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Abstract

A major goal of bioinformatics is the characterization of transcription factors and the transcriptional programs they regulate.
Given the speed of genome sequencing, we would like to quickly annotate regulatory sequences in newly-sequenced
genomes. In such cases, it would be helpful to predict sequence motifs by using experimental data from closely related
model organism. Here we present a general algorithm that allow to identify transcription factor binding sites in one newly
sequenced species by performing Bayesian regression on the annotated species. First we set the rationale of our method by
applying it within the same species, then we extend it to use data available in closely related species. Finally, we generalise
the method to handle the case when a certain number of experiments, from several species close to the species on which to
make inference, are available. In order to show the performance of the method, we analyse three functionally related
networks in the Ascomycota. Two gene network case studies are related to the G2/M phase of the Ascomycota cell cycle; the
third is related to morphogenesis. We also compared the method with MatrixReduce and discuss other types of validation
and tests. The first network is well known and provides a biological validation test of the method. The two cell cycle case
studies, where the gene network size is conserved, demonstrate an effective utility in annotating new species sequences
using all the available replicas from model species. The third case, where the gene network size varies among species, shows
that the combination of information is less powerful but is still informative. Our methodology is quite general and could be
extended to integrate other high-throughput data from model organisms.
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Introduction

One of the most important and time consuming step in

annotating a new genome is the identification of the transcription

factor binding sites [1,2]. An important reason for such difficulty is

their fast evolution with respect to coding regions, which limits the

use of model organisms annotation [3]. Recently, due to the direct

sequencing of all DNA fragments from ChIP assays, ChIP-Seq has

become the best technology for genome-wide mapping of protein-

DNA interactions [4].

An important class of binding site identification methods is

based on the assumption that co-expressed groups of genes often

share regulatory elements, which mediate the co-expression;

interesting counter examples are described in [5]. A two-step

approach is most commonly used. In the first step, the co-

expressed groups of genes need to be determined, typically from

gene-expression data. A clustering procedure is performed to

partition the genes into groups believed to be co-regulated, based

on expression profile similarity. In the second step, a motif

discovery tool is applied to search for abundant sequence patterns

in the promoters (or 39-UTRs) of each group that may represent

the binding sites of transcription factors that regulate the

corresponding genes. In [6] the authors applied linear regression

with stepwise selection on a list of candidate motifs obtained using

MDScan (see [7]) which is an algorithm that makes use of word-

enumeration and position-specific probability matrix updating

techniques. The candidate motifs were scored in terms of number

of sites and degree of matching with each gene. Inspired by Liu’s

work, our group has explored the performances of algorithms

based on Bayesian variable selection techniques showing that they

can be more effective than stepwise regression [8],[9],[10]. In

particular, in [10] and [8] we described a Bayesian variable

selection model to take into account the different and multiple

information sources available, to pool together results of several

experiments and to allow the users to select the motifs that best

explain and predict the changes in expression level in a group of

co-regulated genes. When experiments are costly, particularly in

high throughput biology, replicates come often in a minimum

number to assure statistical reliability for disseminating and

publishing results. In some cases, recently diverged species might

retain similarities in gene expression. These considerations suggest

that, in absence of experimental replicates, or even in addition to

these, statistical support to experimental evidences may also be

obtained by analysing model organisms that are phylogenetic close

variants of the species under examination. The effective exploi-

tation of annotated species richness is hampered by the lack of a

robust theoretical statistical framework to combine and contrast

the knowledge from replicas and from the model organisms nearby
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species. Here we describe a new systematic genome-wide statistical

approach for identifying putative transcription factor binding sites

from over-represented DNA sequence elements, or motifs, of

newly sequenced species, by regressing gene expression data of

nearby model species. The phylogenetic relationship between the

species, using coding regions, is carried out for the sole purpose of

identifying those model species that are enough close to potentially

share similarity in gene expression and motifs. Then we use

Bayesian variable selection to combine the information of the

DNA sequences of the species under analysis with the genome

expression information of other sufficiently close species, from

which several experimental results are available. Pooling informa-

tion across studies can help to accurately identify the true target

genes, as pointed out in [11], allowing both to share the final cost

of the analysis and to use already available data which are

contained in classical repositories. The paper is organized as

follows. First we set the rationale of our method by applying it

within the same species, then we extend it to use data available in

closely related species. With respect to previous publications, here

we present a general algorithm to identify transcription factor

binding sites in one species and perform Bayesian regression on

the annotated species. Our generalisation could handle the case

when a certain number of experiments from several species closed

to the species on which to make inference are available. We also

introduce an internal testing analysis and we investigate three

different networks; then we compare results with those obtained

using MatrixReduce, one of the best performing and used

algorithm in the field [12]. Finally we discuss the findings on the

three networks and we describe the statistical methodology in the

Section Methodology.

Materials and Methods

Algorithm
The algorithm consists of three major stages: sequence

processing, candidate motif selection, and motif detection. In the

following subsections we describe the specific steps we carried out.

Sequence Preprocessing Steps
1) Select a group of co-regulated genes in a well-annotated

species and collect related microarray expression experiments. In

our study we considered three case studies with different model

organisms: the septation transcriptional network in S. Pombe; the

cytokinesis transcriptional network and RAM signalling network,

both in C.albicans.

2) Determine the nearby species using phylogenetic properties

of the gene set selected in the previous step. Phylogenetic analysis

can be conducted with several methodologies. In the first case

study, we assessed the distance among fungi species based on all

Ace2p related protein trees using the JTT amino acid substitution

model [13]. The choice was due to the fact that these proteins are

globular cytoplasmic proteins. Likelihood maximization and

maximum likelihood parameter estimation were performed by

numerical optimization routines using a single replacement matrix

for all sites. Based on phylogenetic similarity we selected S.

Japonicus and S. Octosporus as nearby species of S. Pombe. In the

second case study, we generated all RAM related trees and picked

three candida genomes C. Tropicalis, C. Dublinensis and C.

