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Genome-wide mapping of gene–microbiota
interactions in susceptibility to autoimmune
skin blistering
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Susceptibility to chronic inflammatory diseases is determined by immunogenetic and envir-

onmental risk factors. Resident microbial communities often differ between healthy and

diseased states, but whether these differences are of primary aetiological importance or

secondary to the altered inflammatory environment remains largely unknown. Here we

provide evidence for host gene–microbiota interactions contributing to disease risk in a

mouse model of epidermolysis bullosa acquisita, an autoantibody-induced inflammatory skin

disease. Using an advanced intercross, we identify genetic loci contributing to skin microbiota

variability, susceptibility to skin blistering and their overlap. Furthermore, by treating bacterial

species abundances as covariates with disease we reveal a novel disease locus. The majority

of the identified covariate taxa are characterized by reduced abundance being associated with

increased disease risk, providing evidence of a primary role in protection from disease. Further

characterization of these putative probiotic species or species assemblages offers promising

potential for preventative and therapeutic treatment development.
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D
iverse communities of symbiotic bacteria inhabit nearly
every surface of the body exposed to the environment.
The skin in particular is in constant contact with the

environment and serves a critical barrier function, yet provides a
range of niches to inhabiting microbial communities. A multitude
of interactions between the skin microbiota, host and environ-
ment contribute to community structure over space and time
and its potential contribution to changes in health status1,2.
Recent landmark studies of the mouse gut microbiota using a
quantitative trait locus (QTL) mapping approach unequivocally
demonstrate the role of host genetics in shaping diversity
between individuals3,4. Likewise, inflammatory disorders
afflicting the skin such as psoriasis and atopic dermatitis
harbour clear immunogenetic components, but whether these
associations may be mediated by alterations in microbial
community structure is unknown1,5.

Epidermolysis bullosa acquisita (EBA) is a chronic skin
blistering disease of autoimmune origin characterized by anti-
bodies to type VII collagen (COL7)6. We previously demon-
strated the contribution of MHC haplotype and other non-MHC
genes to EBA susceptibility in an immunization-induced model of
EBA in mice7. Intriguingly, autoimmunity against COL7 is also a
common observation among patients with Crohn disease8, one of
two major forms of inflammatory bowel disease with clear host
genetic and microbial components9. In this study, we investigate
the contribution of host genetic control of the skin microbiota in
mice from a four-way autoimmune-prone advanced intercross,
enabling loci influencing microbial community structure and
disease (EBA) susceptibility to be simultaneously analysed. In
addition to identifying host genetic loci that contribute to
variability in bacterial taxon abundances in the skin, we find that
individual genotype-dependent microbial risk factors modify
susceptibility to EBA and increase the power to detect disease-
associated loci.

Results
Composition and diversity of skin microbiota. To measure the
contribution of host genetics to variation in the mouse skin
microbiota, we first analysed 261 individuals from the fourth
generation of an advanced intercross lines (183 immunized indi-
viduals, of which 64 developed EBA, plus 78 non-immunized
controls, Methods) using pyrosequencing of the 16S rRNA gene.
At the phyla level, the Firmicutes are most abundant (54%),
followed by Proteobacteria (21%), Actinobacteria (12%) and
Bacteroidetes (6%) (Supplementary Fig. S1), revealing communities
similar to those observed in previous studies of the skin2,10–12. At
the genus level, Staphylococcus (36%), Corynebacterium (9%) and
Ralstonia (8%) are most abundant (Supplementary Fig. S2). To
characterize the level and pattern of diversity within individuals, we
applied different measures of alpha diversity, which focus on
species richness, evenness and abundance. The Chao1 species
richness index is higher in the healthy individuals compared with
those afflicted with EBA (Fig. 1) (Wilcoxon rank-sum test,
W¼ 170, P¼ 0.005). The same pattern is also observed for
Faith’s13 phylogenetic diversity index (PD whole tree) (Wilcoxon
rank-sum test, W¼ 176, P¼ 0.008), the observed number of
species (Wilcoxon rank-sum test, W¼ 212, P¼ 0.05) and the
Shannon evenness measure (Wilcoxon signed-rank Test, Z¼
� 4.3726, Po0.001) (Supplementary Fig. S3). To analyse bacterial
community composition and structure between individuals (that is,
beta diversity,) we first used the weighted and unweighted Unifrac
metric14,15, which is a phylogenetic-based measure weighted by
taxon abundance and based on presence–absence information,
respectively. Constrained analysis of principal coordinates (CAP)
using EBA status as an explanatory variable and the weighted

