RF-UFA model we found that the number of weekly high and low-risk flags correlated

well with dengue cases. Twelve weeks have been identified as the optimal lead time to enact

widespread vector control efforts [11]; based upon our study results RF-UFA could be a
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beneficial addition to an early warning system due to its ability to identify changes in dengue

spread risk.

Another study objective was to identify the strongest predictors of dengue case counts (Figs

6–8). According to our models, the strongest predictors were previous levels of dengue cases

-indicating that factors such as force of infection have a stronger influence on local transmis-

sion than weather factors. These results do not imply that weather is not important but rather,

once suitable weather conditions are achieved, outbreak risk becomes a function of other driv-

ers such as: vector control, population immunity, and virus infectivity. Interestingly, in Johans-

son et al (2019), models which incorporated weather and surveillane data typically performed

worse than models based only on surveillance data, suggesting that previous levels of dengue

cases are the strongest predictors [106]. The authors further hypothesized that surveillance

predictors alone may contribute equivalent information as weather predictors regarding future

dengue levels and the addition of weather data may overly complicating the model [106].

For each study area, when we removed surveillance inputs from the models and predictions

were based upon population, temporal and weather data only, the strongest predictors typi-

cally described multi-week weather patterns distributed over lag periods greater than 15

weeks. The observed relationships in our study are most likely due to the phase difference

between seasonal signals causing the variables to become correlated rather than being related

through a causal mechanistic link [57]. The strongest weather predictors demonstrated low

week-to-week variation, but larger month-to-month variation. In addition, the observed lag

periods are towards the maximum period by which weather variables have been observed to

affect dengue spread. In Singapore, monthly air travel patterns distributed over long lag peri-

ods were also a strong predictor of dengue cases. Though global travel has been identified as

an important driver of dengue outbreaks in Singapore [107], the effect of imported cases has

been observed to persist a maximum of 14 to 16 weeks, suggesting that this finding is also due

to phase differencing [108–112].

Our study has some limitations. Data availability may have negatively affected model per-

formance. We could not obtain vector control data, which are critical in diminishing the size

of the outbreak [11,113–115], and may confound the relationship between predictors and pre-

diction outcomes, causing the model to learn biased predictor-outcome relationships.

To train our models, we used dengue case counts as reported by passive surveillance sys-

tems. As such, asymptomatic and clinically mild cases were most likely missed, suggesting that

model predictions are underestimates of the true number of cases [2].

Our study highlighted various limitations for each modeling approach. When predicting

dengue case counts, RF consistently underestimated observed extreme values, for example the

2011 outbreak in Iquitos and the 2013 outbreak in Singapore (Fig 5 and Fig 7). This consistent

underestimation is a direct result of the RF’s inability to predict outside of the training set’s

outcome distribution [92]. Despite this limitation, the RF model typically identified when den-

gue cases would peak. In contrast, Poisson regression would occasionally overestimate peak

weeks with a delay, due to the model’s reliance upon the previous week’s reported cases and

the linear relationship imposed by the model. When predicting weekly outbreaks, we found

that all models performed poorly in Singapore, where there was an unprecedented increase in

dengue cases beginning in 2013 due to a severe dengue outbreak throughout Southeast Asia

[97–100]. As a result, the models were unable to account for this shift in dengue dynamics.

In evaluating RF-UFA performance, we found that this model suffered from false positives

in Iquitos and San Juan. Typically, the model predicted an earlier onset and a later end to the

outbreak period and, on occasion, would incorrectly predict extended outbreak periods during

the traditional peak dengue months. This is certainly problematic and requires further
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attention since too many false positives can lead to alarm fatigue and can rapidly deplete lim-

ited resources [116].

Conclusions

In this study, we compared the ability of ML, regression, and time-series based modeling

approaches to forecast dengue case counts and outbreaks. When using dengue surveillance,

population, temporal, and weather data as model inputs, RF was more accurate than both Pois-

son regression and ARIMA models, for near term predictions while the ARIMA model per-

formed best for long-term predictions. We also found that when predicting dengue outbreaks,

RF-UFA outperformed both RF and logistic regression models when using only population,

temporal, and weather data as model inputs. Given the potential advantages of ML models the

forecasting capabilities of dengue early warning systems may be improved by the inclusion of

ML models.
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missing data; for San Juan, remote sensed imagery was the most affected data source. Among

all days in the data collection period, 69.5% in Iquitos, 1.1% in San Juan, and 0.6% in Singapore

had at least 1 missing measurement.