Parapsilosis as nearby species of C. Albicans. Note that the latter

two species seem to be more distant from the first two species.

3) Choose a set of biologically independent genes for each

model species (S. Pombe=C. Albicans) from the pool of remaining

genes (those not selected in step (1)). This step is motivated from

the fact that extensive comparative genomic analysis has revealed

that all the eukaryotic genomes contain families of duplicated

genes which have recently diverged. In many cases these families

have retained large part of the upstream regulatory sequences. In

particular the residues of whole genome duplications have been

identified in different yeast strains [14] as well as in other species.

The redundancy of yeast genome suggests us to select a

meaningful non redundant ensemble of genes that contains all

the relevant statistical characteristics of the genome and therefore

will play the role of control genes in step (6).

To this purpose, we performed a phylogenetic analysis of the

gene pool using standard maximum likelihood techniques. The

analysis allowed us to identify subset of genes with very large

sequence similarities and therefore may derive from a common

ancestor. In all cases we also used GO slim annotations [15] as a

guidance for genes likely functionality. Aimed to get a fair share of

representatives from all functional and phylogenetic gene sets, we

randomly sampled genes from each set such that the number of

samples was proportionally to the set size. We ended up with

approximately 500 background genes for case study 1, and 600

genes for case study 2 and 3.

4) Identify homologous genes in nearby species (case study 1: S.

Japonicus and S. Octosporus; case study 2 and 3: C. Tropicalis, C.

Dublinensis and C. Parapsilosis) for both the co-regulated and

background sets. We used a recent homology map [16] to facilitate

this step.

5) Extract upstream DNA sequences (1000 base pairs length) for

each species, shorten them in case of overlapping with adjacent

ORFs. For genes with negative orientation, we considered the

reverse complement of the sequences. Note that motif finding

algorithms are sensitive to noise, which increases with the size of

upstream sequences examined, moreover the vast majority of the

yeast regulator sites from the TRANSFAC database are located

within 800 bp from the translation start sites [17].

Selection of candidate motifs
6) Generate candidate motifs enriched in promoter regions of

co-regulated genes and compute their matching scores for each

gene. We used a modified version of the software MDSCAN [7] to

search for nucleotide patterns which appears in the upstream

sequences of the genes of interest for each species. To remove

repeated segments that might confuse the motif discovery process,

we preprocessed the upstream sequences of the interested network

genes using RepeatMasker [18]. The matching score between a

candidate motif m and a given gene sequence g was calculated as

in [6]:

Xmg~ log2

X
x[Qwg

Pr x from hmð Þ=Pr x from h0ð Þ

2
4

3
5

where Qwg is the set of all w-mer in the upstream region of gene g.

hm is the probability matrix of motif m of width w, h0 is the

transition probability matrix for the background model, computed

using a Markov chain of the sixth order (Liu’s original algorithm

permits only Markov chain of the third order) from the upstream

regions of all the species of interest. We examined nucleotide

patterns of length 5 to 12 bp and scored up to 30 distinct

candidates for each width in all case studies.

Variable Selection and Inference
7) Identify likely regulatory motifs among the candidate sets

obtained in the previous step. We used an extended version of the

Bayesian variable selection [9] that handles the case of multiple
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experiments [19]. The idea is to search for the set of motifs that

provide the best fit when regressing nucleotide pattern matching

scores (X ) to the set of gene expression levels (Y~fY egE
e~1).

Y e[RG|Ke contains the expression data from experiment e of G

genes of the annotated species over Ke technical replicates. Pattern

scores X is of size G|M where M is the number of candidate

motifs, evaluated on the nearby species. We assume the following

model

ygekjmge, s2
e*N mge, s2

e

� �
g~1, . . . ,G; k~1, . . . ,Ke; e~1, . . . ,E

ð1Þ

where ygek represents the observed gene expression value of the

gene g in the kth replicate of the eth experiment and mge is the

underlying transcriptional activity level of gene g under the

experimental condition e. A binary latent vector, c of dimension

M, is introduced to indicate the inclusion of variables in the

model; cm takes on the value of 1 if the mth variable (motif) is

included and 0 otherwise. Let m c ~
PM

i~1 ci be the total number

of motifs included. The true gene expression value mge is connected

to a specific subset of the M candidate motifs identified by the

latent vector c by the following relation

mgeDc~
X

m:cm~1f g
xgmbme~xg:(c) b e( c ),

where xg:(c) is the row vector of matching scores for all included

motifs against gene g. We specified the following priors for the

regression coefficients, the experiment variance, and the latent

indicator:

b e( c )js2
e ,c*N 0,s2

eH( c )

� �
, s2

e*IG n,Sð Þ,

p(c )~PM
j~1hcj (1{h)1{cj ,

ð2Þ

where prior parameters H( c ),n and S were assessed by a sensitivity

analysis and h~mprior=M with mprior as the number of covariates

expected a priori to be included in the model. For all case studies we

chose H( c )~c diag(X ’X )z
� �

( c )
, where X is the score matrix

obtained in step (6) and c equals to the variation of the regression

coefficients of the full model averaged over the experiments. We

set weak prior knowledge choosing n~3, which is the smallest

integer such that the expected noise level of an experiment

E(s2
e)~n=(n{2)S exists. The scaling value S is equal to data

variation averaged over all experiments. For case study 1, whose

data are from time-course experiments, ygek represents the average

value of gene expression levels measured in the interval when the

ENG1 genes show their common activity peak, approximately 30–

90 minutes. The model specified in equation (1) could be rewritten

as

y e
:k*NG X( c ) b e( c ),s

2
eI

� �
where y e

:k~(ye
1k, . . . ,ye

Gk)’, k~1, . . . ,Ke and e~1, . . . ,E. With-

out loss of generality we further assume that the columns of X and

y e
:k are mean-centered.