Unifrac metric as a response variable also reveals a small, but
significant effect (P¼ 0.015), with the first principal component
axis (or CAP1 axis) explaining 1.8% of the variation between
individuals (Supplementary Fig. S4a), while the CAP1 axis for
unweighted Unifrac explains 2% of the variation (P¼ 0.005;
Supplementary Fig. S4b). Analysis of beta diversity using OTU-
based approaches yields very similar results (Bray–Curtis index,
with CAP1 explaining 1.8% of the variation (P¼ 0.015)
(Supplementary Fig. S4c) and Jaccard index, with CAP1 explaining
1% of the variation (P¼ 0.001) (Fig. 2)). For further analysis a ‘core
measurable microbiota’ (CMM) of 131 OTUs was defined3, which
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Figure 1 | Chao1 species richness. The Chao1 index based on species-level

OTUs was estimated for immunized healthy (n¼ 119) and EBA

(n¼ 64) samples. Error bars represent the 95% confidence interval.

*Significance was determined by the Wilcoxon rank-sum test.
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Jaccard index. The Jaccard index was calculated for immunized healthy

(n¼ 119) and EBA (n¼64) samples. The disease status was taken

as the constrained factor and differed significantly by permutation test

(P¼0.005, see Methods).
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contain nearly 80% of the total sequences in the data set
(Supplementary Figs S5 and S6) (Methods).

QTL analysis of skin microbiota. To account for both environ-
mental and genetic contributions to variation in CMM OTU
abundances, a linear mixed model analysis was performed
including cage, family and sex as factors (see Methods).
This reveals significant cage and family effects accounting
for 28% and 3% of the variation in CMM species abundances,
respectively. No significant influence of sex is observed for any of
the CMM taxa and was thus removed from the model. To
measure the genetic contribution, CMM abundances were tested
for co-segregation against 1,199 informative single-nucleotide
polymorphism (SNP) markers after accounting for cage and
family effects. This reveals host genetics to have significant con-
trol over members of the skin microbiota, which can be seen in
Fig. 3. Nine out of 131 CMM OTUs are associated with three
significant (E-value cutoff o0.05) and six suggestive (E-value
cutoffo0.1) (see Methods) species-level OTU QTLs, hereafter
referred to as ‘spQTLs’ (Supplementary Data 1). Mapping at
higher taxonomic levels including phylum, class, order, family
and genus reveals a total of six QTLs, including three with one or
more significant associations and three with suggestive associa-
tions, hereafter referred to as ‘gpQTLs’ (Supplementary Data 2).
Two out of the nine spQTLs are contained within gpQTLs, thus,
in total thirteen unique QTLs are identified. To gain further

insight we compared our results with previously published QTL
studies of the gut microbiota3,4 and reveal evidence of overlap
greater than expected by chance (Fig. 3; Methods). Interestingly,
the confidence intervals of our spQTLs and gpQTLs contain
five and four genes related to innate immunity, respectively
(see Discussion, Supplementary Data 3).

Effect of immunization and disease status on QTL mapping. As
the model of EBA used in this study is immunization-based, we
also included 78 non-immunized mice to control for the effect of
immunization in the QTL mapping. Accordingly, we analysed a
subset where both EBA-afflicted and non-immunized individuals
are removed (that is, only the 119 healthy, autoimmunized
samples). Despite decreasing the sample size from 261 to 119, two
out of nine spQTLs and two out of six gpQTLs are still detected
(Supplementary Data 1 and 2). Next, we analysed a subset where
the EBA-afflicted mice are removed (that is, including 119 heal-
thy autoimmunized and 78 non-immunized samples). One out of
nine spQTLs and two out of six gpQTLs are still detectable
despite lowering the sample size from 261 to 197 (Supplementary
Data 1 and 2). Thus, the presence of QTLs among subsamples not
influenced by differences in disease/autoimmunization status
supports the presence of true genetic effects.

