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Adaptive simulations, towards 
interactive protein-ligand modeling
Daniel Lecina1, Joan F. Gilabert1 & Victor Guallar1,2

Modeling the dynamic nature of protein-ligand binding with atomistic simulations is one of the main 
challenges in computational biophysics, with important implications in the drug design process. 
Although in the past few years hardware and software advances have significantly revamped the use of 
molecular simulations, we still lack a fast and accurate ab initio description of the binding mechanism in 
complex systems, available only for up-to-date techniques and requiring several hours or days of heavy 
computation. Such delay is one of the main limiting factors for a larger penetration of protein dynamics 
modeling in the pharmaceutical industry. Here we present a game-changing technology, opening up the 
way for fast reliable simulations of protein dynamics by combining an adaptive reinforcement learning 
procedure with Monte Carlo sampling in the frame of modern multi-core computational resources. 
We show remarkable performance in mapping the protein-ligand energy landscape, being able to 
reproduce the full binding mechanism in less than half an hour, or the active site induced fit in less than 
5 minutes. We exemplify our method by studying diverse complex targets, including nuclear hormone 
receptors and GPCRs, demonstrating the potential of using the new adaptive technique in screening 
and lead optimization studies.

Accurately describing protein-ligand binding at a molecular level is one of the major challenges in biophysics, 
with important implications in applied and basic research in, for example, drug design and enzyme engineering. 
In order to achieve such a detailed knowledge, computer simulations and, in particular, molecular in silico tools 
are becoming increasingly popular1, 2. A clear trend, for example, is seen in the drug design industry: Sanofi 
signed a $120 M deal with Schrödinger, a molecular modeling software company, in 2015. Similarly, Nimbus sold 
for $1,200 M its therapeutic liver program (a computationally designed Acetyl-CoA Carboxylase inhibitor) in 
2016. Clearly, breakthrough technologies in molecular modeling have great potential in the pharmaceutical and 
biotechnology fields.

Two main reasons are behind the revamp of molecular modeling: software and hardware developments, the 
combination of these two aspects providing a striking level of accuracy in predicting protein-ligand interactions1, 3, 4.  
A remarkable example constitutes the seminal work of Shaw’s group, where a thorough optimization of hardware 
and software allowed a complete ab initio molecular dynamics (MD) study on a kinase protein5, demonstrating 
that computational techniques are capable of predicting the protein-ligand binding pose and, importantly, to 
distinguish it from less stable arrangements by using atomic force fields. Similar efforts have been reported using 
accelerated MD through the use of graphic processing units (GPUs)6, metadynamics7, replica exchange8, etc. 
Moreover, these advances in sampling capabilities, when combined with an optimized force field for ligands, 
introduced significant improvements in ranking relative binding free energies9.

Despite these achievements, accurate (dynamical) modelling still requires several hours or days of dedi-
cated heavy computation, being such a delay one of the main limiting factors for a larger penetration of these 
techniques in industrial applications. Moreover, this computational cost severely limits examining the binding 
mechanism of complex cases, as seen recently in another study from Shaw’s group on GPCRs10. From a techni-
cal point, the conformational space has many degrees of freedom, and simulations often exhibit metastability: 
competing interactions result in a rugged energy landscape that obstructs the search, oversampling some regions 
whereas undersampling others11, 12. In MD techniques, where the exploration is driven by numerically integrating 
Newton’s equations of motion, acceleration and biasing techniques aim at bypassing the highly correlated con-
formations in subsequent iterations13. In Monte Carlo (MC) algorithms, another main stream sampling method, 
stochastic proposals can, in theory, traverse the energy landscape more efficiently, but their performance is often 
hindered by the difficulty of generating uncorrelated protein-ligand poses with good acceptance probability14, 15.  
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The Protein Energy Landscape Exploration (PELE) program16 addresses the problem by making use of protein 
structure prediction algorithms, which introduces larger conformational changes17 and, importantly, allows map-
ping complex protein-ligand binding mechanisms18–20. This technique, for example, has been underlined as an 
impressive accomplishment in the last Community Structure-Activity Resource (CSAR) blind competition21. 
Nonetheless, PELE simulations still show some degree of metastability, requiring several hours for solving the 
binding mechanism in complex systems, restricting its use in a drug design screening setup. For introducing 
large impact, we should aim for fast (minutes) and accurate simulations, allowing a drug design team to obtain 
accurate protein-ligand structures interactively, opening the possibility to combine their knowledge and expert 
intuition with in silico techniques on-the-fly. In this work, we present such a breakthrough tool: Adaptive-PELE, 
a combination of PELE with an adaptive reinforcement learning procedure.