Having set the prior distributions, a Bayesian analysis proceeds

by updating the prior beliefs with information that comes from the

data. The posterior distribution of the latent indicator vector c

given the data, i.e., f (c DX ,Y 1, . . . ,Y E), can be obtained:

f (c jX ,Y 1, . . . ,Y E)!

PE
e~1ae

jH( c )j{1=2jKe
( c )j

{1=2

ce{M
0
e Ke

( c )

� �{1

MezS

� 	(GKezn)=2
ð3Þ

with

Ke
( c )~ KeX( c )

0X( c )zH{1
( c )

� �

ce~
XKe

k~1

y e
:k

� �
y e
:k

� �

Me~X( c )
0
XKe

k~1

y e
:k

 !

ae~(1=2p)GKe=2Sn=2 C((GKezn)=2)2(GKezn)=2
h i

= C(n=2)2n=2
h i

:

The model (1)–(2) could be generalized in order to handle the

presence of missing data which are typically encountered when

analyzing real data experiment. For each fixed experiment

e~1, . . . ,E and each fixed technical replicate k~1, . . . ,Ke, let

Ges be the number of genes with expression levels measured on the

array. In this case the posterior becomes

f (c jXek,y e
:k,k~1, . . . ,Ke; e~1, . . . ,E)!

PE
e~1ae

jH( c )j{1=2jKe
( c )j

{1=2

ce{M
0
e Ke

( c )

� �{1

MezS

� 	(Gezn)=2
ð4Þ

with

Ge~
XKe

k~1

Gek

Ke
( c )~

XKe

k~1

X
0
ek( c )Xek( c )zH{1

( c )

 !
, Xek of dimension Gek|M

ce~
XKe

k~1

y e
:k

� �
y e
:k

� �
, y e

:k of dimension Gek|1

Me~
XKe

k~1

X
0
ek( c ) y e

:k

ae~(1=2p)Ge=2Sn=2 C((Gezn)=2)2(Gezn)=2
h i

= C(n=2)2n=2
h i

:
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Our interest is to maximize the posterior probability in

equations (3) and (4). Since the relative high dimensionality of

our vector space (approximately M~150 for our case studies)

makes comprehensive evaluation of posterior probabilities impos-

sible, we employed a sampling procedure based on stochastic

search Markov Chain Monte Carlo (MCMC) technique to identify

realizations of c with huge posterior probabilities.

8) Run multiple parallel MCMC chains of significant length for

each species. In each run, the algorithm visits a sequence of models

that differ successively in one or two variables. At each iteration, a

candidate model, represented by cnew, is generated by randomly

choosing one of these two transition moves:

(i) Add or delete one variable from cold.

(ii) Swap the inclusion status of two variables in cold.

The proposed cnew is accepted with a probability that depends

on the ratio of the relative posterior probabilities of the new versus

the previously visited models:

min
f (cnewDX ,Y 1, . . . ,Y E)

f (coldDX ,Y 1, . . . ,Y E)
,1


 �
, ð5Þ

which leads to the retention of the more probable set of patterns.

An analogous formula is obtained considering the posterior

probability given by formula (4).

The stochastic search results in a list of visited sets (i. e.

combination of candidate motifs) and the corresponding relative

posterior probabilities, then the selection of few ‘‘best motifs’’ can

be done either using the global MAP principle or by selecting the

covariates on the basis of their marginal probability to be included.

The marginal posterior probability of inclusion for a single motif j,

P(cj~1DX ,Y 1, . . . ,Y E), can be computed by averaging out the

posterior probabilities of the acquired samples:

f (cj~1DX ,Y 1, . . . ,Y E)~

ð
f cj~1,c ({j)DX ,Y 1, . . . ,Y E
� �

d c ({j)

!
ð

f Y 1, . . . ,Y E DX ,cj~1,c ({j)

� �
:f (c )d c ({j)

&
X

t

f Y 1, . . . ,Y E DX ,cj~1,c
(t)
({j)

� �
:f cj~1,c

(t)
({j)

� �
,

ð6Þ

where c (t)
({j) is the vector c at the tth iteration without the jth motif.

In all three case studies, we ran 10 parallel chains of 100,000

iterations each. We computed the normalized posterior probabil-

ities for each distinct visited set of motifs and the marginal

probabilities for the inclusion of single nucleotide patterns.

Robustness analysis
To investigate the effect of sparsity setting on variable selection,

we ran steps 7)–8) with various values for mprior, the a-priori

expected number of motifs included in the model. In particular we

examined mprior~1,3,5 for all three case studies. These values

were chosen due to the knowledge that fungi are simple organisms

and their regulation mechanisms are based on relatively few

motifs.

To study the robustness of the proposed framework with respect

to the choices of both single experiment and control gene sets, we

repeated steps 7)–8) with different subsets of control genes in

combination with the leave-one-out cross validation strategy over

all experiments. In our case studies we randomly sampled 8

different subsets of 200 genes out of 500–600 background genes in

total.

Internal testing analysis
The procedure described above is based on the implicit

assumption that the expression levels of the co-regulated genes

observed in a microarray experiment Y e of one species are

positively correlated to those of the homologous gene set in the

species of interest. In the case experimental data are not available

for the latter species, we could validate such assumption using a

third species of larger phylogenetic distance than the species under

studies. Let Ze be the expression data of the third species, we could

compute the correlation coefficient of the co-regulated gene set in

Y e and Ze. If the coefficient is significantly high (i.e. close to 1), we

deduce that the assumption is likely to be satisfied. In this

particular context for the first dataset we computed the correlation

coefficients between S. Pombe and S. Cerevisiae in order to justify the

comparison of the networks of S. Pombe, S. Octosporus and S.

Japonicus. This approach requires a good degree of agreement from

several species as criterion of trust of the solution.

