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Within brain area tractography 
suggests local modularity using 
high resolution connectomics
Peter N. Taylor1,2,3, Yujiang Wang2 & Marcus Kaiser1,2

Previous structural brain connectivity studies have mainly focussed on the macroscopic scale of around 
1,000 or fewer brain areas (network nodes). However, it has recently been demonstrated that high 
resolution structural connectomes of around 50,000 nodes can be generated reproducibly. In this study, 
we infer high resolution brain connectivity matrices using diffusion imaging data from the Human 
Connectome Project. With such high resolution we are able to analyse networks within brain areas in a 
single subject. We show that the global network has a scale invariant topological organisation, which 
means there is a hierarchical organisation of the modular architecture. Specifically, modules within 
brain areas are spatially localised. We find that long range connections terminate between specific 
modules, whilst short range connections via highly curved association fibers terminate within modules. 
We suggest that spatial locations of white matter modules overlap with cytoarchitecturally distinct grey 
matter areas and may serve as the structural basis for function specialisation within brain areas. Future 
studies might elucidate how brain diseases change this modular architecture within brain areas.

Structural connectomics, the study of structural brain connectivity, has led to the discoveries that global brain 
networks are small world, highly efficient, and robust to multiple failures1–4. Connectomics has proven useful 
in understanding brain health5, disease6, and development7. However, most previous whole-brain studies have 
focussed on the macroscopic scale, with network nodes typically numbering 100 to 1000. Only few structural 
connectomics studies have analysed networks of higher resolution (e.g. refs 8, 9). This means that, with a lack 
of higher spatial resolution, previous studies have largely been limited to analysis of global network properties, 
rather than localised regions (e.g. within brain areas). Furthermore, because of this, it has been difficult to inves-
tigate mappings between spatial and topological scales (e.g. measures of network scale-invariance). In addition, 
atlas-based low-resolution parcellations have been shown to be heavily biased by nodal properties which may not 
necessarily reflect network differences10 suggesting atlas based parcellation approaches may be sub-optimal for 
some situations.

One of the reasons most previous analyses have been at the macroscopic scale of parcellating the brain into 
around 100 nodes is that the reproducibility of higher resolution networks had not been demonstrated. However, 
excellent inter-acquisition agreement of ten 58,880 node surface based networks generated from ten separate 
scans of the same subject was recently shown11. Besson et al. showed network properties were highly and signifi-
cantly correlated between scans, even when using standard 2 mm isovoxel, 64 direction diffusion MRI data. Other 
studies have also demonstrated the utility of high resolution approaches. For example, Calamante et al.12 analysed 
white matter architecture at subvoxel resolution which was later experimentally validated against ex-vivo mouse 
brain tissue13. Bonilha et al.14 used individual grey matter voxels as streamline termination points to estimate 
the density of connections, whilst Irimia et al.15 used networks of up to 50,000 nodes in their work. In addition, 
advances in imaging protocols mean improvements in image resolution and quality have been made. For exam-
ple, the human connectome project contains diffusion MRI at 1.25 mm isovoxel16,17 which is higher than typically 
acquired. Finally, improvements in processing pipelines have led to better cortical segmentation (and hence more 
accurate surface generation18), and tract accuracy19.

A second reason most previous studies focus on low resolution networks is potential reliability (as opposed 
to reproducibility) issues - i.e. are inferred networks reliably capturing the actual networks? In some regards this 
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question of reliability applies to all DW-MRI studies. For example, even the most basic question of connection 
direction is unknown, irrespective of resolution, which can have important implications on results20. Other issues 
and biases are also known to exist with DW-MRI tractography including potential gyral biases21,22. Despite ques-
tions of reliability, DW-MRI based connectomics has been shown to be useful in various situations5–7.

Here we attempt a pioneering investigation using high resolution connectomics to investigate 1) measures of 
scale-invariance, and 2) localised properties of brain areas in a single subject. Both of these two properties can 
only be investigated using networks of sufficiently high resolution. We demonstrate that this approach may have 
potential utility for analysing local properties of subsets of brain networks whilst acknowledging potential biases 
at such high resolution (see discussion for further details).