Of particular interest in our study are iterative methods making use of short simulations and deciding 
on-the-fly the most interesting regions to sample, such as adaptive sampling8, weighted ensemble22, the adap-
tive seeding method23, or the FAST24 technique. The latter method rewrites the conformational exploration in 
terms of the well-studied multi-armed bandit (MAB) problem25, taking advantage of the gradient existing in 
measurables, such as the solvent-accessible surface area (SASA) or some energy components. We understand the 
ligand-protein exploration as an exploration-exploitation dilemma, since the phase space is highly dimensional 
and sufficient sampling of relevant regions, not only of a few metastable states, is necessary for an accurate char-
acterization. The exploration is a learning process where we acquire knowledge of the energy landscape as the 
simulation progresses, and we decide to focus on the most rewarding regions. We serve of the MAB as a theoreti-
cal framework, since it has been successfully applied in a wide range of problems such as protein folding24, on-line 
advertising or news recommendation26.

Adaptive-PELE is based on an iterative procedure where each iteration, referred as an epoch, involves three 
different steps: exploration, clustering and spawning (or seeding). Its landscape exploration capabilities, con-
fronted with standard PELE executions (non-adaptive trajectories), are shown in four different protein-ligand 
complexes (Fig. 1): i) the trypsin—benzamidine (TRP system); ii) a progesterone nuclear hormone receptor 
with its endogenous ligand (PR system), iii) the M3 muscarinic acetylcholine class A G-protein coupled receptor 
(GPCR) with an inverse agonist (A-GPCR system); iv) the corticotropin-releasing factor, a class B GPCR with 
an antagonist ligand (B-GPCR system). Our results demonstrate that the new adaptive technique is capable of 
mapping the binding energy landscape for complex systems in less than half an hour, or the active site induced fit 
process in less than 5 minutes.

Results
Energy landscape exploration.  We first show the protein-ligand energy landscape exploration capabili-
ties of Adaptive-PELE and compare them to that of a standard (non-adaptive) procedure. The evolution of the 
ligand root mean square deviation (RMSD) to the native bound structure along the simulation (MC steps), and 
the protein-ligand binding energy against the same ligand RMSD is shown in Fig. 2. We plot here the results for 
the B-GPCR system, using 512 trajectories (each trajectory runs in a computing core), but equivalent figures 
for the remaining systems are shown in the Supplementary Information. As seen in the RMSD evolution plots, 
both the adaptive (Fig. 2a) and standard (Fig. 2c) PELE methods succeed in sampling native-like conformations, 
with RMSD values ~1 Å; analogous results are seen for all other systems (Supplementary Figs. 2 to 4). We should 
emphasize that the initial starting pose for the ligand is significantly away from the binding site (~20 Å, Fig. 1) and 
that there is no bias in the search: no information from the bound pose is used but for plotting purposes. Such a 
non-biased sampling performance, for example, has not been successful for MD techniques in complex systems 
such as the A-GPCR, only seeing the binding to an extracellular site vestibule, approximately at 12 Å from the 
bound structure, when using 16 μs of standard MD10 or 1 μs of accelerated MD27.

As we can see in Fig. 2a and b, the first phase of the adaptive simulation is devoted to explore the bulk and 
the vicinity of the initial pose. Significantly, as the adaptive epochs evolve few simulations enter deeper into the 
cavity, getting into an unexplored region. The MAB strategy uses this information to spawn several explorers 
there, increasing the possibilities of finding new unexplored areas. Towards the end of the sampling, we observe 
an almost complete shift of the explorers towards the binding site region. The standard PELE technique, how-
ever, keeps exploring the outer regions (Fig. 2c and d), with minimal excursions into the binding site, resulting 
in a much less efficient exploration (see below for a thorough comparison). A nice additional feature is that the 
exploration moves away from regions once they are sufficiently known, avoiding metastability. For example, the 
binding pose is found at around step 30, and the sampling is only kept there two more epochs, when exploration 
efforts are moved to more rewarding areas.

