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Developmental origins of cardiometabolic diseases have been related to maternal

nutritional conditions. In this context, the rising incidence of arterial hypertension,

diabetes type II, and dyslipidemia has been attributed to genetic programming. Besides,

environmental conditions during perinatal development such as maternal undernutrition

or overnutrition can program changes in the integration among physiological systems

leading to cardiometabolic diseases. This phenomenon can be understood in the context

of the phenotypic plasticity and refers to the adjustment of a phenotype in response to

environmental input without genetic change, following a novel, or unusual input during

development. Experimental studies indicate that fetal exposure to an adverse maternal

environmentmay alter themorphology and physiology that contribute to the development

of cardiometabolic diseases. It has been shown that both maternal protein restriction and

overnutrition alter the central and peripheral control of arterial pressure and metabolism.

This review will address the new concepts on the maternal diet induced-cardiometabolic

diseases that include the potential role of the perinatal malnutrition.

Keywords: developmental plasticity, perinatal nutrition, cardiometabolic control, protein restriction

INTRODUCTION

Cardiovascular and metabolic diseases, such as hypertension, type II diabetes, and dyslipidemia
are highly prevalent in the world and have important effects on the public health, increasing risk
factors for the development of other diseases, including coronary heart disease, stroke, and heart
failure (Landsberg et al., 2013). The etiology of these cardiometabolic diseases includes a complex
phenotype that arises from numerous genetic, environmental, nutritional, behavioral, and ethnic
origins (Landsberg et al., 2013; Ng et al., 2014). In this regard, it has been observed that the eating
habits and behaviors and nutritional condition in early phases of life may play a key role on the
etiology of these diseases by inducing physiological dysfunctions (Lucas, 1998; Victora et al., 2008;
Wells, 2012). This phenomenon can be understood in the context of phenotypic plasticity and
it refers to the ability of an organism to react to both an internal and external environmental
inputs with a change in the form, state, physiology, or rate of activity without genetic changes
(West-Eberhard, 2005b). Indeed the nutritional factors rise as important element in this theme
and it has been highlighted since Barker (Barker, 1990, 1994, 1995, 1998, 1999a,b, 2000; Barker
and Martyn, 1992; Fall and Barker, 1997; Osmond and Barker, 2000). In this context, new evidence
from epidemiological and clinical studies have showed the association of the maternal under- and
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overnutrition with development of cardiometabolic dysfuntions
(Ashton, 2000; Hemachandra et al., 2006; Antony and Laxmaiah,
2008; Conde and Monteiro, 2014; Costa-Silva et al., 2015; Parra
et al., 2015). Thus, this review will address the new concepts
about the involvement of the maternal protein malnutrition
and overnutrition on the development of the cardiometabolic
diseases.

PERINATAL ORIGIN OF
CARDIOMETABOLIC DISEASES: THE
ROLE OF PHENOTYPIC PLASTICITY

Biological and medical consequences of perinatal nutritional
factors have been extensively studied in the field of the
“developmental origins of health and diseases” proposed by
Barker and colleagues since 1986 (Barker and Osmond, 1986;
Barker et al., 1989, 1993; Barker, 2007). This field of research

proposes that cardiometabolic diseases can be “programmed” by
the “adaptative” effects of both under- and overnutrition during
early phases of growth and development on the cell physiology
(Barker and Osmond, 1986; Hales and Barker, 1992; Alfaradhi
and Ozanne, 2011; Chavatte-Palmer et al., 2016). As stated
before, it aims to study how an organism reacts to a different
environmental input, such as malnutrition, and induces changes
in the phenotype, but without altering the genotype (Barker
et al., 2005;West-Eberhard, 2005a; Labayen et al., 2006; Andersen
et al., 2009; Biosca et al., 2011). In this context, epigenetic
alterations, such as DNA methylation, histone acetylation, and
microRNA expression are considered the molecular basis of the
phenotypic plasticity (Wells, 2011). These modifications termed
as “epigenetic” were firstly described by Conrad Waddigton in
1940 and it studies the relationship between cause and effect in
the genes to produce a phenotype (Jablonka and Lamb, 2002).
Nowadays, this concept is employed to describe the process of the
gene expression and its linking to modifications in the cromatin
structure without altering DNA sequence (Chong and Whitelaw,
2004; Egger et al., 2004). Among all epigenetic modifications, the
DNA methylation is one that has been best studied and is related
to addition of methyl groups on DNA cytosine residues, normally
on the cytosine followed by guanine residue (CpG dinucleotides),
which can produce inhibition of the gene expression by impairing
transcriptional factor binding (Waterland and Michels, 2007;
Mansego et al., 2013; Chango and Pogribny, 2015; Mitchell et al.,
2016). In this context, it has been investigated how nutritional
aspect may induce these epigenetic modifications.