Methods
Diffusion and T1w data were downloaded from the Human Connectome Project (HCP) website 
(ConnectomeDB). We used five representative subjects from the 500-subject release in June 2014. (The subject 
IDs are: 100307, 103414, 105115, 110411, 111312). All subjects are between 22 and 35 years old. In the main 
results of this paper we show data for the first subject, (id:100307) a 25–30 year old female, unless otherwise 
stated.

Network construction.  We used the preprocessed data provided by the Human Connectome Project 
which involves two main processing pipelines. Briefly, the PreFreeSurfer pipeline takes the T1, T2 weighted 
scans (0.7 mm isotropic resolution) and field map, applies gradient current distortion and then aligns the T1 and 
T2 scans and performs brain extraction. The gradient nonlinearity distortion correction leads to a noticeable 
improvement in segmentation compared to standard processing (see e.g. Fig. 10 in ref. 18). Following comple-
tion, the next FreeSurfer pipeline is run. The majority of this pipeline uses the FreeSurfer recon-all function with 
downsampled 1 mm isotropic T1 and T2 MRI, however, at various stages the standard recon-all process is inter-
rupted and the higher (0.7 mm isotropic resolution) images used instead, this leads to particular improvements in 
white matter surface generation and pial surface registration (see e.g. Figs 13 & 14 in ref. 18). For extensive details 
on these pipelines we refer the reader to ref. 18 and references therein.

We downsampled the pial surface files (ID_3T_Structural_preproc_extended/ID/T1w/ID/surf/*h.pial.surf) 
preprocessed from the HCP data available at https://db.humanconnectome.org using the MatLab software pack-
age “Iso2Mesh”23 by 90%. The resulting mesh has around 50,000 triangles (nodes in the network) with a mean 
surface area of 3.25 mm2 (see Supplementary Figure S1). Downsampling has the benefit of making the subse-
quent network analysis less computationally intensive whilst still preserving key aspects of cortical gyrification 
and ensuring all triangles are more similarly sized, rather than vast differences in surface area as in the origi-
nal FreeSurfer generated surface mesh which may bias connectivity to be higher in larger areas6. For the diffu-
sion data we used the “DSI Studio” software package. For fiber orientation reconstruction we used generalised 
q-sampling imaging19 with a diffusion sampling length ratio of 1.25. We used a 8-fold orientation distribution 
function (ODF) tessellation, with 5 peaks of the ODF. For the fibre tracking step we seeded in the whole brain 
and tracts were terminated when the quantitative anisotropy of the voxel through which the streamline entered 
was below 0.6*(Otsu’s threshold). Otsu’s threshold is calculated to give the optimal separation threshold that 
maximizes the variance between the background and foreground24. We choose deterministic tractography due 
to the likelihood of it generating fewer false positive connections than probabilistic approaches. This is crucially 
important because false positives have been shown to be much more detrimental to the correct calculation of 
network measures than false negatives25. These are the preferred and recommended settings based on previous 
work19 (although see discussion for limitations of choice in parameters). Streamlines with implausible lengths 
(>​300 mm and <​10 mm) and extreme turning angles (> 60 degrees) were excluded. Other parameters were as 
follows, step size: 0.625 mm. Smoothing: 0. Seed orientation: primary. Seed position: subvoxel. Randomize seed-
ing: off. Direction interpolation: trilinear. Tracking algorithm: Streamline (Euler). Inspired by previous studies1,5, 
only streamlines with both endpoints terminating within the grey matter were included for connection matrix 
generation. Grey matter areas were inserted and combined from the ‘aparc+​aseg.mgz’ file downloaded from 
ConnectomeDB using DSI Studio. The registration quality of the grey matter ROIs was inspected and confirmed 
visually. A threshold of 10,000,000 streamlines was set and saved.