A noteworthy common aspect in both techniques is that we can easily identify the native-like pose using the 
binding energy. The potential of using PELE’s binding energy, an all atom OPLS2005 protein-ligand interaction 
energy with an implicit solvent model, in pose discrimination was already shown in our initial induced-fit bench-
mark study28, being also the basis for our recent success in the CSAR blind competition. While this energy does 
not correlate with absolute experimental affinities (nor allows us to compare different ligands), it is very useful for 
pose discrimination; similar observations have emerged when using MD5. Importantly, introducing the adaptive 
procedure improves the binding energy landscape funnel shape, avoiding an unbalanced exploration of metasta-
ble regions, which eliminates the severe optimization on the energy by constantly minimizing over and over the 
same minimum. This can be seen, for example, when comparing the difference in “binding peaks” at 7.5 and 20 Å 
in Fig. 2b and d.

Binding event observation - Binding time.  The ligand finds native-like poses in ~35 MC steps when 
using the new adaptive approach (Fig. 2a), the independent PELE simulation requiring approximately 10 more 
times, ~350 steps (Fig. 2c). While standard PELE already represents a significant advance over other sampling 
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techniques (microsecond MD simulations with the Anton computer, for example, could not observe a binding 
event for A-GPCR10), the adaptive scheme introduces a remarkable speed up. As a rule of thumb, each MC PELE 
step takes around 45 seconds on a SandyBridge-EP 2.6 GHz computing core, and therefore, in this particular sim-
ulation the bound native structure can be predicted in under 30 minutes using the adaptive approach.

To quantitatively assess our new algorithm’s performance, we estimated the binding times by averaging over 
ten separate runs, considering that a binding event occurred when the ligand RMSD with the native bound 
structure was less than 2.5 Å. In addition, we checked the scalability by using an increasing number of trajectories 
(computing cores), from 32 to 1024, summing up to a total computing time of a quarter of million CPU hours. 
Moreover, different MAB strategies (see the Methods section) were used for the adaptive simulations, including 
the inversely proportional and ε-greedy, guiding the exploration with two metrics: the protein-ligand interac-
tion energy, where the native structure does not need to be known, and the ligand RMSD to the native, a biased 
strategy that allows us to estimate a lower bound for the binding time. Notice that when using a small number of 
explorers some standard PELE simulations did not produce binding events in 3000 MC steps. In those cases, we 
assigned the binding time to 3000 steps in order to set a lower bound for the comparison.

We observe that in general the binding time decreases with the number of processors for all systems and 
methods (Fig. 3). In TRP, however, we approach a plateau for 256 processors; adding up more explorers only 
yields minor improvements. TRP is a relatively rigid protein not requiring structural rearrangements to bind 
benzamidine, and using 256 processors we almost reach the minimum possible binding time, given the ligand 
translation range per MC step and the starting position. In the remaining three (more difficult) systems, however, 

Figure 1.  Protein-ligand complexes studied. (a) Trypsin with benzamidine as a ligand (TRP, PDB ID: 
3PTB). (b) Progesterone nuclear hormone receptor with progesterone as a ligand (PR, PDB ID: 1A28). (c) 
Corticotropin-releasing factor GPCR with CP-376395 as a ligand (B-GPCR, PDB ID: 4KY5). (d) M3 muscarinic 
acetylcholine GPCR with tiotropium as a ligand (A-GPCR, PDB ID: 4DAJ). The initial structures for the 
protein-ligand exploration, with the ligand ~20 Å away from the binding site, are shown. The square inset in 
each panel depicts a 2D scheme of each ligand.
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the binding time keeps decreasing in the whole range, since we need a more exhaustive protein sampling, and 
ligand movements need to couple to protein rearrangements.