Macro- andmicro-nutrient compositions have been identified
as important nutritional factors inducing epigenetic processes,
such as DNA methylation (Mazzio and Soliman, 2014; Szarc vel
Szic et al., 2015). It is considered at least three ways by which

Abbreviations: AKT/PKB, Protein kinase B; CB, Carotid body; CNS, Central

nervous system; CRP, C-reactive protein; ERK, Extracellular signal-regulated

kinase; GSH, Glutathione reduced; HFD, High fat diet; HIF-1α, Hypoxic inducible

factor 1 alpha; IGF2, Insulin-like growth factor 2; IL-6, Interleukin-6; IR,

Insulin receptor; IRS, Insulin receptor substrate; mTOR, Mammalian target of

rapamycin; PI3K, Phosphatidylinositol 3-kinase; RAS, Renin-angiotensin system;

ROS, Reactive oxygen species; TNF-α, Tumor necrosis factor alpha.

nutrients can induce DNA methylation, alter gene expression,
and modify cellular phenotype: (i) by providing methyl
group supply for inducing S- adenosyl-L-methionine formation
(genomic DNA methylation), modifying the methyltransferase
activity, or impairing DNA demethylation process; (ii) by
modifying chromatin remodeling, or lysine and arginine residues
in the N-terminal histone tails; and (iii) by altering microRNA
expression (Chong andWhitelaw, 2004; Egger et al., 2004; Hardy
and Tollefsbol, 2011; Stone et al., 2011). In this context, altered
contents of amino acids, such as methionine and cysteine, as
well as reduced choline and folate diet amount can modify the
process of the DNAmethylation leading to both DNA hyper- and
hypomethylation (Fiorito et al., 2014). For example, deficiency of
choline can precipitate DNA hypermethylation associated with
organ dysfunction, mainly in liver metabolism (Karlic and Varga,
2011; Wei, 2013).

High fat diet (HFD) during perinatal period has been
identified as risk factor to predispose and induce epigenetic
processes in the parents and their offspring (Mazzio and
Soliman, 2014; Szarc vel Szic et al., 2015). Both hypo- and
hypermethylation processes participate in this dysregulation
attributed to HFD consumption (Ng et al., 2010; Milagro et al.,
2013). In adipose tissue, for example, it was observed that gene
promoter of the fatty acid synthase enzyme suffered methylation
(Lomba et al., 2010) and that important obesity-related genes
such as leptin have disruption on their methylation status
(Milagro et al., 2009).

MATERNAL PROTEIN UNDERNUTRITION:
EARLY- AND LONG-TERM OUTCOMES

Maternal malnutrition is associated with the risk of developing
cardiovascular disease and co-morbidities in offspring’s later
life including hypertension, metabolic syndrome, and type-II
diabetes (Barker et al., 2007; Nuyt, 2008; Nuyt and Alexander,
2009). In humans, studies have provided support for the positive
association between low birth weight and increased incidence of
hypertension (Ravelli et al., 1976; Hales et al., 1991; Sawaya and
Roberts, 2003; Sawaya et al., 2004).

