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Abstract  
Subarachnoid hemorrhage is a devastating disease with significant mortality and morbidity, 
despite advances in treating cerebral aneurysms. There has been recent progress in the 
intensive care management and monitoring of patients with subarachnoid hemorrhage, 
but the results remain unsatisfactory. Microglia, the resident immune cells of the brain, 
are increasingly recognized as playing a significant role in neurological diseases, including 
subarachnoid hemorrhage. In early brain injury following subarachnoid hemorrhage, 
microglial activation and neuroinflammation have been implicated in the development 
of disease complications and recovery. To understand the disease processes following 
subarachnoid hemorrhage, it is important to focus on the modulators of microglial 
activation and the pro-inflammatory/anti-inflammatory cytokines and chemokines. In this 
review, we summarize research on the modulators of microglia-mediated inflammation in 
subarachnoid hemorrhage, including transcriptome changes and the neuroinflammatory 
signaling pathways. We also describe the latest developments in single-cell transcriptomics 
for microglia and summarize advances that have been made in the transcriptome-
based classification of microglia and the implications for microglial activation and 
neuroinflammation.
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Introduction 
Subarachnoid hemorrhage (SAH) is a significant cause of 
premature death and leads to a loss of potential life years. 
It occurs at a rate of 7.2–10.5 per 100,000 population and 
accounts for approximately 5–10% of strokes each year (Cahill 
and Zhang, 2009; Wong et al., 2010; Rincon et al., 2013). SAH 
predominantly affects younger adults, usually between the 
ages of 40 and 60 years . Approximately 35% of patients with 
SAH do not survive beyond the first 30 days (Bederson et al., 
2009; Schertz et al., 2016). Of those who survive, an estimated 
50% have long-term disabilities marked by neuropsychological 
impairments and a decreased quality of life (Taufique et al., 
2016). 

The pathophysiological processes that follow SAH have been 
clinically defined as early brain injury (EBI). The main causes 
of critical EBI are thought to be a robust neuroinflammatory 
response, cerebral edema, and microvascular dysfunction. 
Further brain injury can occur in a delayed phase, resulting 
from persistent neuroinflammation, delayed cerebral 
vasospasm, and ischemia. At present, the molecular 
mechanisms underlying EBI are little understood owing to 
their complexity (Suzuki, 2015; Suzuki et al., 2017). Concerning 

treatments, it has been shown that although targeted drugs 
can significantly reduce vasospasm, the clinical outcomes of 
SAH patients remain unchanged, as was recently described in 
a meta-analysis of 14 studies involving 4235 patients (Etminan 
et al., 2011). However, there are interventions that can 
improve outcomes, as have been shown in worldwide studies 
of neuro-intensive care and the multidisciplinary management 
of SAH (Macdonald and Schweizer, 2017). A promising 
approach for more effective interventions involves targeting 
the neuroinflammation that follows SAH. It is therefore of 
much interest to explore this further, even though the exact 
nature of EBI following SAH remains incompletely understood. 

Microglia are important mediators of neuroinflammation; 
they are parenchymal macrophages in the brain and spinal 
cord that make up 10–15% of the glial cell population. They 
are implicated in various neurological diseases, such as 
Alzheimer’s disease (AD), amyotrophic lateral sclerosis, brain 
tumor and stroke (Prinz et al., 2011; Colonna and Butovsky, 
2017). Microglia are key immune cells that respond to various 
acute brain injuries, including SAH (Lan et al., 2011; Gris et 
al., 2019; Zheng et al., 2020). Neuroinflammation-related 
microglial phenotypes have been classified as “resting’’, ‘‘M1’’ 
(proinflammatory), and ‘‘M2’’ (anti-inflammatory). Recent 
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evidence suggests that microglia-mediated neuroinflammation 
plays an important role in SAH injury expansion and brain 
damage (Zheng et al., 2020). Two recent clinical studies have 
shown that microglia accumulate and become activated in 
the human brain parenchyma and cerebrospinal fluid (CSF), 
following aneurysmal SAH (Schneider et al., 2015; Roa et al., 
2020). Some studies have examined the signaling pathways 
involved in microglial activation and neuroinflammation, and 
an experimental model of SAH has shown that treatment 
strategies that modulate these pathways can improve 
outcomes (Li et al., 2018; Peng et al., 2019; Zheng et al., 2020). 
These findings imply that research into microglial activation, 
and function transcription, and cellular interactions is crucial 
for deciphering the pathophysiology of SAH. At present, 
two clinical trials are being conducted to test interleukin-1 

receptor antagonists as a treatment for SAH (Gaastra et al., 
2017; Galea et al., 2018). In addition, the recent development 
of single-cell analysis technology has the potential to improve 
the classification of microglia and provide further information 
concerning their activation (Hammond et al., 2019; Li et 
al., 2019a). These new areas of research could improve the 
understanding and treatment of neuroinflammation in SAH. 