Gene–microbe covariation in disease susceptibility. To investi-
gate the potential role of host genetic variation for skin bacterial
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Figure 3 | QTL mapping of skin microbiota. Nineteen mouse autosomes and the X chromosome are depicted with 1,199 SNPs indicated by black lines.

QTLs for species level OTUs (spQTLs) are colour coded according to their phylum along with their highest reliable taxonomic classification in

adjacent text. QTLs from the genus to phylum level (gpQTLs) are colour coded according to their phylum classification (see Supplementary Data 1 and 2).
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abundances in disease, we first re-analysed the subset of 183
immunized mice common to this and our previous study on
EBA7. This reveals no significant QTL for EBA presence/absence
at an E-value16 cutoff o0.1 (see Methods), likely due to the
reduced number of animals (Fig. 4a). However, because bacterial
taxon abundance does display a clear genetic component, we next
sought to evaluate potential interactions between bacterial species
and disease susceptibility by applying a covariate analysis between
each of the 131 CMM species abundances and EBA disease
susceptibility. This reveals significant covariation (E-value o0.1)
involving 10 out of 131 taxa, which, intriguingly, increases
the power of detecting EBA QTLs, as a novel locus (covariate
QTL) (Chr.19, CI 53–60, peak at 57 Mb) is detected (Fig. 4b,
Supplementary Data 4). Two OTUs belonging to the genus
Staphylococcus clearly display a gene–bacterial interaction
(E-value o0.05) (Fig. 4c).

To further characterize the nature of the identified covariate
QTL, we arbitrarily divided individuals into ‘high’ (top 50%)
and ‘low’ (bottom 50%) groups with respect to their individual
OTU abundances and analysed the proportion of individuals
developing EBA with respect to host genotype. This reveals that
for most cases the proportion of animals developing EBA is
higher among the low OTU abundance category (n¼ 10; one of
which is also significant by Fisher’s exact test between these
defined abundance categories (Fig. 4d); we note, however, that all
10 taxa display significant covariation), suggesting a probiotic role

(Supplementary Data 5). Although community-level alterations
of the skin microbiota in the context of EBA are present (for
example, Supplementary Figs S3 and S4), we note that the
putative probiotic covariate taxa identified do not vary in
abundance simply according to disease status. Namely, both
healthy and diseased individuals are found among the low
abundance categories, thus, low abundance of, for example,
Staphylococcus spp. is not a simple byproduct of disease, but
increases the probability of developing symptoms.

The large number of covariate bacterial taxa interacting with a
single host locus suggests that individual bacterial taxa may not
be acting independently. Thus, to identify potential interactions
among covariate taxa we performed a pairwise correlation
analysis (Fig. 5). Indeed, this reveals significant positive
correlations (Pearson’s correlation; P-value r0.05 after correc-
tion for multiple testing (Benjamini–Hochberg17)) between many
taxa, suggesting interactions between the host locus and bacterial
species assemblages or individual driver species.

Discussion
Our results provide strong evidence that host genetic variation
contributes to differences in the bacterial communities observed
in the skin. In a previous QTL analysis of the mouse faecal
community, Benson et al.3 reported 13 significant and 5
additional suggestive QTLs for 26 out of 64 taxonomic groups
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tested. However, their analysis was not extended beyond the level
of bacterial genera. Despite our more inclusive set of phenotypic
traits extending to the bacterial species (OTU) level, we detected a
smaller number of loci, with nine significant QTLs for 9 out of
131 species-level traits. Differences in sample size, sequencing
coverage, mouse strains used and the obvious distinctions
between the gut and skin environments may all contribute to
these differences in QTL detection. Interestingly, we nonetheless
find evidence of overlap between the two studies. The confidence
intervals of two out of 18 QTLs controlling bacterial abundance
in murine faeces contain the peak SNP of a skin QTL, which
overlaps more than expected by chance (P-value o0.05; Fig. 3;
Methods). One of these QTLs is consistent at the phyla level
(Firmicutes, Chromosome 14), while the other is at the order level
(Pseudomonadales, Chromosome 9). Similarly, an additional two
of our skin spQTLs (OTU N31208 belonging to Streptococcus on
Chromosome 12 and OTU 130241 belonging to Herbaspirillum
on Chromosome 15) overlap with faecal QTLs from another
more recently published study4, although the taxonomic
assignments do not agree at even the phylum level.