Further generalisation
Our method can be generalized to handle the case when

multiple experiments from different species close (phylogeneticaly)

to the species under investigation are available. A straightforward

solution is to run the described model independently for each

species and pool out proposed models by their marginal

probabilities. An alternative proposal is to incorporate all

information available into a single model as follows.

Let ysgeskes
be the observed gene expression value of the gene g

in replicate kes
of experiment es from species s, with s~1, . . . ,S;

g~1, . . . ,G, es~1, . . . ,Es, and kes
~1, . . . ,Kes

. As before, we

assume expression values follow a normal distribution,

ysgeskes
Dmsges

,s2
es
*N msges

,s2
es

ds

� �
,

where ds is proportional to the distance between species s and the

species of interest and is estimated from the phylogenetic tree. The

distances are normalized such that 0ƒdsƒ1 and
PS

s~1 ds~1. Let

m
s

be a matrix of dimension G|Es, which is defined as

m
s
~(m

1
, . . . ,m

Es
)

where m
es

is a column vector of length G and represents the genes

expression values in the eth
s experiment for species s. We further

assume a normal matrix variate distribution on m
es

as follows:

m
s
DBs,Vs*N XBs,IG,dsVsð Þ,

where Bs is the coefficient matrix of dimension M|Es,

Vs~diag(s2
es

) is the covariance matrix of dimension Es|Es over

experiments, and IG is the identity matrix of dimension G|G over

genes. We assume varying noise levels over experiments, but fixed

global noise for biological systems. Conjugate priors are employed

for the coefficients Bs and the covariance matrix Vs:

BsDVs*N 0,Hc,dsVs

� �
and s2

es
*IG(ns,Ts),

where Hc is the covariance matrix for the motifs of dimension

Mc|Mc, assumed to be known a priori, and ns and Ts depends
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on the species s. By integrating out Bs and s2
es

and computing the

posterior f (c DX ,Y ), inference can be performed similarly to the

previously described procedure.

Results and Discussion

Case Study 1: septation transcriptional network in fission
yeast clade

One of the key biological processes in the cell is the cytokinesis

during which daughter cells separate and form two independent

entities. In many unicellular fungi such as the fission yeast

Schizosaccharomyces Pombe, a contractile actomyosin ring (CAR)

generates a cell cleavage and the newly synthesized membrane is

inserted at the division site. S. Pombe cells then divide by medial

fission through the contraction of an actomyosin ring and the

deposition of a multilayered division septum that must be cleaved

to release the two daughter cells. Seven genes (adg1, adg2, adg3,

cfh4, agn1, eng1, and mid2) whose expression is induced by the

transcription factor Ace2p have been identified. Their transcrip-

tion levels vary during the cell cycle, while maximum transcription

are observed during septation [20,21]. The division septum has a

threelayer structure, with a central primary septum (mainly

composed of linear b-1,3-glucan) surrounded on both sides by

two secondary septa (composed of b-1,6- branched b-1,3-glucan

and b-1,6-glucan). The primary septum is synthesized through

action of the Cps1/Bgs1 glucan synthase, while Bgs4 is involved in

the assembly of secondary septa. Daughter cell separation requires

an enzymatic process that controls the degradation of the

components of the primary septum and the surrounding cell wall.

To date, the two main enzymatic activities identified are exerted

by the endo-b-1,3-glucanase Eng1, which is responsible for

primary septum hydrolysis, and the endo-a-1,3-glucanase Agn1,

which is necessary for the erosion of the cylinder of the cell wall

surrounding the septum. The pattern of activation of Eng1

involves Sep1p, a protein of the conserved forkhead family. This

protein targets a gene which encodes the transcription factor,

Ace2p. Two of the Ace2p target genes encode proteins with

known roles in cell separation: the b-glucanase Eng1p, that

degrades the primary division septum between the new ends of

daughter cells, and the a-glucanase Agn1p, that hydrolyses the old

cell wall surrounding the septum leading to full separation of

daughter cells [22]. Cells that constitutively overexpress Ace2

become round and show high transcript levels for both Eng1 and

Agn1. The round shape of these cells could reflect a weakening of

cell wall material that is not associated with the division septum,

caused by an overproduction of glucanases [23,24]. Both [25] and

[22] have found the motifs CC(T/A)CG(T/C)TCC, and (A/

T)ACC(T/A)CGC(T/A). Interestingly, the consensus site for Ace2

(CCAGCC) is reminiscent of the core of New 3v (CCACGC),

suggesting that an unknown Ace2-like factor could be involved.

We applied the Bayesian variable selection framework (as

described in the Materials and Methods section) to detect binding

motifs that regulate the network through various cell cycle phases.

We obtained expression data from experiment elutriation A

described in [25] and experiments elutriation 1, elutriation 2,

elutriation 3 and cdc25 block release 1 described in [22]. The

experiments explore the transcriptional activity of the fission yeast

S. Pombe as a function of time in cells synchronized by different

approaches: centrifugal elutriation and the use of temperature

sensitive cell cycle mutants. All these experiments have no

technical replicates. The upstream sequences for S. Pombe, S.

Japonicus and S. Octosporus were obtained from the MIT Broad

Schizosaccharomyces database [26].

Motifs detected with corresponding marginal probabilities

larger than 0.5 are shown in Table 1. For the sake of space we

present only the results obtained using all the 5 experiments for

mprior~1. Marginal probabilities were averaged over 8 subsets of

control genes. We obtained both confirmation of known results

and new findings (motifs) which have high marginal probability

values. We note that long patterns were selected more often than

short ones. This could be explained by the limited ability to reject

associations among nearby DNA bases of the background model.

Eukaryotic DNA is highly heterogeneous, patchy and repetitious

[27] and currently used genome background models cannot

adequately take into account the variations in base association. We

also observe that given more replicates or data from more species,

the marginal probabilities become much higher (about three-fold)

than those obtained using single replicate and one species, see [8].