(TIF)

S2 Fig. 12 week forecast accuracy of the temporal pattern of dengue case counts, Iquitos,

Peru, June 2009 –June 2013. Observed weekly cases counts (black area) are compared with 12

week ahead forecasts made by Random Forest and Poisson regression models. Dotted lines

represent 95% confidence intervals around the model’s prediction. RF model standard errors

were estimated using the infinitesimal jackknife for bagging approach [101].

(TIF)

S3 Fig. ARIMA model 4 (A) and 12 (B) week forecast accuracy of the temporal pattern of den-

gue case counts, Iquitos, Peru, June 2009 –June 2013. Observed weekly cases counts (black

area) are compared with 4 and 12 week ahead forecasts (panels A and B respectively) made by

the ARIMA. Dotted lines represent 95% confidence intervals around the model’s prediction.

(TIF)

S4 Fig. 12 week forecast accuracy of the temporal pattern of dengue case counts, San Juan,

Puerto Rico, April 2009 –April 2013. Observed weekly cases counts (black area) are com-

pared with 12 week ahead forecasts made by Random Forest and Poisson regression models.

Dotted lines represent 95% confidence intervals around the model’s prediction. RF model

standard errors were estimated using the infinitesimal jackknife for bagging approach [101].

(TIF)

S5 Fig. ARIMA model 4 (A) and 12 (B) week forecast accuracy of the temporal pattern of den-

gue case counts, San Juan, Puerto Rico, April 2009 –April 2013. Observed weekly cases counts

(black area) are compared with 4 and 12 week ahead forecasts (panels A and B respectively)

made by the ARIMA. Dotted lines represent 95% confidence intervals around the model’s pre-

diction.

(TIF)

S6 Fig. 12 week forecast accuracy of the temporal pattern of dengue case counts, Singapore,

January 2013 –December 2016. Observed weekly cases counts (black area) are compared with

12 week ahead forecasts made by Random Forest and Poisson regression models. Dotted lines

represent 95% confidence intervals around the model’s prediction. RF model standard errors

were estimated using the infinitesimal jackknife for bagging approach [101].

(TIF)

S7 Fig. ARIMA model 4 (A) and 12 (B) week forecast accuracy of the temporal pattern of den-

gue case counts, Singapore, January 2013 –December 2016. Observed weekly cases counts

(black area) are compared with 4 and 12 week ahead forecasts (panels A and B respectively)

made by the ARIMA. Dotted lines represent 95% confidence intervals around the model’s pre-

diction.

(TIF)
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14. Briët OJ, Vounatsou P, Gunawardena DM, Galappaththy GN, Amerasinghe PH. Models for short term

malaria prediction in Sri Lanka. Malar J. 2008; 7: 76. https://doi.org/10.1186/1475-2875-7-76 PMID:

18460204

PLOS NEGLECTED TROPICAL DISEASES Weekly dengue forecasts in three endemic locations

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008710 October 16, 2020 21 / 26

https://doi.org/10.1186/1471-2458-12-72
http://www.ncbi.nlm.nih.gov/pubmed/22272602
https://doi.org/10.1038/nature12060
http://www.ncbi.nlm.nih.gov/pubmed/23563266
http://www.ncbi.nlm.nih.gov/pubmed/17690390
https://doi.org/10.1371/journal.pntd.0001908
http://www.ncbi.nlm.nih.gov/pubmed/23209852
https://doi.org/10.1038/srep33707
http://www.ncbi.nlm.nih.gov/pubmed/27665707
https://doi.org/10.1371/journal.ppat.1006965
https://doi.org/10.1371/journal.ppat.1006965
http://www.ncbi.nlm.nih.gov/pubmed/29723307
https://doi.org/10.1073/pnas.1508114112
https://doi.org/10.1073/pnas.1508114112
http://www.ncbi.nlm.nih.gov/pubmed/26553981
https://doi.org/10.1098/rsif.2014.0094
https://doi.org/10.1098/rsif.2014.0094
http://www.ncbi.nlm.nih.gov/pubmed/24829280
https://doi.org/10.1371/journal.pntd.0001848
http://www.ncbi.nlm.nih.gov/pubmed/23110242
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5453969/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5453969/
https://doi.org/10.1186/1475-2875-3-41
http://www.ncbi.nlm.nih.gov/pubmed/15541174
https://doi.org/10.1186/1475-2875-7-76
http://www.ncbi.nlm.nih.gov/pubmed/18460204
https://doi.org/10.1371/journal.pntd.0008710