The confidence intervals of our skin microbiota QTLs contain
nine genes known to be involved in the functioning of the innate
immune system (Supplementary Data 3). Interleukin-1 receptor-
associated kinase (IRAK)-4 is an interesting candidate found
within the confidence interval of spQTL6, which modulates an
OTU (ID 130241) belonging to the genus Herbaspirillum.
Deficiencies of this gene in humans lead to increased

susceptibility to pyogenic bacterial infections including Staphy-
lococcus aureus18, and its interaction with the MYD88 adapter
protein is used by several Toll-like receptor pathways in host
defence19, as well as being involved in controlling commensal
bacteria20. Another gene coding for CD14 antigen is found within
spQTL8 on chromosome 18, which modulates an OTU (ID
N10459) belonging to the genus Staphylococcus. Increasing CD14
expression enhances Toll-like receptor 2 activation in skin in the
presence of vitamin D3—1,25-dihydroxyvitamin D3 (1,25D3)21,
which in turn influences the skins sensitivity to microbial
challenge. Furthermore, several studies have shown that
components of S. aureus (LTA and peptidoglycan) interact with
the CD14 molecule22–24. Finally, by treating bacterial abundances
as covariates with the presence/absence of EBA, we identified an
additional significant EBA QTL on chromosome 19 (Fig. 4). One
potential candidate gene lying within this chromosomal interval
(53–60 Mb) is caspase-7 (casp7), a member of the cytosolic
cysteine protease family known to be involved with inflammatory
disorders25,26 and defence against pathogens27.

Similar to previous studies of chronic inflammatory skin
diseases, our findings support a role of resident microbial
communities in disease pathogenesis. The differences in com-
munity composition and structure between mice with and
without EBA symptoms are akin to shifts in the skin microbiota
associated with atopic dermatitis disease flares and treatment28

or between psoriatic lesions and both unaffected skin in patients
and healthy controls29. Although other examples such as
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endemic pemphigus foliaceus (fogo selvagum), where exposure to
haematophagous insects is implicated30, suggest direct
environmental/microbial triggers of disease, the roughly three-
fold increase over the last 30 years of atopic dermatitis in
industrialized countries suggests more complex environmental
influences, possibly mediated by changes in microbial commu-
nities. By investigating disease provocation in a large mouse
mapping population under controlled environmental conditions,
we were able to identify individual, genotype-dependent micro-
bial risk factors among a core set of taxa inhabiting the skin
of both healthy and diseased mice, more closely resembling
a disease-modifying effect. Although further validation and
characterization of these interactions awaits more intensive
experimental interrogation in, for example, gnotobiotic animals,
our investigation of another EBA-susceptible mouse strain (SJL/J;
not included in this study) before and after autoimmunization
reveals that other aspects of the skin community, in particular
alpha diversity (species richness and evenness), are predictive
of disease outcome (unpublished results). Thus, the further
identification and functional analysis of host genetic and
probiotic bacterial factors represent promising avenues for
research in preventative and therapeutic treatment development.

Methods
Generation of a four-way advanced intercross line. Parental mouse strains
(MRL/MpJ, NZM2410/J, BXD2/TyJ, Cast) for generating a heterogeneous inter-
cross line31 were purchased from the Jackson laboratory (Maine, USA). Briefly,
strains were intercrossed at an equal strain and sex distribution. First generation
(G1) offspring mice were then mated considering their parental origin to maintain
an equal distribution of parental alleles for successive generations by maintaining at
least 50 breeding pairs per generation. Male and female offspring used in the study
were transferred to separate cages according to sex after weaning. Depending on
the number of animals per cage, females from multiple families were also housed
together. Animals were held under specific pathogen-free conditions at a 12-h
light/dark cycle with food and water ad libitum. All 261 animals (135 males and
126 females) in this study were taken from the fourth generation of this advanced
intercross line at 6 months of age. All animal experiments were approved by the
state of Mecklenburg-Vorpommern, Germany.