A good understanding of how genes involved in this network differ

in nearby species is provided by phylogenetic inference. Figure 1

shows the maximum likelihood phylogenetic tree obtained using

ENG1 protein from a large number of fungi species (see legend),

including S. Japonicus, S. Cerevisiae, S. Octosporus, S. Pombe, Candida

albicans, Candida glabrata,Candida tropicalis,Candida dubliniensis,Candida

parapsilosis. The number of genes of this network ranges from 8 in

S. Cerevisiae, S. Pombe, S. Japonicus and S. Octosporus to 4 in the

candida species. The tree shows ticker lines for worst match with

respect the tree of Figure 2 (RAM network, case study 3), with

overall topological score of 61.5, see [28] for details. To explore

the capability of our approach in comparison to other regression-

based motif discovery methods, we applied MatrixREDUCE [12]

to the same sets of sequence and expression data. MatrixRE-

DUCE also exploits the correlation between gene expression levels

and the occurrence frequency of short DNA segments in upstream

sequences to discover binding motifs, but differs from our

framework in two following points. Firstly, it employs a

deterministic forward variable selection scheme. Motifs are added

to the regression model looking at their matching coefficients in

descending order. Although this approach is attractive by its

computational simplicity, it is more likely to get trapped in local

maxima than the stochastic sampling process employed by our

procedure. Secondly, our proposed approach provides a princi-

pled way to account for multiple experiments/replicates simulta-

neously while MatrixREDUCE is applicable to one experiment

condition at a time. From the results in table 1, MatrixREDUCE

could detect only parts of the consensus motif sequences in S.

Pombe and S. Japonicus. We show in the supplementary material the

motif marginal probabilities for mprior~1 of S. Pombe (Figure S1a

in the supplementary material), S. Japonicus (Figure S1b in the

supplementary material), S. Octosporus (Figure S1c in the supple-

mentary material).

Case study 2: cytokinesis transcriptional network in
Candida clade

In the second case study we consider the cytokinesis process of

Candida albicans in the context of three other closely-related species

Candida dublininensis, Candida tropicalis, and Candida parapsilosis. While

the Candida clade is in close approximation to the fission yeast S.

pombe in the phylogenetic tree, it does not go through the genome

duplication event.

The cytokinesis and mother-daughter cell separation processes

of C. albicans have been associated with 94 genes, whose expression

levels periodically peak during the G2/M phase over four

biological replicates [29]. Using this gene set as the starting point,

we applied hierarchical clustering with Bayesian similarity

measurement [30] on their expression profiles to separate

regulatory networks with different transcription factors. Eight
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Table 1. Motifs detected for septation transcriptional network in fission yeast clade (case study 1).

Motifs detected in S. Pombe

by Bayesian variable selection marginal probability by MatrixREDUCE t-value

GGT GGCTGGCA 0.995872 CCAG 28.495

AATGTAA 0.992299833 AT 7.854

GTGGTTGG 0.990841403 TCTG 27.146

TTGCTTTAT 0.966439608 GAGAA 26.868

GAAAATCGAA 0.964823733 CCTC 26.416

ATCGATGGTAA 0.964302733 TCCTC 26.119

CAAGAAAGTAC 0.952851275 CG 26.017

TCAATAT CCAGC 0.930580914 AT 5.857

GATTTTACCA 0.930109523 CTCT 25.723

TTAT CCAGCC 0.913970665 TTC 25.602

GTAAAAAA 0.911840485

AAATTTAAGAG 0.899786547

TTATATAA 0.892315745

CAAATATAAA 0.8920356

CATGGCGGG 0.868056013

TCTATATTCGG 0.773856698

TTACTTTCTT 0.728913078

Motifs detected in S. Japonicus

by Bayesian variable selection marginal probability by MatrixREDUCE t-value

ACTCGCGTCAC 0.962531425 A CAGCG 215.946

AAGGA GGCT 0.88789641 GCAT 8.422

ACGGTGTGAA 0.860245247 TCGGT 27.192

GGCTGG 0.8282509 TCGGT 25.905

A GGCTGGT 0.789977544 TTTTCC 25.707

CAGATTTCGTGC 0.777363805 TCGGT 25.457

A CCAGCC 0.742744755 TTTTTT 25.412

GTGTCAC 0.72705333 AGGA 5.361

ATGCATA 0.70449432 TTTTT 25.351

CTAA 5.292

Motifs detected in S. Octosporus

by Bayesian variable selection marginal probability by MatrixREDUCE t-value

GAT GGCTGGTA 1 CG 28.395

GTATCGGTTG 0.998044545 TCGAA 27.167

GTTGCAAGT 0.997534734 CTTGA 7.12

TTGTTTGTTTA 0.99644855 AGACA 27.12

ACTTTCATCCA 0.99155467 AGATTT 26.574

ACAATGGAT 0.98432507 AGGC 26.574

CCTTCCACCGA 0.980347067 AAGAT 26.17

TCAAT CCAGT 0.975195473 GATCA 25.87

TTCGTTTCCGT 0.955906395 ACTGAA 25.287

CATTCAGGGG 0.955746803 AAGATTT 25.287

ACTTTACTC 0.92077283

AGAGAGAAA 0.91857454

GGTACGAAGAA 0.911070636

AAGAGCAGAGC 0.88196748

CGTCGTGGTG 0.870479665

GTTCGATGGC 0.83167287
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tightly co-regulated genes were chosen for our further analysis:

Cdc5, Chs1, Hof1, Kip2, Chs8, Fgr29, and two less known genes

orf19.1334 and orf19.6119. Among the selected genes, the first five

are known to preserve their functions as compared to S. cerevisiae,

and the latter three are specific to C. albicans only, without any

orthologs in the other two model budding and fission yeast.