In this review, we analyze the latest progress in single-
cell research concerning the transcriptional heterogeneity 
of microglia (Figure 1). In addition, we review studies on 
the modulators of microglia-mediated neuroinflammation 
following SAH, including both experimental SAH and clinical 
research (Table 1). Finally, we discuss the limitations of current 
research and the challenges of translational SAH research.

Figure 1 ｜ Microglial activation states.
The left part shows the activation of microglia after subarachnoid hemorrhage (SAH) (A). M1 (Marker CD16, CD86; iNOS) have been observed to have the 
proinflammatory effect and M2 (Marker CD206, CD163, Arg1 and MHC class II) have an anti-inflammatory effect by interacting with signal pathway TLR4/
MyD88/NF-κB, HMGB1, CX3CL1 &CX3CR1 and JAK-STAT. The right part (B) shows the latest results of single-cell RNA sequencing study on transcriptional 
states of homeostatic microglia (B1) and activated microglia (B2). Two to three clusters of resting microglia in mice were found and with an expression of 
homeostatic genes. Healthy human microglia were found to have four clusters: Human Cluster 1 (Hu-C1) to human cluster 4 (Hu-C4). Each microglia sub-state 
has its own up-regulated gene and some clusters have several similar characteristics. The activated microglia have also been analyzed in a single-cell study. 
DAM was a subcluster of activated microglia found in Alzheimer’s disease mouse model. Specialized Axon Tract-Associated Microglia (ATM) were observed in 
the developmental mouse brain. IRM is another subtype of activated microglia observed in lysolecithin induced animal model. DAM, ATM and IRM all shared 
a common transcriptional signature of 12 core genes including Spp1, Lpl, and Apoe. There were also differential gene expressions among them. However, 
microglia transcription heterogeneity leaves unknown in the SAH state.

Search Strategy and Selection Criteria
Articles were obtained through a literature search in PubMed 
on 25 April, 2021. These included review articles, original 
articles, meta-analyses, and clinical trials. For the first search, 
47 articles were identified using the following search terms: 
(microglia [MeSH term]) AND (analysis, single cell [MeSH 
terms]) AND ((fft [Filter]) AND (2015:2020 [pdat])); we excluded 
six review articles, four articles on non-parenchymal microglia, 
and 22 articles that did not fit in with our review. For the second 
search, 91 articles were identified using the search terms: ((brain 
inflammation [MeSH term]) OR (microglia [MeSH term])) AND 
(hemorrhage, intracranial subarachnoid [MeSH terms]) AND 
((fft[Filter]) AND (2010:2020[pdat])); we excluded seven review 
articles and 33 articles that did not fit in with our review. Finally, 
we selected a further 29 articles related to our review.

Homeostatic and Activated Microglia in 
Single-Cell Studies 
Microglia are derived from the embryonic yolk sac and reside 
in the brain parenchyma (Ginhoux et al., 2010; Ajami et al., 
2011). Morphologically, homeostatic microglia are highly 