In agreement with the difficulties seen in MD simulations, the exploration in A-GPCR is especially poor for 
the standard PELE approach, not seeing a significant number of binding events with less than 128 trajectories. It 
is quite remarkable that by introducing the adaptive sampling we find the correct binding mode using 32 cores 
in only ~3 hours of simulation. The overall speed up achieved by adaptive-PELE for this system is approximately 
40 times in the studied number of processors range, being at least one order of magnitude in the other two 
complex systems, PR and B-GPCR. As expected, TRP has the least speed up gain, since it is the least computa-
tionally demanding example. Importantly, for all studied systems the adaptive technique is capable of providing 
native-like poses in less than half an hour when a large number of computing cores is provided, a significant 
achievement.

Interestingly, the different MAB strategies perform quite similarly. Guiding the seeding with the protein-ligand 
binding energy does not require previous knowledge of the binding site and, as emphasized above, it correlates 
nicely with the native-like pose (although it has been reported that sometimes the SASA has been shown to per-
form better29). In addition, if one has available the bound crystal structure, one can use the RMSD to guide the 
binding, which serves as an estimation of the binding time limit that we could achieve; a similar strategy could 
be obtained by simply knowing the binding site and using its distance to the ligand’s center of mass to guide the 
spawning. Surprisingly, when increasing the number of processors all these strategies yield similar results as our 
default option, the inversely proportional strategy, which seems to indicate that the choice of the reward function 
depending on the number of contacts (see Methods section) makes quite an optimal seeding.

Mechanistic studies: protein conformation exploration.  While we have shown that adaptive-PELE 
can provide native-like poses in complex systems in a fast manner, it is important to show that it also provides the 
proper binding mechanism. We show here the analysis for two of the more difficult systems, PR and A-GPCR.

PR. Recent crystallographic and computational studies in NHRs have underlined the conformational changes 
necessary for ligand delivery at the entry site: helices 3, 6, 7 and 11, along with the loops linked to them19, 30; with 
respect to this region, NHRs seem to adopt an open and a closed structure coupled to the ligand’s entrance. The 
PR receptor, in particular, has the largest plasticity in this region, as shown in the PCA analysis on all available 
NHRs bound crystal structures30. Such conformational change is well captured by the adaptive technique. As seen 
in Fig. 4, the protein starts in the closed conformation (shown in red) and achieves its largest opening when the 

Figure 2.  Energy landscape exploration of B-GPCR with 512 different explorers. (a,b) The RMSD variation 
along MC steps and the binding energy against the RMSD for the adaptive results. Each color code corresponds 
to a different epoch number, for a total of 12 adaptive iterations. (c,d) Analogous plots for the standard 
executions. Each color corresponds to a different trajectory (performed in a different computing core). Notice 
the change in scale in the X-axis between (a) and (c).
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ligand starts entering the cavity from the peripheral binding site (shown in white), to progressively close again 
towards the native pose as it gets deemed bound (shown in blue).

A-GPCR. GPCRs represent a great challenge for the modeling community. On top to the difficulties in obtain-
ing atomistic models for these membrane proteins, we have the large plasticity of their extracellular domain 
(involved in ligand delivery and binding), and the buried nature of most of their binding sites. For A-GPCR, in 
particular, the extracellular loop 2 (ECL2) mobility has been reported to be involved in ligand binding, where a 
movement of L225 away from the orthosteric site permits a transient opening (rotation) of Y148 towards TM4, 
allowing tiotropium to bind, which closes again to form a lid in the binding pose10. As shown in Fig. 5a, in our 
simulations, we see a movement of L225 that is accompanied by a dihedral rotation of Y148 towards TM4, which 
allows binding. Once the ligand is bound, the tyrosine and the leucine move back to generate the binding pose. In 
Fig. 5b, we show the plasticity of these two residues, grouping all the involved cluster center side chain structures 
(in grey lines) into four main clusters using the k-medoids (in colored licorice) implemented in pyProCT31.