We applied Bayesian variable selection and MatrixREDUCE to

detect binding motifs in the four Candida species using time-series

microarray expression data of C. albicans and upstream sequences

from all four species. The expression data were collected from four

independent biological replicates [29]. The upstream sequences

for C. Albicans, C. Tropicalis, and C. Parapsilosis were obtained from

the MIT Broad Candida database [26] , and C. Dubliniensis from

Sanger Institute Sequencing Project [31]. We show a summary of

the results obtained using all four experiments for sparsity setting

mprior~5 in Table 2. While motifs with longer width are treated

more favorably, the algorithm is able to pick up a number of

patterns. Two emergent patterns that occur repeatedly in all four

Figure 1. ENG1 ML tree. Maximum Likelihood tree, based on JTT model of evolution, inferred using Eng1 protein sequence from the following
species: S. Japonicus, S. Octosporus, S. Cerevisiae, S. Pombe, Kluyveromyces lactis, Debaryomyces hansenii, Candida Albicans, Yarrowia lipolytica,
Aspergillus oryzae, Phaeosphaeria nodorum, Neurospora crassa, Vanderwaltozyma polyspora Neosartorya fischeri Pichia guilliermondii,Coccidioides
posadasii, Gibberella zeae, Ashbya gossypii, Sclerotinia sclerotiorum, Magnaporthe grisea, Ajellomyces capsulatus, Aspergillus clavatus, Aspergillus niger,
Pichia stipitis, Lodderomyces elongisporus, Candida glabrata,Candida Tropicalis,Candida dubliniensis,Candida parapsilosis; Brassica napus and Sorangium
cellulosum are plant sequences used as outgroups, i.e. to facilitate the rooting of fungi phylogeny; we also include S. Japonicus Eng1 and Eng2
proteins and S. Cerevisiae Acf1 and Acf2 proteins. From a methodological purpose, we validate this phylogeny with a phylogeny with the same
number of species, based on cdc5, a regulator of G2/M transition of mitotic cell cycle with the same visualisation as in [28]; the width corresponds to
phylogenetic agreement.
doi:10.1371/journal.pone.0042489.g001

Table 1. Cont.

Motifs detected in S. Octosporus

by Bayesian variable selection marginal probability by MatrixREDUCE t-value

GATTTTACTCG 0.7601617

GTAGAAACA 0.757162374

doi:10.1371/journal.pone.0042489.t001
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species are TCATTC and TCAATT (which were printed bold in

the tables for easier comparison). These are suggestively the

variants of the consensus motif TCA(A/T)T(C/T). The results

from MatrixREDUCE are also presented in the same table. In

agreement with the discussion of method comparison in the first

case study, Bayesian variable selection definitely adds significant

value from its comprehensive combinatorial effect search. While

MatrixREDUCE could identify some parts of the proposed motif

in C. Albicans, it fails to do so for the other related species. Note

that C. Parapsilosis has been observed in clinical literature [32,33]

to have distinct features in comparison to C. albicans, C. Dubliniensis,

and C. Tropicalis. While the other three species are strictly human

pathogen, C. Parapsilosis is also found in a wide range of

environments including animals, soils, and the sea. Such flexibility

might suggest corresponding shift in its cell cycle regulatory

mechanism. We show in the supplementary material the motif

marginal probabilities for the following species: C. Albicans (Figure

S2a: mprior~1; Figure S2b: mprior~3; Figure S2c: mprior~5), C.

Dubliniensis (Figure S3a mprior~1; Figure S3b mprior~3; Figure

S3c mprior~5), C. Tropicalis (Figure S4a mprior~1; Figure S4b

mprior~3; Figure S4c mprior~5), C. Parapsilosis (Figure S5a

mprior~1; Figure S5b mprior~3; Figure S5c mprior~5).

Case study 3: RAM transcriptional network in the
Ascomycota

RAM (regulation of Ace2p transcription factor and polarized

morphogenesis) is a conserved signaling network that regulates

polarized morphogenesis in yeast, worms, flies, and humans [34].

In unicellular fungi, the RAM network comprises the proteins

Cbk1, Mob2, Kic1, Hym1, Sog2, and Tao3. S. Cerevisiae strains

harboring mutations in any of these genes display cell separation

defects and a loss of polarity. The ability of C. Albicans to undergo

morphogenesis from yeast to hyphal form is associated to the

condition of causing the disease; the RAM genes CaCBK1,

CaMOB2, CaKIC1, CaPAG1, CaHYM1, and CaSOG2 are good

candidates for drugs controlling the growth of the organism and

therefore the spreading of the infection [35]. Figure 2 shows the

maximum likelihood phylogenetic tree obtained using CaCBK1

gene sequences from the same species of Figure 1.

Microarray data of C. Albicans were obtained from a recent

investigation of RAM network’s role in cell polarity and hyphal

morphogenesis processes [35]. Four single-replicate experiments

were conducted on wild-type (SC5314) and CaMOB2 mutant

strains grown in either normal yeast or hypha-inducing serum

medium. The identified RAM-dependent hypha-specific genes

Figure 2. RAM ML tree. Maximum Likelihood tree, based on JTT model of evolution, inferred using RAM protein sequences from the species of
figure 1. We validate this phylogeny with a phylogeny with the same number of species, based on cdc5, a regulator of G2/M transition of mitotic cell
cycle with the same visualisation as in [28].
doi:10.1371/journal.pone.0042489.g002
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Table 2. Motifs detected for cytokinesis transcriptional network in Candida clade (case study 2).