ramified. They are involved in the development of the central 
nervous system (CNS), and they help to maintain tissue 
homeostasis by supporting neuronal survival, cell death, and 
synaptogenesis (Nayak et al., 2014). Activated microglia can 
adopt polarized phenotypes: either the classically-activated 
state (M1 phenotype; proinflammatory; specific markers: 
CD16, CD86, and iNOS), or the alternatively-activated state 
(M2 phenotype; anti-inflammatory; specific markers: CD206, 
CD 163, and Arg1) (Zheng and Wong, 2019). Although this is 
a simplified classification that can only be observed in vitro, 
it is helpful for understanding the role that microglia play in 
pathophysiological processes (Tang and Le, 2016; Xiong et al., 
2016). It is known that when the M1 phenotype is activated 
using lipopolysaccharide and pro-inflammatory cytokine 
interferon-γ, pro-inflammatory cytokines are released, such 
as tumor necrosis factor-α and interleukin-6 (IL-6); when the 
alternative M2 phenotype is activated using IL-4 or IL-13, anti-
inflammatory factors are expressed, such as transforming 
growth factor beta and IL-10 (Durafourt et al., 2012; Hu et al., 
2015; Orihuela et al., 2016). However, the specific functions of 
the different M1 and M2 subtypes and their interactions with 
other cells, such as neurons, have not been fully elucidated. In 
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addition, the transcriptional state of macrophages is complex 
with at least nine different states (Xue et al., 2014), although 
some encouraging results are gradually beginning to emerge 
from research on the microglia transcriptome.

Progress in understanding the transcriptional heterogeneity 
of microglia in the single-cell era 
Recent single-cell research has led to improvements in the 
classification of microglia on the basis of the transcriptome. In 
these studies, microglia have been used from the mouse brain 
at different developmental stages, including the embryonic, 
adult, and old-age stages (Hammond et al., 2019; Li et al., 
2019a). Compared with previous studies, it was found six 
to nine clusters at all of the different developmental stages, 
and similar transcriptomes for different adult mouse brains. 
Using single cell RNA-sequencing, it has been found that 

homeostatic microglia can be divided into 2–3 clusters (Li 
et al., 2019a; Masuda et al., 2020). In adult mice, the pool 
of microglia did not demonstrate region-specific subclasses, 
which highlighted the homogeneity between the different 
brain regions, a finding that differed from previous bulk RNA-
sequencing studies (Keren-Shaul et al., 2017; Hammond et al., 
2019; Li et al., 2019a; Masuda et al., 2020). In addition, recent 
single-nucleus RNA-sequencing of striatal and cerebellar 
microglia from adult mice have revealed the epigenetic 
regulation of the clearance activity of cerebellar microglia 
(Masuda et al., 2019). The low sensitivity of single-nucleus 
RNA-sequencing for detecting gene activation means that it 
is not suitable for detecting microglial activation in human 
disease (Thrupp et al., 2020). However, these studies provided 
important new information about the gene transcription of 
resting microglia in mice. 

Table 1 ｜ Modulators of microglia mediated inflammation after SAH in preclinical and clinical study

Study number Modulators and function Study mode

TLR4/MyD88/NF-κB signal pathway in preclinical study
Wang et al., 2015 Baicalein/supressing of TLR4, Myd88 and NF-κB/neuroprotection in 24 and 72 h SAH rat model (BJ)
Zhou et al., 2015 Fisetin/suppressing TLR4/NF-κB/neuroprotection 24 and 72 h in SAH SAH rat model (BJ)
Lu et al., 2018 Peroxiredoxin 2 could interact with TLR on microglia in SAH/positively correlated with 

Hunt-Hess grades in patients/pro-inflammatory at 24 h after SAH
SAH cell model and SAH patients

Nishikawa et al., 2018b MCP (anti-galectin-3) could bind to TLR4 and activate ERK1/2, STAT-3 then have a 
neuroprotective effect 24 h post SAH

SAH mouse model (EVP)

Yin et al., 2018 Dexmedetomidine could suppress the activation of the TLR4/NF-κB pathway/
neuroprotection at 24 h post SAH

SAH rat model (EVP)

Gao et al., 2019 Curcumin/supressing of TLR4, Myd88 and NF-κB at 24 h post SAH/neuroprotection SAH mouse model (BJ)
Zhang et al., 2019 Astaxanthin could inhibit the TLR4 activation and increase sirtuin 1 levels/reduce pro-

inflammatory in EBI
SAH mouse and rat model (BJ)

JAK-STAT signal pathway in preclinical study
Osuka et al., 2006 SAH produced the cytokine IL-6, activated the JAK-STAT signaling pathway/pro-

inflammatory
SAH rat model (BJ)

Chen et al., 2009 rhEPO could activate AK2 and STAT3 in the basilar artery and neuroprotection at 5 d 
after SAH

SAH rabbit model (BJ)

An et al., 2018 AG490 inhibited JAK2/STAT3 phosphorylation and suppressed the expression and 
translocation of HMGB1 in EBI

SAH rat model (EVP)