15. Wangdi K, Singhasivanon P, Silawan T, Lawpoolsri S, White NJ, Kaewkungwal J. Development of

temporal modelling for forecasting and prediction of malaria infections using time-series and ARIMAX

analyses: A case study in endemic districts of Bhutan. Malar J. 2010; 9: 251. https://doi.org/10.1186/

1475-2875-9-251 PMID: 20813066

16. Abeku TA, De Vlas SJ, Borsboom G, Tadege A, Gebreyesus Y, Gebreyohannes H, et al. Effects of

meteorological factors on epidemic malaria in Ethiopia: a statistical modelling approach based on theo-

retical reasoning. Parasitology. 2004; 128: 585–593. https://doi.org/10.1017/s0031182004005013

PMID: 15206460

17. Eastin MD, Delmelle E, Casas I, Wexler J, Self C. Intra- and interseasonal autoregressive prediction of

dengue outbreaks using local weather and regional climate for a tropical environment in Colombia. Am

J Trop Med Hyg. 2014; 91: 598–610. https://doi.org/10.4269/ajtmh.13-0303 PMID: 24957546

18. Hu W, Clements A, Williams G, Tong S. Dengue fever and El Nino/Southern Oscillation in Queens-

land, Australia: a time series predictive model. Occup Environ Med. 2010; 67: 307–311. https://doi.

org/10.1136/oem.2008.044966 PMID: 19819860

19. Karim MdN Munshi SU, Anwar N Alam MdS. Climatic factors influencing dengue cases in Dhaka city:

A model for dengue prediction. Indian J Med Res. 2012; 136: 32–39. PMID: 22885261

20. Depradine CA, Lovell EH. Climatological variables and the incidence of Dengue fever in Barbados. Int

J Environ Health Res. 2004; 14: 429–441. https://doi.org/10.1080/09603120400012868 PMID:

15545038

21. Luz PM, Mendes BVM, Codeço CT, Struchiner CJ, Galvani AP. Time series analysis of dengue inci-

dence in Rio de Janeiro, Brazil. Am J Trop Med Hyg. 2008; 79: 933–939. PMID: 19052308

22. Martinez EZ, Silva EAS da, Fabbro ALD. A SARIMA forecasting model to predict the number of cases

of dengue in Campinas, State of São Paulo, Brazil. Rev Soc Bras Med Trop. 2011; 44: 436–440.

https://doi.org/10.1590/s0037-86822011000400007 PMID: 21860888

23. Fuller DO, Troyo A, Beier JC. El Niño Southern Oscillation and vegetation dynamics as predictors of

dengue fever cases in Costa Rica. Environ Res Lett ERL Web Site. 2009; 4: 140111–140118. https://

doi.org/10.1088/1748-9326/4/1/014011 PMID: 19763186

24. Gharbi M, Quenel P, Gustave J, Cassadou S, La Ruche G, Girdary L, et al. Time series analysis of

dengue incidence in Guadeloupe, French West Indies: forecasting models using climate variables as

predictors. BMC Infect Dis. 2011; 11: 166. https://doi.org/10.1186/1471-2334-11-166 PMID:

21658238

25. Phung D, Huang C, Rutherford S, Chu C, Wang X, Nguyen M, et al. Identification of the prediction

model for dengue incidence in Can Tho city, a Mekong Delta area in Vietnam. Acta Trop. 2015; 141:

88–96. https://doi.org/10.1016/j.actatropica.2014.10.005 PMID: 25447266

26. Siriyasatien P, Phumee A, Ongruk P, Jampachaisri K, Kesorn K. Analysis of significant factors for den-

gue fever incidence prediction. BMC Bioinformatics. 2016; 17: 166. https://doi.org/10.1186/s12859-

016-1034-5 PMID: 27083696

27. Chan EH, Sahai V, Conrad C, Brownstein JS. Using web search query data to monitor dengue epi-

demics: a new model for neglected tropical disease surveillance. PLoS Negl Trop Dis. 2011; 5: e1206.