Induction of experimental EBA. EBA was induced by immunization with an
immunodominant peptide within the murine NC1 domain of type VII collagen
(GST-mCOL7C)7. In brief, 60 mg GST-mCOL7C emulsified in 60 ml adjuvant
(TiterMax, Alexix, Lörrach, Germany) was injected subcutaneously into the foot
pad and tail base. After immunization mice were screened for skin inflammation
every 4th week for a period of 12 weeks, after which the ears were taken for analysis
at 6 months of age. Ear skin samples were fixed in 4% buffered formalin and snap
frozen at � 80 �C. A total of 183 immunized- and 78 non-immunized mice were
included in skin microbiota QTL mapping.

DNA extraction and 16S rRNA gene pyrosequencing. Bacterial DNA from
mouse ears was extracted using the PowerSoil Kit (MoBio, Carlsbad, CA). During
the killing of the mice, both ears were taken for either bacterial DNA extraction or
other analyses (that is, histology, RNA), and the ear chosen for microbial analysis
was chosen at random. Approximately one third of an ear was transferred to the
Power Bead tubes containing 60 ml of C1 solution and 20ml of 20 mg ml� 1 Pro-
teinase K. Samples were incubated at 50 �C for 2 h at 850 r.p.m. and the remaining
steps were performed according to the manufacturer. Amplification of the
hypervariable V1 and V2 (27F–338R) region of the 16S rRNA gene was performed
using composite forward (50-CTATGCGCCTTGCCAGCCCGCTCAGTCAGA
GTTTGATCCTGGCTCAG-30) and reverse (50-CGTATCGCCTCCCTCGCGCCA
TCAGXXXXXXXXXXCATGCTGCCTCCCGTAGGAGT-30) primers. These pri-
mers include the 454 Life Sciences adaptor A (reverse) and B (forward), denoted by
italics. The underlined sequences represent the broadly conserved bacterial primers
27F and 338R. Ten base pair multiplex identifiers (MIDs; designated as
‘‘XXXXXXXXXX’’) were added to reverse primers to uniquely tag PCR products.
Duplicate 25 ml PCR reactions, each containing 100 ng of template DNA, were
performed using Phusion Hot Start DNA Polymerase (Finnzymes, Espoo, Finland)
with the following cycling conditions: initial denaturation for 30 s at 98 �C; 35
cycles of 9 s at 98 �C, 30 s at 55 �C and 30 s at 72 �C; final extension for 10 min at
72 �C. Duplicate reactions were combined after PCR and products were extracted
with the MiniElute Gel Extraction Kit (Qiagen, Hilden, Germany). Quantification
was performed with the Quant-iT dsDNA BR Assay Kit on a Qubit fluorometer
(Invitrogen, Darmstadt, Germany). Purified PCR products were pooled in equi-
molar amounts and further purified using Agencourt Ampure Beads (Beckman

Coulter, Krefeld, Germany). Aliquots of each library were run on an Agilent
Bioanalyser before emulsion PCR and sequencing according to the manufacturer’s
instructions on a Roche 454 GS-FLX using Titanium sequencing chemistry.

454 Pyrosequencing data analysis. A Perl script using the Smith–Waterman
algorithm32 was written to match the forward primer and barcode allowing no
insertions or deletions. Sequences were required to have a length between 290 to
370 nucleotides, an average quality score Z20 and contain no ambiguous bases.
ChimeraSlayer (http://microbiomeutil.sourceforge.net/) was used to remove
chimeras. An average of 5,732 reads per sample was obtained for 261 animals.

Taxonomic classification. RDP classifier33 (RDP Multi-Classifier version 1.0) was
applied to assign taxonomy to the genus level using 0.80 as minimum confidence.
The ‘fixrank’ option was used to assign taxonomy from kingdom to genus level.
QIIME34 scripts were used to pick OTUs at a 97% similarity threshold. The most
abundant sequence from each OTU bin was chosen as the representative sequence.
Species-level taxonomy was obtained by NCBI BLAST against the greengenes
reference database (http://greengenes.lbl.gov/Download/Sequence_Data/
Fasta_data_files/Caporaso_Reference_OTUs/gg_otus_4feb2011.tgz) with an
E-value cutoff of 0.001. Sequences unclassifiable at a given taxonomic rank
were classified at the next possible higher rank.