Motifs detected in C. Albicans

by Bayesian variable selection marginal probability by MatrixREDUCE t-value

T TCATTCATTC 0.978005 AATGAA 10.56

TCAATT 0.900631 AT AATT 28.362

TTGAT 0.666508 AAATGAA 8.143

TGAAATCA 0.663159 TGAAAT 7.691

ATGAAATA 0.650006 CAAT 7.129

GAAACTGA AATT 0.637142 AAGTT 6.78

AATTAATT 0.626425 AATGAAT 6.09

GTTGTTG 6.09

ATGAA 6.086

AATTAAT 6.086

Motifs detected in S. Dubliniensis

by Bayesian variable selection marginal probability by MatrixREDUCE t-value

GTT AATTCCA 0.999259 ATTT 8.486

AGTTCA 0.962802 CAACAA 8.067

TTTCCTGATTTG 0.925764 CATCA 27.891

CCTA AATTAAG 0.870212 GTCT 7.473

AAT TCAATT 0.82158 ACAACAAC 7.471

TCCTGA 0.804322 CAAAATA 7.192

TATGCAA 0.68007 AGG 27.101

TCATTCCACTT 0.58234 CAACAACA 6.904

TCAAT 0.56146 CAACAAC 6.058

TCCTGATTTG 0.560856 ACAACAA 5.94

TTCGTC 0.548985

Motifs detected in S. Tropicalis

by Bayesian variable selection marginal probability by MatrixREDUCE t-value

TAATG CATT 0.74355 CCATG 12.846

AATTT 0.699152 TATTTAT 11.433

TAATGAAA 0.684862 TTATTTAT 10.903

TGAAACTTTGAA 0.662662 TTATTTA 10.267

ATTTGGTCA 0.562592 TTTATTTA 9.598

TATTTATT 8.848

ATTTAT 8.701

ATTTATTT 8.645

TAACA 8.432

GTTGGT 28.432

Motifs detected in S. Parapsilosis

by Bayesian variable selection marginal probability by MatrixREDUCE t-value

AT TCAAT 0.671743 AGAGA 10.182

GC CAATTC 0.548763 CCAT 29.971

AGATAAGCA 0.547218 AGAG 7.773

TTCCA AATT 0.54143 GAGAT 7.626

GAGA 7.356

AGAGAG 7.26

AAAAC 26.469

CAAACA 26.384

AAAC 25.884

CTA 25.504

doi:10.1371/journal.pone.0042489.t002
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Table 3. Motifs detected for RAM transcriptional network in the Ascomycota (case study 3).

Motifs detected in C. Albicans

by Bayesian variable selection marginal probability by MatrixREDUCE t-value

AATGAG AAATAA 1 CCAA 10.494

GAGTTGA 0.7266 CCATA 210.281

GAGA AAAGAAAA 0.7263 GATTAC 8.597

A AAAT 0.6174 ATCAC 8.591

ACTTT TCTTA 0.4965 CTAAA 8.591

TATTT 0.4731 TATTGA 28.383

TGGATTTTG 0.4458 TCATAT 27.47

AGAC AAGA 0.4028 ACTCT 7.47

AAAATGAA 0.3884 AGGC 7.104

CTTT TCTT 0.3768 A ATTT 26.759

TTGAC CTTT 0.3666

T TATT 0.3254

TATTGGA 0.319

Motifs detected in S. Dubliniensis

by Bayesian variable selection marginal probability by MatrixREDUCE t-value

AAATGAAAGG 0.982 CTCT 19.105

AAATTCAATTTC 0.7966 ATGTTT 28.855

GAAAA 0.7782 AGGTG 8.597

AAAAC 0.7464 GGGT 8.431

ATTTC TATTT 0.7382 G TATT 8.297

TCAGTTTTAA 0.6154 ATGTT 28.022

TTA CTTTTCT 0.6129 TAGG 7.959

TGGTAG TATTG 0.3549 TCTCTC 7.945

CTTTT TCTT 0.3287 GGTC 7.104

TATATATATATA 0.3155 CTCTC 6.883

Motifs detected in S. Tropicalis

by Bayesian variable selection marginal probability by MatrixREDUCE t-value

AATTAA TATTCG 0.9516 C AATA 215.527

GTCTGT 0.8571 TCCAA 10.351

TCTGTAGATAG 0.553 A AAATG 9.408

TACACGAACAAT 0.4903 CAATTA 28.855

GTAGAGG AAGA 0.4588 TC AATA 28.855

CTGTAG 0.3561 TGCAA 8.383

TACACGC 0.2928 TTGC 7.979

ATTGT 0.2789 GTATA 7.959

AAAGAGACAC 0.2734 CCAAG 27.47

ACAAC 0.2242 GGATT 7.47

GACAA 0.2179

AGTGT 0.2151

Motifs detected in S. Parapsilosis

by Bayesian variable selection marginal probability by MatrixREDUCE t-value

TGTGGTGGT 0.8894 ATGTG 212.033

ACATACACCCC 0.5923 GAA 11.016

CAC AAGAGCAA 0.3663 TCGC 210.351

AGTTGATCCTA 0.3434 ACAAAC 10.351

AGTTG 0.3056 GATGT 210.281
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suggested the association of RAM network with Tup1p/Nrg1p-

regulated morphological processes.

A summary of the results for all four species is shown in Table 3.

The left two columns list out motifs detected by Bayesian variable

selection with their marginal probabilities averaged over 8 control

subsets. The right two columns list out motifs detected by

MatrixREDUCE with corresponding T-values. To account for

the possible depreciation of motif effects in various species, we

lowered the cutting threshold of marginal effect to 0.3 for C.

Albicans and C. Dubliniensis, and 0.2 for C. Tropicalis and C.

Parapsilosis. Two emergent patterns that occur repeatedly in all

four species are AAAGA and AAATA, which constitute the

consensus motif AAA(G/T)A. Again the comparison with

MatrixREDUCE results suggest the capability of our approach

to detect more comprehensive patterns. We present the motif

marginal probabilities of C. Tropicalis for mprior~1 (Figure S6a of

the supplementary material); for mprior~3 (Figure S6b of the

supplementary material) and for mprior~5 (Figure S6c of the

supplementary material).