https://doi.org/10.1371/journal.pntd.0001206 PMID: 21647308

28. Althouse BM, Ng YY, Derek A. Cummings T.. Prediction of Dengue Incidence Using Search Query

Surveillance. PLoS Negl Trop Dis. 2011; 5: e1258. https://doi.org/10.1371/journal.pntd.0001258

PMID: 21829744

29. Racloz V, Ramsey R, Tong S, Hu W. Surveillance of dengue fever virus: a review of epidemiological

models and early warning systems. PLoS Negl Trop Dis. 2012; 6: e1648. https://doi.org/10.1371/

journal.pntd.0001648 PMID: 22629476

30. Cordell HJ. Detecting gene–gene interactions that underlie human diseases. Nat Rev Genet. 2009;

10: 392–404. https://doi.org/10.1038/nrg2579 PMID: 19434077

31. Shaman J, Karspeck A. Forecasting seasonal outbreaks of influenza. Proc Natl Acad Sci. 2012; 109:

20425–20430. https://doi.org/10.1073/pnas.1208772109 PMID: 23184969

32. Yang W, Cowling BJ, Lau EH, Shaman J. Forecasting influenza epidemics in Hong Kong. PLoS Com-

put Biol. 2015; 11: e1004383. https://doi.org/10.1371/journal.pcbi.1004383 PMID: 26226185

33. Yang W, Karspeck A, Shaman J. Comparison of Filtering Methods for the Modeling and Retrospective

Forecasting of Influenza Epidemics. PLOS Comput Biol. 2014; 10: e1003583. https://doi.org/10.1371/

journal.pcbi.1003583 PMID: 24762780

34. DeFelice NB, Little E, Campbell SR, Shaman J. Ensemble forecast of human West Nile virus cases

and mosquito infection rates. Nat Commun. 2017; 8. https://doi.org/10.1038/ncomms14592 PMID:

28233783

PLOS NEGLECTED TROPICAL DISEASES Weekly dengue forecasts in three endemic locations

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008710 October 16, 2020 22 / 26

https://doi.org/10.1186/1475-2875-9-251
https://doi.org/10.1186/1475-2875-9-251
http://www.ncbi.nlm.nih.gov/pubmed/20813066
https://doi.org/10.1017/s0031182004005013
http://www.ncbi.nlm.nih.gov/pubmed/15206460
https://doi.org/10.4269/ajtmh.13-0303
http://www.ncbi.nlm.nih.gov/pubmed/24957546
https://doi.org/10.1136/oem.2008.044966
https://doi.org/10.1136/oem.2008.044966
http://www.ncbi.nlm.nih.gov/pubmed/19819860
http://www.ncbi.nlm.nih.gov/pubmed/22885261
https://doi.org/10.1080/09603120400012868
http://www.ncbi.nlm.nih.gov/pubmed/15545038
http://www.ncbi.nlm.nih.gov/pubmed/19052308
https://doi.org/10.1590/s0037-86822011000400007
http://www.ncbi.nlm.nih.gov/pubmed/21860888
https://doi.org/10.1088/1748-9326/4/1/014011
https://doi.org/10.1088/1748-9326/4/1/014011
http://www.ncbi.nlm.nih.gov/pubmed/19763186
https://doi.org/10.1186/1471-2334-11-166
http://www.ncbi.nlm.nih.gov/pubmed/21658238
https://doi.org/10.1016/j.actatropica.2014.10.005
http://www.ncbi.nlm.nih.gov/pubmed/25447266
https://doi.org/10.1186/s12859-016-1034-5
https://doi.org/10.1186/s12859-016-1034-5
http://www.ncbi.nlm.nih.gov/pubmed/27083696
https://doi.org/10.1371/journal.pntd.0001206
http://www.ncbi.nlm.nih.gov/pubmed/21647308
https://doi.org/10.1371/journal.pntd.0001258
http://www.ncbi.nlm.nih.gov/pubmed/21829744
https://doi.org/10.1371/journal.pntd.0001648
https://doi.org/10.1371/journal.pntd.0001648
http://www.ncbi.nlm.nih.gov/pubmed/22629476
https://doi.org/10.1038/nrg2579
http://www.ncbi.nlm.nih.gov/pubmed/19434077
https://doi.org/10.1073/pnas.1208772109
http://www.ncbi.nlm.nih.gov/pubmed/23184969
https://doi.org/10.1371/journal.pcbi.1004383
http://www.ncbi.nlm.nih.gov/pubmed/26226185
https://doi.org/10.1371/journal.pcbi.1003583
https://doi.org/10.1371/journal.pcbi.1003583
http://www.ncbi.nlm.nih.gov/pubmed/24762780
https://doi.org/10.1038/ncomms14592
http://www.ncbi.nlm.nih.gov/pubmed/28233783
https://doi.org/10.1371/journal.pntd.0008710