Finally, we imported both surfaces and streamlines into MatLab26 and confirmed all coordinates were in the 
same space. Triangles on the surface mesh represent nodes in the network and are connected to their three local 
neighbors on each side to represent local lateral connectivity not captured by diffusion imaging. This ensures 
the network is fully connected (necessary for the MEMB algorithm - see next section for details) and serves as 
a first approximation to local grey matter connectivity with exponential decays in strength used extensively in 
the neural field literature27–29, discussed experimentally in ref. 30 and similarly adopted in other connectivity 
studies31,32. We acknowledge that local grey matter connectivity is indeed far more complex and spatially variant, 
however, by fixing local connectivity in this way we can ensure that our results are reflective of the experimentally 
derived (MRI based) data. Since the number of local connections is the same for all network nodes this does not 
impact any conclusions of this study. We incorporate long range connectivity by cycling through each streamline 
and considering a connection present between the center of the closest triangle (Euclidean distance) to the two 
endpoints of the streamline. The two matrices (local and long range) are then summed and binarised for analysis. 
A summary of the network construction and processing steps is provided in Fig. 1.

Graph theoretic analysis.  To investigate scale-invariance of the network, we used the maximum excluded 
mass burning (MEMB) box covering algorithm implemented in C33 for box sizes (1 <​ ℓB <​ 11). The algorithm 
computes the minimum number of ‘boxes’ required to cover the network where the maximum path length within 
a box is the parameter ℓB.

https://db.humanconnectome.org
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To detect modules within brain areas we used the Louvain algorithm implemented in the brain connectivity 
toolbox34. This was done by scanning the γ parameter between 0.6 and 1.4 with increments of 0.02 for the subset 
of the cortical network corresponding to the nodes of interest 25 times to produce a modularity …QCORT

1 25 . This was 
also repeated for a random network with the same number of nodes and edges ( …Q RAND

1 25 ). The average modularity 
(QCORT and QRAND) was then taken as the mean across the 25 runs. By defining QMAX as the difference between 
QCORT and QRAND, we obtain a value corresponding to each of the values of γ. Using the value of γ corresponding 
to the largest value of QMAX we take the most common consensus module membership of each node35. This 
approach tends to the most consistent modules at maximal modularity, relative to random networks, being 
detected.

Results
Scaling of the high-resolution structural connectome.  Spatial scaling.  Figure 2 and Supplementary 
movie 1 show incremental enhancements in visualisation of the network at different levels of scale. Effectively the 
figure ‘zooms in’ to enable easier visualisation of smaller structures, starting at the whole (>​50,000 node) connec-
tion matrix (top left - bounded black matrix). The second level of zoom (red box) shows only connections within 
the left hemisphere, with subsequent panels showing further refinement ultimately showing connectivity within 
the rostral middle frontal area (green box). Within an area nodes are sorted from posterior to anterior. The rostral 
middle frontal area is calculated according to the Desikan-Killany (DK) atlas36 determined using FreeSurfer. We 
use the term ‘area’ to refer to a FreeSurfer (DK) area.

Topological scaling.  This high-resolution visual representation of the network is highly reminiscent of 
scale-invariance. To test the hypothesis that the network topology itself is scale-invariant, rather than just our 
visualisation of it, we used the box covering algorithm37. This algorithm divides the network into non-overlapping 
‘boxes’, where the size of the box is a parameter (ℓB) which sets the maximum shortest path length within the box. 
The network is deemed scale-invariant if the minimum number of boxes required (NB(ℓB)) to cover the whole net-
work scales linearly with the box size on a log-log plot (i.e. follows a power law). Figure 2b shows this relationship 
and indeed the network is scale-invariant, observing a straight line fit. Furthermore, the gradient of the line (dB) 
is the fractal dimension - in this case approximately 2.9 for all subjects.

Figure 1.  Overall procedure. Generation of the connectivity involves several steps including processing of 
T1w image data (left and center columns) and diffusion data (right column). The final binarised connectivity 
matrix has around 50,000 nodes and >​1,000,000 edges.
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Modular organisation.  Connections between brain areas.  In addition to being scale-invariant, previous 
studies have demonstrated the human brain network to be hierarchical and modular. We now turn our attention 
to modularity within and between brain areas.

As an example we show a subset of the connectivity matrix with connectivity between superior frontal (SF) 
and superior parietal (SP) areas in the left hemisphere. Nodes are sorted according to maximised modularity 
Q38 within an area, shown in Fig. 3a (bottom panel). Long range connections typically terminate in two specific 
modules (bottom right panel of Fig. 3a) in the SF area (highlighted in orange). This is in contrast to the random 
network (with the same N, k) where connections are more dispersed (e.g. as in the top right panel of Fig. 3a). The 
spatial locations of these terminations are shown in Fig. 3c.