Figure 3.  Binding times for all systems and MC techniques. (a) Number of steps for observing a binding event 
against the number of trajectories (processors) for the TRP system, using the standard PELE (in red) and the 
adaptive-PELE with the inversely proportional (in blue) and the ε-greedy guided strategies with binding energy 
(in green) and RMSD (in orange). Actual data (MC steps) with their standard deviation for three different sets 
of processors is shown at the bottom table inset for the standard PELE and the inversely proportional adaptive-
PELE methods. (b–d) Analogous plots for PR, B-GPRC, and A-GPCR. A complete list of all data is shown in 
Supplementary Information.



www.nature.com/scientificreports/

6Scientific Reports | 7: 8466  | DOI:10.1038/s41598-017-08445-5

Induced-Fit Docking.  Predicting the non-biased binding mechanism is certainly a fancy computational 
effort, showing the capabilities of molecular modeling techniques. It aids in understanding the molecular mecha-
nism of action, potentially finding, for example, alternative binding sites that might be used for rational inhibitor 
design. Another set of important simulations comprises docking refinement. Today, structure based design efforts 
ranging from virtual screening to fine tuning lead optimization activities, are hampered by having to properly han-
dle the induced fit mechanisms. In this sense cross- and apo-docking studies, a significant less demanding mod-
eling effort, constitute a better example. As seen in recent benchmark studies28, 29, 32 (or in the CSAR exercise21),  
standard PELE is possibly the fastest technique providing accurate answers in cross- and apo-docking, requiring 
on the order of 30–60 minutes wall clock time using ~16/32 trajectories in average.

By introducing the adaptive sampling technique, we can now improve the simulation time to only few MC 
steps, as shown in Fig. 6, where we show the refinement of a wrong docked pose for the PR system and the appli-
cation in cross docking for the soluble epoxide hydrolase (sEH), a tough benchmark system recently studied with 
standard PELE32 which requires significant active site reorganization. Notice that easy induced fit cases, such as 
PR requiring only a flip of the ligand, can be accomplished in one MC step, not representing any improvement 
from standard PELE. In difficult cases, such as for sEH, the adaptive scheme provides again significant improve-
ment over standard simulations, shown in Supplementary Fig. 5. For example, notice in Supplementary Fig. 5a 

Figure 4.  PR binding mechanism. Two different views of the ligand entrance and the plasticity upon 
progesterone binding in PR. (a) Different ligand snapshots along the binding with two protein structures 
highlighting the initial closed (red cartoon) and intermediate open states (white cartoon). (b) A closer zoom at 
the entrance region with the ligand shown in the native bound structure; same color-coding as in the (a) panel 
but for the ligand (shown with atom element colors).

Figure 5.  A-GPCR binding mechanism. (a) Different ligand snapshots showing the binding pathway from the 
initial structure (in red) to the bound pose (in blue), including Y148 and L225, which follow the same color-
code. The white cartoon protein and the colored licorice ligand correspond to the bound crystal structure. (b) 
Side chain conformations for Y148 and L225, where the red licorice corresponds to the crystal structure. In grey 
lines, we show all the different conformations for those cluster centers along the adaptive process, and in colored 
licorice we show the resulting main conformations after a k-medoids clustering.
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how standard PELE shows early non-productive low RMSD explorations (grey line achieving RMSD ~5 Å). This 
type of behavior motivated the development of the adaptive protocol.

Taking into account that the active site refinement MC steps require only 30 seconds (involving less protein 
perturbation and ligand translation, but more rotation), we can model the right pose in under 5 minutes using a 
modest computational cluster (32–64 processors), which allows refinement of a large number of docking poses or 
an interactive structural-guided optimization of a given lead.

Discussion
Breakthrough advances in software and hardware are shifting the development of complex design processes to 
computer modeling. Still, accurately modeling the protein-ligand structure requires several hours of heavy com-
putation, even when using special purpose machines or large clusters of processors. We have introduced here a 
new method, combining a reinforcement learning procedure with an all-atom molecular mechanics Monte Carlo 
technique, capable of providing non-biased accurate protein-ligand structures in minutes of CPU wall clock. This 
outstanding achievement opens the door for interactive usage, allowing to combine users’ expertise and intuition 
with in silico predictions.

A nice feature of adaptive-PELE is its scalability with computational resources; adding more computing cores 
(more trajectories) significantly reduces the wall clock computing time. While interactive refinement of active 
site poses requires only few processors, addressing the full binding mechanism (from solvent to the active site) 
requires significant more resources. While accessibility to cheap HPC will certainly increase in the near future, 
access to large computational resources for researchers is already a reality. Most pharmaceutical and biotech com-
panies account for in-house large computational clusters, with several thousands of computing cores. Moreover, 
cloud-computing access is drastically increasing while reducing its cost; an hour of 128 computing cores sells 
today for ~5$ in Amazon Cloud. If associated security issues were a key negative aspect in the past, this has been 
largely solved: more and more companies have now developed cloud solutions (Schrödinger, Openeye, etc.)