35. Shaman J, Pitzer VE, Viboud C, Grenfell BT, Lipsitch M. Absolute Humidity and the Seasonal Onset of

Influenza in the Continental United States. PLOS Biol. 2010; 8: e1000316. https://doi.org/10.1371/

journal.pbio.1000316 PMID: 20186267

36. Mangal TD, Paterson S, Fenton A. Predicting the Impact of Long-Term Temperature Changes on the

Epidemiology and Control of Schistosomiasis: A Mechanistic Model. PLOS ONE. 2008; 3: e1438.

https://doi.org/10.1371/journal.pone.0001438 PMID: 18197249

37. Reiner RC, Perkins TA, Barker CM, Niu T, Chaves LF, Ellis AM, et al. A systematic review of mathe-

matical models of mosquito-borne pathogen transmission: 1970–2010. J R Soc Interface. 2013; 10:

20120921. https://doi.org/10.1098/rsif.2012.0921 PMID: 23407571

38. Buczak AL, Baugher B, Moniz LJ, Bagley T, Babin SM, Guven E. Ensemble method for dengue predic-

tion. PloS One. 2018; 13: e0189988. https://doi.org/10.1371/journal.pone.0189988 PMID: 29298320

39. Yamana TK, Kandula S, Shaman J. Superensemble forecasts of dengue outbreaks. J R Soc Interface.

2016; 13: 20160410. https://doi.org/10.1098/rsif.2016.0410 PMID: 27733698

40. Kane MJ, Price N, Scotch M, Rabinowitz P. Comparison of ARIMA and Random Forest time series

models for prediction of avian influenza H5N1 outbreaks. BMC Bioinformatics. 2014; 15: 276. https://

doi.org/10.1186/1471-2105-15-276 PMID: 25123979

41. Ruiz MO, Chaves LF, Hamer GL, Sun T, Brown WM, Walker ED, et al. Local impact of temperature

and precipitation on West Nile virus infection in Culex species mosquitoes in northeast Illinois, USA.

Parasit Vectors. 2010; 3: 19. https://doi.org/10.1186/1756-3305-3-19 PMID: 20302617

42. Rehman NA, Kalyanaraman S, Ahmad T, Pervaiz F, Saif U, Subramanian L. Fine-grained dengue

forecasting using telephone triage services. Sci Adv. 2016; 2: e1501215. https://doi.org/10.1126/

sciadv.1501215 PMID: 27419226

43. Aramaki E, Maskawa S, Morita M. Twitter Catches the Flu: Detecting Influenza Epidemics Using Twit-

ter. Proceedings of the Conference on Empirical Methods in Natural Language Processing. Strouds-

burg, PA, USA: Association for Computational Linguistics; 2011. pp. 1568–1576. Available: http://dl.

acm.org/citation.cfm?id=2145432.2145600

44. Wu Y, Lee G, Fu X, Hung T. Detect climatic factors contributing to dengue outbreak based on wavelet,

support vector machines and genetic algorithm. 2008. Available: http://oar.a-star.edu.sg/jspui/handle/

123456789/700

45. Carvajal TM, Viacrusis KM, Hernandez LFT, Ho HT, Amalin DM, Watanabe K. Machine learning meth-

ods reveal the temporal pattern of dengue incidence using meteorological factors in metropolitan

Manila, Philippines. BMC Infect Dis. 2018; 18: 183. https://doi.org/10.1186/s12879-018-3066-0 PMID:

29665781

46. Johnson LR, Gramacy RB, Cohen J, Mordecai E, Murdock C, Rohr J, et al. Phenomenological fore-

casting of disease incidence using heteroskedastic Gaussian processes: A dengue case study. Ann

Appl Stat. 2018; 12: 27–66.

47. Christophers S, others. Aedes aegypti (L.) the yellow fever mosquito: its life history, bionomics and
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