To quantify this difference in endpoint termination between areas, we calculate the edge density of each 
module-to-module connection (i.e. the edge density of each grey quadrilateral in Fig. 3a between areas) for the 
cortical network and for five random networks. The edge density indicates the proportion of existing edges rel-
ative to all possible existing edges; i.e. the edge density is 1 if all nodes are connected to all other nodes and 0 if 
there are no connections between any nodes. There is a total of 350,319 module-to-module connections (based on 
the 845 cyan colored modules) in the full network. Each of these 350,319 grey quadrilaterals has an edge density, 
which we plot in the histogram in Fig. 3b. If long range connections are targeted to specific modules, there are 
many quadrilaterals with an edge density of zero and few with a high edge density. Conversely, if connections are 
randomly dispersed, as in the upper panel of Fig. 3a, there are few quadrilaterals with an edge density of zero and 
many with a low edge density.

Figure 3b shows the distributions of nonzero edge densities for the cortical and random networks. Indeed, 
connections terminate in only a small subset of all potential target modules in the human network, when com-
pared to the random network. Furthermore, when a long range connection is present in a quadrilateral, the edge 
density of that quadrilateral is often several of orders of magnitude higher in the human network as compared 
to the random network (note the log scale on the x-axis). The significant difference in the y-axis for the random 
and human networks further shows that the random networks are much more dispersed and thus have signifi-
cantly more nonzero edge densities. Furthermore, those targeted modules tend to be physically closer than those 
which are not targeted (Supplementary Figure S2), but not related to the gyral/sulcal location of the module 
(Supplementary Figure S3).

Modules within brain areas.  Overall, each brain area contains at least 5 modules. In some cases, this can simply 
be explained by an area containing multiple Brodmann areas where each of those areas forms a module. However, 
many areas consist of only one Brodmann area or a number of areas that is smaller than the number of detected 
modules indicating that a modular organisation within-areas exists.

Figure 2.  Scaling properties of the high-resolution network. (a) Spatial scaling: Successive zooming of the 
connectivity matrix. Nodes are ordered according to FreeSurfer cortical areas with the left hemisphere first. 
(b) Topological scaling: Log-log plot of NB(ℓB)/N versus box size ℓB showing evidence of scale-invariance in the 
networks of five subjects.
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Considering the internal organisation of areas, we find that within-module connections tend to be predom-
inantly short, highly curved association fibers (Fig. 3d). This is in agreement with previous studies39. To provide 
further evidence of the importance of short range within module connections we show color coded node module 
membership in the SF (Fig. 4a) and two other well studied areas. In Fig. 4c we show module membership for 
nodes within the superior temporal gyrus including primary auditory cortex. Some modules are located within 
sulci, in agreement with previous studies of cyto-architectonic grey matter structure in that area40,41. Figure 4d 
shows module membership for the nodes within the left postcentral gyrus, involved in sensory function. Notice 
how the modules tend to be arranged laterally. This is in agreement with experimental evidence suggesting dif-
ferent sensory functions for different body areas with distance from the midline42. For example, the tongue, hand 
and foot somatosensory areas overlap with the modules colored in blue, red and green respectively (Fig. 4b, 
adapted from ref. 42).

Discussion
In this preliminary study we have built on earlier work in a single subject, which demonstrates that high reso-
lution connectomes are reproducible11. We found that the network is scale-invariant across topological scales. 
When zooming in to the spatial scale of one area we find modules which have high intraconnectivity and are 
spatially localised. Finally, we found that modules tend to connect to other specific modules (rather than being 
distributed in their connectivity).