In agreement with recent studies1, 2, 5 we show how all-atom molecular mechanics force fields are mature 
enough to sample and distinguish native like poses in complex protein-ligand systems, providing excellent means 

Figure 6.  Induced-fit docking studies. (a) PR system: protein structure from PDB ID:1A28 and ligand structure 
from PDB ID:3KBA. (b) sHE system: protein structure from PDB ID:5AKE and ligand structure from PDB 
ID:5AM4. (c) sHE system: protein structure from PDB ID:5ALX and ligand structure from PDB ID:5AI5. In 
the upper panels we show the RMSD evolution along the simulation, in the middle ones the binding energy for 
the different RMSD values, and in the lower panels the native structure (atom-type colored), the lowest binding 
energy ligand structure (blue) and the starting ligand structure (red). Notice that in panel (b) the initial docking 
structure is slightly outside the active site (shown in the inset).
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for elucidating the atomic detailed binding mechanism. Our tests involved difficult protein-ligand systems, 
including diverse and pharmacological relevant targets, such as the PR receptor, and a GPCR receptor for which 
extensive MD simulations could not provide a native like pose. While initial models were obtained from bound 
structures (not requiring large backbone reorganization), it constitutes a typical drug design modeling setup.

Overall, we have developed a computational breakthrough with remarkable performance in mapping the 
protein-ligand energy landscape, being able to reproduce the full binding mechanism in complex systems in less 
than half an hour, or the active site induced fit in less than 5 minutes. Being an initial implementation, future 
developments will seek further improvement, including: clustering based on protein-ligand atomic contact maps, 
alternative initial structures (within a cluster), different MAB strategies, etc. In addition, thermodynamics could 
be obtained by combining Adaptive-PELE with Markov state Models. While standard PELE already shows a 
competitive advantage as a sampling method29, 32, combining it with reinforcement learning techniques and high 
performance computing, provides a solid modeling technique to the drug-design community, with potential of 
being interactively used in computer aided drug design.

Methods
The Adaptive Algorithm.  The algorithm is composed of three main steps: sampling, clustering, and spawn-
ing, which run in an iterative approach. In the sampling phase, a swarm of trajectories, in this paper in the range 
from tens to one thousand, are independently run. Conformations are then clustered, and the final spawning step 
chooses the seeds for the next iteration. By stopping simulations and adaptively spawning them, we circumvent 
the problem of getting trapped due to metastability, avoiding the waste of computational resources in oversam-
pled regions.

Sampling.  The sampling is usually the computational bottleneck of the process, so it is desired to use a method 
that can generate uncorrelated poses in a relatively short time. We chose PELE since it can introduce moder-
ate conformational changes in few minutes, providing robust protein-ligand exploration, even for complex sys-
tems, within few hours of a mid-range computing cluster (~100 commodity computing cores)18, 19, 33. PELE is a 
two-stage MC algorithm that uses protein structure prediction procedures to generate proposals. In the first stage, 
the ligand is randomly moved, and the protein is perturbed using a normal mode analysis method based on an 
anisotropic network model (ANM)17. In the second one, the structure is relaxed with a side chain prediction and 
a minimization (with constraints on alpha carbons and the ligand center of mass), and the resulting proposal is 
accepted or rejected with the Metropolis criterion.

We use rounds (epochs) of N simulations (trajectories) of length l, each one running on a computing core 
(using an MPI implementation). A larger N is expected to reduce the wall-clock time to see binding events, 
whereas l should be as small as possible to exploit the communication between explorers but long enough for new 
conformations to advance in the landscape exploration. While we use PELE in this work, one could use different 
sampling programs such as MD as well.