Further points of discussion and Conclusions
Here we present a general algorithm to predict sequence motifs

in a newly sequenced species combining linear regression,

Bayesian variable selection and experimental data of a well

characterized model organism. First we apply our method within

the same species (with several replicas), then we extend it to

phylogenetically close model species. The proposed method for

regulatory motif discovery do not rely on previous knowledge of

co-regulated sets of genes, and in that way differ from the main

stream literature on computational motif discovery. The validation

of the discovered motifs relies on previously published regulatory

motifs in yeasts and on an internal testing procedure. Finally, we

apply it to make prediction on three important eukaryotic gene

networks and compare the results with a currently used method.

We believe that the tables of regulatory sequences we present

could be useful to genome researchers because the motifs represent

putative regulatory sites and commonalities among the studied

species.

Most of the species we have considered are recently sequenced

with little annotations available. We have searched the proposed

sets of motifs in a number of available low eukaryotes genomic

resources such as NCBI , http://www.pombase.org/, http://

www.broadinstitute.org/annotation/genome/ and others. We

found that motifs with the highest marginal probability have been

reported in low eukaryotes and plants. For example

GTTAATTCCA (motif detected in S. Dubliniensis) has been

reported being a target sequence in the phenobank in C. Elegans

database [36]. The motif TCAATCCAGT (found in S. Octosporus)

occurs in the promoter region of the locus AT5TE39210 of A.

Thaliana; ACAATGGAT (found in S. Octosporus) is conserved in the

promoter of several plants such as barley and wheat (CA679037,

homologous to DATFAP); GTATCGGTTG (found in S.

Octosporus) is a motif reported (http://yeastract.com/) in the

promoter of YBR242w, which is a protein of unknown function of

S. Cerevisiae that localizes to the cytoplasm and nucleus. The motif

ATCGATGGTAA (found in S. Pombe) has been reported to

regulate the expression of the GLN1 in S. Cerevisiae [37];

ACTTTCATCCA (found in C. Albicans) is reported in regulatory

elements in promoters of defense genes (GRX480) in A. Thaliana

[38].

We also find that some of the motifs ((for example

TTTCCTGATTTG and AATGAGAAATAA) have been de-

scribed in databases automatically built by a number of

computational tools such as http://www.cisred.org/ [39], ABS,

http://genome.crg.es/datasets/abs2005/ [40] and Phylonet

(http://stormo.wustl.edu/molee//Motif/). Some motifs produced

hits in high eukaryotes or bacteria sequences (not reported because

the species are too distant from the fungi); short motifs produced

many hits.

We believe that the conservation of the size of the network

across the species and its functional role are very important.

Indeed, the first two examples, which are both cell-cycle related

with relatively conserved gene network size across the species, give

a much better result than the third case (RAM network). Given the

high cost of performing a large number of experimental replicates,

we make the hypothesis that experimental evidences, from species

similar to that under analysis, may provide additional statistical

support. We can assume that the closer the species to the one

under investigation, the better is. The most interesting result

presented in the paper is to show that the marginal probabilities

become much higher (about 3 fold) than those obtained using

single replicates and one species [8]. It is interesting to consider

our work in the light of a recent discussion about experimental

design in the context of phylogenetic inference [41]. A first simple

question is whether the number of genes involved in the

transcriptional network is the same for the different species

considered or whether it varies when the phylogenetic distance

increases. This is an important point raised in [42], where the

authors have demonstrated an inverse correlation between the rate

of evolution of transcription factors and the number of genes they

regulate. For small gene networks, distant species may not provide

adequate support and, in general, the distance may depend on the

size of the genetic network. Noteworthy, while much effort has

been focused on sequencing the genomes of widely divergent

species, recently there has also been interest in sequencing the

genomes of closely related species, with the target of comparing

and contrasting them for subtle differences [41]. There exist

different papers to quantify the utility of multiple genomes for the

Table 3. Cont.

Motifs detected in S. Parapsilosis

by Bayesian variable selection marginal probability by MatrixREDUCE t-value

GAGAACCGTT 0.297 TGAAC 8.597

TACAACCC 0.2714 AAATGA 8.597

ACTTG 0.2643 CAAGT 8.383

GGTATGTGTGTA 0.2484 G AAGAA 8.112

A CTTTAA 0.205 ATGCA 27.47

doi:10.1371/journal.pone.0042489.t003
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detection of conserved DNA regions ([41], [43], [44], [45]).

Margulies et al. [46] described an economically efficient approach

to show that low redundancy sequencing of additional genomes is

a useful first step in locating conserved regions in the species of

interest. Current efforts in sequencing may allow to sequence ‘on

demand’ in order to shed light on an important regulatory network

under study. We believe that our statistical approach can result of

some practical utility for outputting putative regulatory sites and

annotating new genomes. We have also found that it highlights

interesting statistical problems raised by high throughput data

integration, such as sequence and gene expression. We believe that

this methodology could be extended to integrate other high-

throughput omic data.
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Figure S2 C. Albicans motif marginal probabilities,
case study 2. Posterior marginal probabilities of Candida Albicans

candidate motifs for (a) mprior~1; (b) mprior~3; (c) mprior~5.
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Figure S3 C. Dubliniensis motif marginal probabilities,
case study 2. Posterior marginal probabilities of Candida

Dubliniensis candidate motifs for (a) mprior~1; (b) mprior~3; (c)

mprior~5.

(TIFF)

Figure S4 C. Tropicalis motif marginal probabilities,
case study 2. Posterior marginal probabilities of Candida

Tropicalis candidate motifs for (a) mprior~1; (b) mprior~3; (c)

mprior~5.

(TIFF)

Figure S5 C. Parapsilosis motif marginal probabilities,
case study 2. Posterior marginal probabilities of Candida

Parapsilosis candidate motifs for (a) mprior~1; (b) mprior~3; (c)

mprior~5.
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Figure S6 C. Tropicalis motif marginal probabilities,
case study 3. Posterior marginal probabilities of Candida

Tropicalis candidate motifs for (a) mprior~1; (b) mprior~3; (c)

mprior~5.
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