Reproducibility of the reconstructed networks.  Although previous studies have demonstrated that 
high resolution networks can be generated reproducibly11, it could be considered a drawback in this study that 
this is not demonstrated here (due to the unavailability of scan-rescan HCP data). However, when this pipeline 

Figure 3.  Endpoints of long range connections. (a) Subset of the high resolution adjacency matrix showing 
connectivity within and between superior frontal and superior parietal areas in the left hemisphere for random 
(top panel) and human (bottom panel) networks. Cyan squares indicate within-area modules from the diffusion 
weighted imaging (DW-MRI) inferred network. Grey lines indicate extensions of the cyan squares and make 
many quadrilaterals between areas. (b) Histogram of the non-zero edge densities in the quadrilaterals (note the 
different scales on the y axis and log scale on the x axis). In the human network there are fewer quadrilaterals 
where the edge density >​0, but those that are >​0 have a higher edge density than in the random networks 
indicating evidence for long range connections terminating in specific modules, rather than random dispersion. 
(c) An example of the module termination. Two modules (orange bars) in the superior frontal cortex (blue) 
are connected more than other modules to the superior parietal area, also highlighted in orange in (a). Bars are 
for illustrative purposes only, for actual modules see Fig. 4a. (d) Connectivity within the superior frontal area. 
Within the area, short association fibers dominate modules (highlighted in cyan).
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was applied in a similar previous study good reliability was shown using lower quality data (larger voxel size, fewer 
diffusion directions) both within and between scans43. This gives confidence in the reproducibility of the connec-
tivity generated here using the higher quality HCP data. Furthermore, the previous use of high resolution struc-
tural11,15, and functional44 connectomes set precedent for this work. The speculated overlap of structural modules 
with functional activations (Fig. 4) suggests the utility of this approach for investigating structure-function rela-
tionships. Although sufficient to demonstrate the utility of the approach, another limitation of our work is that 
our analysis is largely presented for a single subject. A future research direction will be to compare properties of 
high resolution structural connectomes between subjects11.

Reliability of the reconstructed networks.  Despite the apparent reproducibility, our results - in line 
with all DW-MRI based connectomics studies - should be considered with caution. This is because reproducibil-
ity does not necessarily imply reliability. For example, it has been argued that diffusion MRI based tractography 
may not be reliable for detecting even major tracts45. Furthermore, it has been shown that tractography into 
grey matter areas results in widespread differences in gyral, relative to sulcal, areas which are not reproduced  
experimentally21. This ‘gyral bias’22 is a known limitation of current techniques. Future tractography algorithms 
may seek to address this issue by normalising streamline numbers by the cortical volume associated with the 
white matter surface22, and by using different tractography rules with proximity to the grey matter. The use of 7T 
data should also reduce this bias46. Our study is possibly less affected by this bias since we binarise our network 
(unlike in, e.g. ref. 22 where streamline density is used to demonstrate such gyral bias), however the existence 

Figure 4.  Modules are spatially localised. Nodes (surface triangles - perimeter of triangle not shown) in the 
network are color coded according to their module membership. Modules tend to be arranged in spatially 
localised areas. (a) Modules in the superior frontal cortex (c) superior temporal gryus and (d) the postcentral 
gyrus are shown from various angles to aid visualisation. The inset zoom is rotated slightly laterally for clarity. In 
(b) we show fMRI activation maps of different areas in the pre- and postcentral gyrus according to movement 
of different body parts42. Note that the functional units are comparable in size and location to structural post-
central gyrus units based on high resolution connectivity shown in (c).
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of this possible bias should be considered as potentially influencing our results. Other limitations inherent to all 
DW-MRI based connectomics studies also apply here such as the inability to infer directionality of inferred tracts, 
difficulties in tracking through dense white matter areas (e.g. the corpus callosum - which should not impact our 
within area analysis), and the bias for streamlines to favour directions without sharp turning angles (see e.g. refs 
47–49).

Nontheless, tractography algorithms are rapidly improving and our chosen algorithm was recently shown to 
have the highest proportion of valid connections in open competition (http://www.tractometer.org/ismrm_2015_
challenge/results) and accounts for crossing fibers using multi-shell diffusion data. Of course, diffusion based 
measures, however sophisticated, are an indirect measure of brain structure and do not directly reflect all connec-
tivity. Our results should be considered with this in mind. Finally, a further factor which may influence the results 
presented here is the choice of tractography algorithm and associated parameters. Testing such a large parameter 
space would be infeasible for our work, hence we used default settings to aid ease of comparison to other studies 
(e.g. refs 43) and which have been tried, tested and validated at other resolutions50.