Clustering.  We used the leader algorithm34 based on the ligand RMSD, where each cluster has a central structure 
and a similarity RMSD threshold, so that a structure is said to belong to a cluster when its RMSD with the central 
structure is smaller than the threshold. The process is speeded up using the centroid distance as a lower bound for 
the RMSD (see Supplementary Information). When a structure does not belong to any existing cluster, it creates 
a new one being, in addition, the new cluster center. In the clustering process, the maximum number of compari-
sons is k·n, where k is the number of clusters, and n is the number of explored conformations in the current epoch, 
which ensures scalability upon increasing number of epochs and clusters.

We assume that the ruggedness of the energy landscape grows with the number of protein-ligand contacts, 
so we make RMSD thresholds to decrease with them, ensuring a suitable discretization in regions that are more 
difficult to sample. This concentrates the sampling in interesting areas, and speeds up the clustering, as fewer 
clusters are built in the bulk.

Spawning.  In this phase, we select the seeding (initial) structures for the next sampling iteration with the goal 
of improving the search in poorly sampled regions, or to optimize a user-defined metric; the emphasis in one or 
another will motivate the selection of the spawning strategy. Naively following the path that optimizes a quantity 
(e.g. starting simulations from the structure with the lowest SASA or best interaction energy) is not a sound 
choice, since it will easily lead to cul-de-sacs. Using MAB as a framework, we implemented different schemes and 
reward functions, and analyzed two of them to understand the effect of a simple diffusive exploration in opposi-
tion to a semi-guided one.

The first one, namely inversely proportional, aims to increase the knowledge of poorly sampled regions, espe-
cially if they are potentially metastable. Clusters are assigned a reward, r:

ρ
=r

C (1)

where ρ, is a designated density and C is the number of times it has been visited. We choose ρ according to the 
ratio of protein-ligand contacts, again assumed as a measure of possible metastability, aiming to ensure suffi-
cient sampling in the regions that are harder to simulate. The 1/C factor guarantees that the ratio of populations 
between any two pairs of clusters tends to the ratio of densities in the long run (one if densities are equal). The 
number of trajectories that seed from a cluster is chosen to be proportional to its reward function, i.e. to the 
probability to be the best one, which is known as the Thompson sampling strategy35, 36. The procedure generates 
a metric-independent diffusion.
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The second strategy is a variant of the well-studied ε-greedy25, where a 1−ε fraction of explorers are using 
Thompson sampling with a metric, m, that we want to optimize, and the rest follow the inversely proportional 
scheme. Metrics are typically used in PELE to extract information and to drive the system towards some deter-
mined actions. They include, for example, the binding energy, the SASA of the ligand, distances between atoms, 
etc. Depending on whether we want to maximize or minimize m, r is respectively defined as:

= −r m m (2)i i , min min

= −r m m , (3)i imax , max

where mi,max and mi,min are the maximum and minimum metric values within the i-th cluster respectively, and 
mmin and mmax are the overall metric minimum and maximum.

The adaptive python code is public on GitHub: https://github.com/AdaptivePELE/AdaptivePELE

Benchmark Systems.  We have chosen four systems with different levels of complexity: the 
trypsin-benzamidine, the PR nuclear hormone receptor with its endogenous ligand and two different GPCRs 
with a potent inverse agonist and an antagonist ligand respectively; these last three systems represent current 
pharmaceutical targets, allowing us to evaluate the viability of the protocol in real drug design processes.

The binding of trypsin with benzamidine (PDB ID: 3PTB) has been widely used as a benchmark system6, 37, 38. 
It is the smallest and least flexible receptor and ligand, being the system that requires the least computational time.

PR with its endogenous ligand (PDB ID: 1A28) belongs to the family of nuclear hormone receptors (NHR) 
and is an important pharmaceutical target. NHRs have been recently studied combining crystallography and 
PELE19, including studies with PR30, where it was found that protein plasticity was crucial for the ligand to enter 
the active site.