Maternal low-protein diet model during both gestation and
lactation is one of the most extensively studied animal models
of phenotypic plasticity (Ozanne and Hales, 2004; Costa-Silva
et al., 2009; Falcão-Tebas et al., 2012; Fidalgo et al., 2013; de
Brito Alves et al., 2014; Barros et al., 2015). Feeding a low-protein
diet (8% protein) during gestation and lactation is associated
with growth restriction, asymmetric reduction in organ growth,
elevated systolic blood pressure, dyslipidemia, and increased
fasting plasma insulin concentrations in the most of studies in
rodents (Ozanne and Hales, 2004; Costa-Silva et al., 2009; Falcão-
Tebas et al., 2012; Fidalgo et al., 2013; Leandro et al., 2012; de
Brito Alves et al., 2014, 2016; Ferreira et al., 2015; Paulino-Silva
and Costa-Silva, 2016). However, it is known that the magnitude
of the cardiovascular and metabolic outcomes are dependent
on the both time exposure to protein restricted-diet (Zohdi
et al., 2012, 2015) and growth trajectory throughout the postnatal
period (Wells, 2007, 2011). A rapid and increased catch-up
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growth and childhood weight gain appear to augment metabolic
disruption in end organs, for example liver (Tarry-Adkins et al.,
2016; Wang et al., 2016).

Although, the relationship between maternal protein
restriction, sympathetic overactivity and hypertension have
been suggested (Johansson et al., 2007; Franco et al., 2008;
Barros et al., 2015), few studies have described the physiological
dysfunctions responsible for producing these effects. Nowadays,
it is well accepted that perinatal protein malnutrition raise
risks of hypertension by mechanisms that include abnormal
vascular function (Franco Mdo et al., 2002; Brawley et al., 2003;
Franco et al., 2008), altered nephron morphology and function,
and stimulation of the renin-angiotensin system (RAS) (Nuyt
and Alexander, 2009; Siddique et al., 2014). Recently, studies
have highlighted contribution of the sympathetic overactivity
associated to enhanced respiratory rhythm and O2/CO2

sensitivity on the development of the maternal low-protein
diet-induced hypertension by mechanisms independent of
the baroreflex function (Chen et al., 2010; Barros et al., 2015;
Costa-Silva et al., 2015; de Brito Alves et al., 2015; Paulino-Silva
and Costa-Silva, 2016). Offspring from dams subjected to
perinatal protein restriction had relevant short-term effects on
the carotid body (CB) sensitivity and respiratory control. With
enhanced baseline sympathetic activity and amplified ventilatory
and sympathetic responses to peripheral chemoreflex activation,
prior to the establishment of hypertension (de Brito Alves et al.,
2014, 2015). The underlying mechanism involved in these effects
seems to be linked with up-regulation of hypoxic inducible factor
(HIF-1α) in CB peripheral chemoreceptors (Ito et al., 2011, 2012;
de Brito Alves et al., 2015). However, the epigenetic mechanisms
in these effects are still unclear. It is hypothesized that epigenetic
mechanism produced by DNA methylation could be involved
(Altobelli et al., 2013; Prabhakar, 2013; Nanduri and Prabhakar,
2015).

The central nervous system (CNS) compared to other
organ systems has increased vulnerability to reactive oxygen
species (ROS). ROS are known to modulate the sympathetic
activity and their increased production in key brainstem sites
is involved in the etiology of several cardiovascular diseases, for
example, diseases caused by sympathetic overexcitation, such as
neurogenic hypertension (Chan et al., 2006; Essick and Sam,
2010). Ferreira and colleagues showed that perinatal protein
undernutrition increased lipid peroxidation and decreased the
activity of several antioxidant enzymes (superoxide dismutase,
catalase, glutathione peroxidase, and glutathione reductase
activities) as well as elements of the GSH system, in adult
brainstem. Dysfunction in the brainstem oxidative metabolism,
using the same experimental model, were observed in rats
immediately after weaning associated to the increase in ROS
production, with a decrease in antioxidant defense and redox
status (Ferreira et al., 2015, 2016). Related to the metabolic
effects on the heart, it was observed that these animals
showed decreased mitochondrial oxidative phosphorylation
capacity and increased ROS in the myocardium. In addition,
maternal low-protein diet induced a significant decrease in
enzymatic antioxidant capacity (superoxide dismutase, catalase,
glutathione-S-transferase, and glutathione reductase activities)

and glutathione level when compared with normoprotein group
(Nascimento et al., 2014).