Data preparation for QTL analysis. The proportion values (number of reads for
a given taxon/total sequence reads for a given animal) for each taxonomic level
were normalized as suggested by Benson et al.3 The taxon bins were then log10

transformed. This resulted in 34,624 species-level OTUs, 863 genera, 376 families,
218 orders, 93 classes and 51 phyla. Out of 34,624 species-level OTUs, 19,443 cover
nearly 99% of the total sequences and 762 species OTUs represents nearly 90% of
the total sequences (Supplementary Fig. S6).

Core measurable microbiota. A CMM was determined by a manner similar to
that of Benson et al.3 using two technical repeats from five different samples.
Sequences were processed, classified into taxonomic bins and the log10 transformed
values for each bin were plotted for all pairwise combinations of the two repeats
(Supplementary Fig. S5). A threshold of 420 reads per bin leads to a correlation
40.97. Thus, the CMM taxa were defined as bins containing more than 20 reads in
at least 20 animals. The resulting 131 species-level OTUs represent nearly 80% of
the total sequences (Supplementary Fig. S6).

Genotyping and QTL analysis. The Illumina murine HD array was used to
genotype 1,449 SNPs (of which 1,199 are informative) from 261 G4 animals. The
Happy package35 was used for QTL and covariate QTL analysis, expecting additive
contributions from inherited parental haplotypes at each locus. Each log10

transformed taxonomic bin was treated as an individual phenotypic trait. The hfit
function in Happy was used to correct for cage and family effects in a manner
similar to Johnsen et al.36 Covariates were included in the model by specifying an
additional design matrix in the input file. The genome-wide significance, or
E-value, for each phenotype was estimated by a permutation test based on 1,000
shuffled reassignments of the phenotypes16. To illustrate the procedure used to
obtain the E-value for a given trait, we produced a ‘QQ-plot’ (Supplementary Fig.
S7), which shows the distribution of maximum � log10 P-scores recorded across
1,199 SNPs for 1,000 random permutations of the phenotype scores (for OTUID:
N26684). The threshold for significant QTLs was set at 5% and that for suggestive
QTLs3 at 10%. This corresponds to analysis of variance (ANOVA) � log10 P-values
Z4.39 and Z4.10, respectively, as described by Valdar et al.37 Confidence intervals
were determined manually by a drop of 1.5 in ANOVA � log10 P-score16. The
probability of overlap for QTLs was calculated as described by Graham et al.38

with a size of 2,500 Mb used as the size of the mouse genome. Chromosome
visualization was performed with circus39. All mouse genotype, phenotype and
Happy input files are provided in Supplementary Data 6.

Alpha and beta diversity analysis. Alpha and beta diversity analyses were largely
performed using QIIME34. Alpha diversity34,40 analysis was performed on the
whole data set with a normalized sequence number of 2,500 per individual (the
lowest read number in the data set). An OTU table was generated using a 97%
sequence similarity threshold and singletons were removed. The Chao1 and
Shannon indices, both common measures of diversity within a sample (that is,
alpha diversity), were used to describe species richness and evenness, respectively.
Between-sample diversity (that is, beta diversity) was analysed using CAP
implemented in the Vegan package in R41, with disease status as a constraint. This
analysis is very similar to a redundancy analysis, but additionally it allows non-
Euclidian dissimilarity indices (we used Bray–Curtis42, Jaccard and UniFrac14,15

distances). Statistical significance for CAP was determined by an ANOVA-like
permutation test function with 1,000 permutations (anova.cca) in Vegan. We used
R version 2.15.2 on Linux (R Development Core Team (2012)).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3462

6 NATURE COMMUNICATIONS | 4:2462 | DOI: 10.1038/ncomms3462 | www.nature.com/naturecommunications

& 2013 Macmillan Publishers Limited. All rights reserved.

http://microbiomeutil.sourceforge.net/
http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/Caporaso_Reference_OTUs/gg_otus_4feb2011.tgz
http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/Caporaso_Reference_OTUs/gg_otus_4feb2011.tgz
http://www.nature.com/naturecommunications


References
1. Rosenthal, M., Goldberg, D., Aiello, A., Larson, E. & Foxman, B. Skin

microbiota: microbial community structure and its potential association with
health and disease. Infect. Genet. Evol. 11, 839–848 (2011).