High resolution network is scale-invariant.  Previous studies have investigated spatial fractal properties 
of brain tissue using the box counting algorithm51,52. However, to our knowledge, only one study has investigated 
topological fractal properties of structural brain connectivity networks53. In that study the authors showed, using 
a network of 998 nodes, cortical connectivity to be scale-invariant. However, by having 998 nodes, only a limited 
number of data points could be generated - essentially to measure scale-invariance across topological scales, 
multiple scales need to be measured. By using a high resolution network of >​50,000 nodes we are able to capture 
multiple spatial and topological scales and confirm the previous results of ref. 53 with greater confidence.

Self-similar properties of high-resolution functional brain connectivity networks have been studied exten-
sively by Gallos and colleagues54,55. In those studies the authors showed that densely connected fractal modules 
are crucially related to functional specialization in ‘large world’ networks where pathways can contain a large 
number of intermediate nodes along a shortest path. Importantly, the authors also showed that long-range ‘weak 
tie’ connections, when added between these modules, lead to better global network integration. These ‘weak ties’ 
revert it to the ‘small world’ network frequently described in the literature providing, on average, a low number of 
intermediate steps along the path between brain regions56. Cortical networks therefore achieve a balance between 
local specialized processing and global integration through their hierarchical organization57. Our study extends 
the work by Gallos et al. by finding a fractal architecture at the level of structural connectivity, providing the basis 
for observations in functional networks.

High resolution allows within-area network analysis.  A further benefit of studying the high resolu-
tion connectome, and a key novelty of our work, is that this allows the analysis of within-area connectivity. We 
find modules within brain areas are spatially localised. In most previous connectomics studies, within-area con-
nections are largely disregarded. By studying the network at this level we have uncovered the spatial organisation 
of within-area modularity (Fig. 4). Modularity in the network is highly beneficial as this leads to local segregation 
of processing4,58, a rich dynamical repertoire59 and dynamic functionality within modules60. Indeed, it has been 
suggested that brain connectivity networks are modular and hierarchical (e.g. fractal), however, to our knowledge 
this has not been reported using structural human brain connectivity at this spatial scale.

Previous studies have highlighted the existence of modules at the macroscopic scale61,62. By using high reso-
lution data we have shown that within the primary somatosensory area further modules can be detected which 
we postulate correspond with functionally distinct operations such as hand, tongue and foot sensation. These 
nested modules within modules are in agreement with our findings of the self-similar properties of the network. 
We speculate that with an even higher resolution further modules exist. For example, within the hand module 
there may be specific modules for separate fingers. In single subjects this may prove difficult to detect, however 
a direction of future work could be to incorporate subject-specific functional imaging such as that obtained 
through fMRI.

High resolution shows between-area module-module terminations.  A further result of ours is 
that the between-area connections tend to connect specific modules to specific modules, rather than fanning 
out at either or both ends (Fig. 3b,c). It is unclear what mechanisms drive this specificity of long range targeting, 
however there are several potential explanations. These include common input from subcortical areas (e.g. the 
thalamus63), shared cytoarchitecture64, gyral preference, or shorter distance. We tested the latter two and found no 
preference for module-module connections to target gyri, sulci or saddles (effect size <​0.1). However, we found 
a substantial and significant association with distance; i.e modules which are closer together are more likely to be 
connected (Figure S2). It is unclear how much of this is attributable to any bias of tractography to favour shorter 
streamlines though65. The existence of some long range module-module connections suggests that minimising 
physical distance between modules is not the only driving mechanism however (see e.g. right side of Figure S2g).

Conclusion
To summarise, we have shown that an inferred cortical network of the human brain is scale-invariant, with a 
hierarchical organisation of the modular architecture. It has not escaped our notice, that the described modular 
architecture within brain areas suggests a potential structural mechanism for implementing distinct functions. 
Moving forward, it will be of interest to use these techniques to investigate localised brain dysfunction in, for 
example, focal epilepsy patients where spreading through local connectivity is known to be important6 and in 
larger subject cohorts11.

http://www.tractometer.org/ismrm_2015_challenge/results
http://www.tractometer.org/ismrm_2015_challenge/results
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