We also tested two different GPCRs with two different ligands, tiotropium (PDB ID: 4DAJ) and CP-376395 
(PDB ID: 4K5Y). GPCRs are a class of transmembrane proteins involved in the signaling of a wide range of bio-
logical functions and key pharmaceutical targets. 4DAJ is an M3 muscarinic acetylcholine receptor belonging 
to class A GPCRs, for which extensive MD simulations have already been performed. Despite the use of the 
Anton supercomputer and of 16 μs of MD production time10, binding of tiotropium, a bronchodilator drug, 
into the orthosteric site could not be reported, only seeing binding to an extracellular site vestibule. 4K5Y is a 
class B GPCR, involved in the treatment of anxiety and depression, whose bent transmembrane helix (TM) 7 
produces a pronounced V-shape allowing the ligand to enter deeper into the channel39. While no binding simu-
lations have been reported to our knowledge, the conformational changes between the apo and the holo struc-
tures have been recently studied running 100 ns MD simulations, with and without the antagonist ligand40.  
In addition, binding dissociation pathways have been studied with random acceleration molecular 
dynamics41.

Setup.  System preparation.  In order to test the potential of the new methodology in exploring the binding 
mechanism, we started simulations with a model where the ligand is placed 20 Å from the bound pose (see Fig. 1), 
and constrained its movements to a sphere of 15 Å, the center of which was placed in the middle point between 
the native and initial configurations. Structures were prepared with Schrödinger’s Protein Wizard42. Simulations 
were run with the OPLS2005 force field and the OBC implicit solvent43. Ligands’ atomic charges were parameter-
ized with RESP quantum charges, obtained with Jaguar44 optimizations at the DFT-B3LYP and 6–31 G** + level 
of theory.

PELE control file.  The same parameters were used for both adaptive and non-adaptive runs. The ligand trans-
lation was set to be dependent on its (relative) solvent accessible surface area (SASA), being 3 Å for SASA > 0.6 
whereas it otherwise ranged randomly from 0.75 to 1.5 Å in the protein vicinity; the translation direction was 
kept for four consecutive steps. Ligand rotation was randomly set between 20° and 60°. For the protein backbone 
perturbation, performed with a probability of 0.25, the lowest six ANM normal modes were randomly mixed 
with a maximum displacement of 1.5 Å. The same PELE control file has been used for all systems with except 
for the alpha carbon constraints in the relaxation step: since it was reported that the lipid bilayer was found not 
to play a significant role in the binding in the GPCR40, we speeded up simulations removing the membrane and 
adding constraints of 5 kcal/mol/Å2 every 10-th alpha carbons in the TMs, setting it to 0.2 kcal/mol/Å2 in TRP 
and PR.

Algorithm parameters.  Although a general set of parameters has been optimized and used in this work, users are 
encouraged to change them; limiting factors to consider are discussed in this section.

In the sampling phase, we use exploration rounds of l = 4 steps, which ensures epochs of less than four minutes 
with the current Marenostrum 3 processors at the Barcelona Supercomputing Center (SandyBridge-EP 2.6 GHz 
processors). Protein conformational changes can already be captured with four steps, and longer simulations were 
leading to poorer performance.

The number of protein-ligand contacts is used as a measure of the sampling complexity, as more contacts 
lead to more competing interactions and, thus, more energy barriers and metastability. We consider that a pair 
of protein (alpha carbons only) and ligand atoms are in contact if their distance is less than 8 Å, following ref. 23. 
In our implementation, we use as a parameter the ratio of the number of contacts per ligand heavy atom, c, since 
it is less system dependent, and regard those conformations with c > 1 as difficult to sample, which correspond 
to poses in the protein vicinity, and those with c < = 0.5 as easy, which correspond to largely solvent exposed 
poses.

https://github.com/AdaptivePELE/AdaptivePELE
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We tried three different combinations of cluster threshold and density values, and summarized in the table of 
Supplementary Fig. 6. Clusters need to be small enough so that one can distinguish (relevant) different confor-
mations. We select the thresholds with a function composed of linearly decreasing step functions in c, from 5 Å 
in the solvent (c < = 0.5) to 2 Å in the protein frame (c > 1). This ensures sufficient discretization in those regions 
that are difficult to sample, not spending too many resources in the bulk (Supplementary Fig. 6a). Using the same 
threshold everywhere, requires significant more sampling to reach native like poses (Supplementary Fig. 6b), 
since it introduces 3 times more clusters (Supplementary Fig. 6d).

In the spawning, the density value is chosen inversely proportional to the cluster volume (1/V). We tried dif-
ferent density functions. For example, ρ = 1 allows seeing binding events, but it divides exploration efforts in the 
whole domain, as can be seen in (Supplementary Fig. 6c).
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