2. Costello, E. K. et al. Bacterial community variation in human body habitats
across space and time. Science 326, 1694–1697 (2009).

3. Benson, A. K. et al. Individuality in gut microbiota composition is a complex
polygenic trait shaped by multiple environmental and host genetic factors. Proc.
Natl Acad. Sci. USA 107, 18933–18938 (2010).

4. McKnite, A. M. et al. Murine gut microbiota is defined by host genetics and
modulates variation of metabolic traits. PLoS One 7, e39191 (2012).

5. Bowcock, A. M. & Cookson, W. O. C. M. The genetics of psoriasis, psoriatic
arthritis and atopic dermatitis. Hum. Mol. Genet. 13 Spec No 1, R43–R55
(2004).

6. Chen, M., Kim, G. H., Prakash, L. & Woodley, D. T. Epidermolysis bullosa
acquisita: autoimmunity to anchoring fibril collagen. Autoimmunity 45, 91–101
(2012).

7. Ludwig, R. J. et al. Identification of quantitative trait Loci in experimental
epidermolysis bullosa acquisita. J. Invest. Dermatol. 132, 1409–1415 (2012).

8. Hundorfean, G., Neurath, M. F. & Sitaru, C. Autoimmunity against type VII
collagen in inflammatory bowel disease. J. Cell Mol. Med. 14, 2393–2403 (2010).

9. Schreiber, S., Rosenstiel, P., Albrecht, M., Hampe, J. & Krawczak, M. Genetics
of Crohn disease, an archetypal inflammatory barrier disease. Nat. Rev. Genet.
6, 376–388 (2005).

10. Grice, E. A. et al. A diversity profile of the human skin microbiota. Genome Res.
18, 1043–1050 (2008).

11. Gao, Z., Tseng, C., Pei, Z. & Blaser, M. J. Molecular analysis of human forearm
superficial skin bacterial biota. Proc. Natl Acad. Sci. USA 104, 2927–2932
(2007).

12. Fierer, N., Hamady, M., Lauber, C. L. & Knight, R. The influence of sex,
handedness, and washing on the diversity of hand surface bacteria. Proc. Natl
Acad. Sci. USA 105, 17994–17999 (2008).

13. Faith, D. P. & Baker, A. M. Phylogenetic diversity (PD) and biodiversity
conservation: some bioinformatics challenges. Evol. Bioinform. 2, 121–128 (2006).

14. Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing
microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

15. Hamady, M., Lozupone, C. & Knight, R. Fast UniFrac: facilitating high-
throughput phylogenetic analyses of microbial communities including analysis
of pyrosequencing and PhyloChip data. ISME J. 4, 17–27 (2010).

16. Dupuis, J. & Siegmund, D. Statistical methods for mapping quantitative trait
loci from a dense set of markers. Genetics 151, 373–386 (1999).

17. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical
and powerful approach to multiple testing. J. R Statis. Soc. Ser. B 57, 289–289
(1995).

18. Picard, C. et al. Pyogenic bacterial infections in humans with IRAK-4
deficiency. Science 299, 2076–2079 (2003).

19. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate
immunity. Cell 124, 783–801 (2006).

20. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov,
R. Recognition of commensal microflora by Toll-like receptors is required for
intestinal homeostasis. Cell 118, 229–241 (2004).

21. Schauber, J. et al. Histone acetylation in keratinocytes enables control of the
expression of cathelicidin and CD14 by 1,25-dihydroxyvitamin D3. J. Invest.
Dermatol. 128, 816–824 (2007).

22. Han, S. H., Kim, J. H., Martin, M., Michalek, S. M. & Nahm, M. H.
Pneumococcal lipoteichoic acid (LTA) is not as potent as staphylococcal LTA
in stimulating Toll-like receptor 2. Infect. Immun. 71, 5541–5548 (2003).

23. Kusunoki, T., Hailman, E., Juan, T. S., Lichenstein, H. S. & Wright, S. D.
Molecules from Staphylococcus aureus that bind CD14 and stimulate innate
immune responses. J. Exp. Med. 182, 1673–1682 (1995).
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