Nishikawa et al., 2018b MCP (anti-galectin-3) could bind to TLR4 and activate ERK1/2, STAT-3 then have a 
neuroprotection effect 24 h post SAH

SAH mouse model (EVP)

Li et al., 2019b Melatonin attenuatesd EBI via the JAK1/STAT3 signaling pathway/neuroprotection 
effect at 24 h post SAH

SAH rat model (BJ)

HMGB1 signal pathway in preclinical study
Chang et al., 2014 Purpurogallin/inhibited HMGB1 and induced vasospasm SAH rat model (BJ)
Lee et al., 2014 Inflachromene can binding HMGB1& 2 inhibit microglial downregulates 

proinflammatory
Phenotypic screening

Chang et al., 2015 4′-O-β-D-glucosyl-5-O-methylvisamminol/inhibited HMGB1 and induced vasospasm SAH rat model (BJ)
Chang et al., 2016 Rhinacanthin-C/inhibited HMGB1 and induced brain apoptosis SAH rat model (BJ)
Haruma et al., 2016 mAb could suppress HMGB1 and microglia activation in EBI SAH rat model (BJ)
An et al., 2018 AG490 inhibited JAK2/STAT3 phosphorylation and suppressed the expression and 

translocation of HMGB1 in EBI
SAH rat model (EVP)

Others mediators in preclinical study
Huang et al., 2017 peli1/inhibited cytokines in microglia SAH mouse model (EVP)
Xie et al., 2017 Albumin/inhibited microglia action SAH rat model (EVP)
Li et al., 2018 TSG 6/promoted microglial M2 polarization and partially regulated the SOCS3/STAT3 

pathway
SAH rat model (EVP)

Modulators of neuro-inflammation in clinical study 
Munakata et al., 2009 Edaravone/free radical scavenger/91 patients (49/42)/1 center Treatment group outcome increase
Vergouwen et al., 2009 Simvastatin/32 patients (16/16)/1 center No significant difference between 

simvastatin group and placebo or low 
dose simvastatin group

Wong et al., 2015 Simvastatin/255 patients (131/124)/6 centers
Galea et al., 2018 IL-1Ra/Inhibited IL-1/136 patients (68 drug-treated/68 control)/3 centers Safe and well tolerated, no significant 

difference of outcome
Nishikawa et al., 2018a Galectin-3/plasma galectin-3 with a cutoff value of 3.30 or 3.48 ng/mL in EBI 

predicted poor outcome of SAH patients/83 patients/1 center
SAH patients (non-severe aneurysmal 
subarachnoid hemorrhage)

BJ: Blood injection; EBI: early brain injury; EVP: endovascular perforation; HMGB1: high mobility group box 1; IL-1: interleukin-1; IL-6: interleukin-6; IL-1Ra: 
interleukin-1 receptor antagonist; JAK-STAT: Janus kinase-signal transducer and signal transducer and activator of transcription; M2: phenotype 2 microglia; 
mAb: anti-HMGB1 monoclonal antibody; MCP: modified citrus pectin; rhEPO: recombinant human erythropoietin; SAH: subarachnoid hemorrhage; SOCS3: 
suppressor of cytokine signaling-3; TLR4/MyD88/NF-κB: Toll-like receptor 4/MyD88/nuclear factor-kappa B; TSG-6: tumor-specific glycoprotein-6.
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A small number of RNA-sequencing studies have examined 
microglia in healthy human brain tissue. In one study, four 
clusters of microglia were identified, which were named 
healthy human clusters one to four (HHu-C1 to HHu-C4) 
(Masuda et al., 2019). Detailed analyses of the differentially-
regulated genes revealed some similarities to the gene 
expression profiles seen in the mouse homeostatic microglia. 
For instance, CST3 was more highly expressed in HHu-C1 
and HHu-C2 than in HHu-C3 and HHu-C4; CST3 was more 
highly expressed in mouse microglia clusters C9 and C10. Ccl4 
mRNA was rarely expressed in the mouse resting microglia 
but increased in the activated microglia clusters (Masuda 
et al., 2019, 2020). In addition, P2RY13 mRNA was highly 
expressed in the HHu-C1 and HHu-C2 clusters; P2RY12 mRNA 
was highly expressed in the mouse resting microglia (Li et al., 
2019a; Masuda et al., 2019). These studies show that human 
homeostatic microglia have distinct gene expression patterns 
that partially overlap with those found for adult mouse 
microglia. There is therefore some degree of homogeneity 
between human and mouse microglia, thus suggesting the 
possibility of using a mouse model.