Regarding hepatic metabolism, studies showed that protein
restricted rats had suppressed gluconeogenesis by a mechanism
primarily mediated by decrease on the mRNA level of hepatic
phosphoenolpyruvate carboxykinase, a key gluconeogenic
enzyme, and enhancement of the insulin signals through the
insulin receptor (IR)/IR substrate (IRS)/phosphatidylinositol
3-kinase (PI3K)/mammalian target of rapamycin complex 1
(mTOR) pathway in the liver (Toyoshima et al., 2010). In relation
to lipid metabolism, there was decreased liver triglyceride
content in adult rats exposed to protein restriction during
gestation and lactation. It was suggested that this effect could
be due to increased fatty-acid transport into the mitochondrial
matrix or alterations in triglyceride biosynthesis (Qasem et al.,
2015). A maternal protein restriction was shown to reduce the
lean and increase the fat contents of 6-month old offspring with
a tendency for reduced number of muscle myofibers associated
with reduced expression of mRNA of Insulin-like growth factor
2 gene (IGF2 mRNA) in pigs (Chavatte-Palmer et al., 2016).

MATERNAL OVERNUTRITION AND RISK
FACTOR FOR THE CARDIOMETABOLIC
DYSFUNTIONS

Nutritional transition is a phenomenon well documented in
developing countries in the twentieth and twenty-first centuries,
and has induced high incidence of the chronic diseases and
high prevalence of the obesity (Batista Filho and Rissin, 2003;
Batista Filho and Batista, 2010; Ribeiro et al., 2015). It is
evident that protein malnutrition was an health problem in
the first half of the twentieth century. Now, it was replaced by
a diet enriched in saturated fat or other HFDs, predisposing
to overweight, and obesity (Batista et al., 2013). Nowadays, it
suggested that two billion people in the world are overweight
and obese individuals, with major prevalence is related to diet
induced-obesity, which have been associated to cardiovascular
and endocrine dysfunctions (Hotamisligil, 2006; Aubin et al.,
2008; Zhang et al., 2012; Ng et al., 2014; Wensveen et al., 2015).

Recently, the obesity has been considered a physiological
state of chronic inflammation, characterized by elevated levels
of inflammatory markers including C-reactive protein (CRP),
interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-
α) (Wensveen et al., 2015; Erikci Ertunc and Hotamisligil,
2016; Lyons et al., 2016). Maternal HFD chronic consumption
enhances the circulating free fatty acids and induce the activation
of inflammatory pathways, enhancing chronic inflammation
in offspring (Gruber et al., 2015). Studies of Roberts et al.
(2015) found that cardiometabolic dysfunction was associated
with changes such as elevated serum triglycerides, elevated
oxidative stress levels, insulin resistance, vascular disorders, and
development of hypertension (Roberts et al., 2015).

In animals on a HFD the hormone leptin has been
considered one of the most important physiological mediators
of the cardiometabolic dysfunction (Correia and Rahmouni,
2006; Harlan et al., 2013; Harlan and Rahmouni, 2013). Since
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hyperleptinemia, common in overweight and obesity conditions,
produce a misbalance in autonomic system, with sympathetic
overactivation (Machleidt et al., 2013; Kurajoh et al., 2015;
Manna and Jain, 2015), and reduced sensitivity of vagal afferent
neurons (de Lartigue, 2016). This disorder of vagal afferent
signaling can activate orexigenic pathways in the CNS and drive
hyperphagia, obesity, and cardiometabolic diseases at long-term
(de Lartigue, 2016). Some authors have described that, at least in
part, cardiovascular dysfuntion elicited byHFD or obesitymay be
due to changes in the neural control of respiratory and autonomic
systems (Bassi et al., 2012, 2015; Hall et al., 2015; Chaar et al.,
2016). Part of these effects were suggested to be influenced by
atrial natriuretric peptide and renin-angiotensin pathways (Bassi
et al., 2012; Gusmão, 2012).

Interestingly, it has been shown that offspring from mothers
fed HFD have high risk to develop pathologic cardiac
hypertrophy. This condition would be linked to re-expression
of cardiac fetal genes, systolic, and diastolic dysfunction and
sympathetic overactivity on the heart. These effects lead to
reduced cardioprotective signaling that would predispose them
to cardiac dysfunctions in adulthood (Taylor et al., 2005; Wang
et al., 2010; Fernandez-Twinn et al., 2012; Blackmore et al., 2014).
Regarding arterial blood pressure control, it has been described
that maternal HFD induces early and persistent alterations in
offspring renal and adipose RAS components (Armitage et al.,
2005). These changes seem to be dependent upon the period
of exposure to the maternal HFD, and contribute to increased
adiposity and hypertension in offspring (Samuelsson et al., 2008;
Elahi et al., 2009; Guberman et al., 2013; Mazzio and Soliman,
2014; Tan et al., 2015). Studies in baboons subjected to HFD
showed that microRNA expression and putative gene targets
involved in developmental disorders and cardiovascular diseases

were up-regulated and others were down-regulated. The authors
suggested that the epigenetic modifications caused by HFD may
be involved in the developmental origins of cardiometabolic
diseases (Maloyan et al., 2013).

Other metabolic outcomes induced by HFD have been
pointed out in the last years and it has demonstrated that
HFD displayed a drastic modification on metabolic control
of the glucose metabolism and lead to increased insulin level
in serum (Fan et al., 2013) and enhanced insulin action
through AKT/PKB (protein kinase B) and ERK (extracellular
signal-regulated kinase), and activation of mammalian target
of rapamycin (mTOR) pathways in cardiac tissue (Fernandez-
Twinn et al., 2012; Fan et al., 2013). Offspring fromHFDmothers
showed alterations in blood glucose and insulin levels, with
high predisposition to insulin resistance and cardiac dysfunction
(Taylor et al., 2005; Wang et al., 2010). Part of these effects
are associated with enhanced production of ROS and reduction
in the levels of the anti-oxidant enzymes, such as superoxide
dismutase, suggesting a misbalance in the control of the oxidative
stress (Fernandez-Twinn et al., 2012).

Altogether, this review addressed the new concept on the
maternal diet induced-cardiometabolic diseases that include the
potential role of the perinatal malnutrition. It showed that the
etiology of these diseases is multifactorial involving genetic and
environmental influences and their physiological integration.
It is well recognized that both perinatal undernutrition and
overnutrition are related with the risk of developing metabolic
syndrome and hypertension in adult life (Figure 1). The
underlying mechanism can be explained in the context of
phenotypic plasticity during development that includes adaptive
change on the CNS, heart, kidney, liver, muscle, and adipose
tissue metabolisms with consequent physiology dysfunction and

FIGURE 1 | Schematic drawing showing the physiological effects induced by maternal and fetus exposure to under- or overnutrition through DNA

methylation and their consequences on the organ physiology and increased risk of the cardiometabolic diseases in the offspring.
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with subsequent cardiometabolic diseases. Moreover, maternal
undernutrition or overnutrition may predispose epigenetic
modifications in dams and their offspring, with predominance
of DNA methylation, leading to altered gene expression
during development and growth. Further, it can provide a
different physiological condition which may contribute to
the developmental origins of the cardiometabolic diseases.
These physiological dysfunctions seem to be linked to the
impaired central and peripheral control of both metabolic and
cardiovascular functions by mechanisms that include enhanced

sympathetic-respiratory activities and disruption in metabolism
of end organs at early life. It is suggested that those effects
could be associated to inflammatory conditions and impaired
oxidative balance, whichmay contribute to adult cardiometabolic
diseases.
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