Different microglial transcriptional states have been found 
in diseases of the CNS. In the case of neurodegenerative 
diseases, a mouse model simulating multiple sclerosis 
(MS), with focal demyelination of the subcortical white 
matter through injection with lysolecithin (Hammond et al., 
2019), has enabled the identification of microglia that have 
suppressed expression of P2ry12 and Cx3cr1. These have 
been named injury-responsive microglia (IRM), and they 
have also been observed in other CNS injuries and diseases 
(Keren-Shaul et al., 2017; Saunders et al., 2018). Single-cell 
RNA-sequencing has also been carried out for 5 patients with 
histologically-confirmed early active MS to investigate the 
classification of the microglia (Masuda et al., 2019). Seven 
myeloid clusters were found (Hu-C2 to Hu-C8) that express 
microglial core genes, including three homeostatic microglia 
clusters and three activated microglia clusters (note that 
these have the same marker gene with demyelination (C12) 
and re-myelination (C13) in mice) (Masuda et al., 2019). 
Recent research has identified several transcriptional states 
in microglia that relate to different diseases. A subcluster of 
activated microglia has been found in an AD mouse model, 
called the disease associated microglia (DAM) (Keren-Shaul 
et al., 2017) specialized axon tract-associated microglia (ATM) 
have been observed in the developing mouse brain (Hammond 
et al., 2019) and IRM have been observed in an animal model 
induced by lipopolysaccharide which usually used to causes 
MS lesion (Hammond et al., 2019). DAM, ATM, and IRM all 
share a common transcriptional signature of 12 core genes, 
including Spp1, Lpl, and Apoe, but they also have differential 
gene expression (Hammond et al., 2019). These studies 
show the transcriptional heterogeneity of microglia from the 
resting state to the active state, and the diversity of microglial 
responses to diseases of the CNS. The fact that some of the 
clusters identified for different CNS diseases expressed some 
of the same genes indicates that they may be functional 
genes that are involved in the pathophysiological mechanisms 
underlying CNS diseases. Further work is needed to explore 
the exact functions of these genes and the specific clusters 
found. It remains to be determined how the expression of 
these genes affects the clinical symptoms, and more work is 
needed to further unravel the underlying genes and signaling 
pathways.

The identification of transcriptional signatures can lead to an 
improved understanding of the role of microglia in the resting 
and disease states. Because microglia can respond in diverse 
ways to CNS diseases, the activation of microglia following 
SAH could lead to different transcriptional characteristics. 
In some clinical studies, it has been found that APOE gene 
polymorphism relates to the prognosis of SAH, and a high 

level of a CCL3 genotype has been observed in aneurysmal 
SAH (Kay et al., 2003; Aoki et al., 2019). Further studies are 
needed to clarify the gene expression of microglia in SAH. At 
present, endovascular treatment is used for most ruptured 
cerebral aneurysms, which may account for the fact that there 
are no single-cell data for microglia in the pathophysiological 
processes following SAH in humans or even in animals. The 
single-cell analysis of microglia following SAH could provide 
a key to understanding SAH-related pathologies and could 
lead to the development of effective SAH treatments in future 
translational research (Coulibaly and Provencio, 2020).

Studies of Microglial Activation in Subarachnoid 
Hemorrhage 
Microglial polarization is thought to occur in SAH and other 
CNS diseases. In animal studies of spinal cord injury, activated 
microglia in the early stages have been found to exhibit 
mainly the M1 phenotype (Kigerl et al., 2009; Kroner et al., 
2014). In studies using experimental models of Traumatic 
brain injury (TBI) and ischemic stroke, M2-to-M1 phenotype 
shifts have been observed (Wang et al., 2013; Kumar et al., 
2016; Perego et al., 2016). Recent studies of SAH in mice and 
rats have found dynamic changes in microglial polarization 
from the M1 to the M2 phenotype, along with morphological 
transformation from the ramified to the amoeboid shape (Li 
et al., 2018; Peng et al., 2019; Zheng et al., 2020). In these 
latter studies, the microglia mainly appeared as ramified (M1 
phenotype) on days 1–3 following SAH; in the delayed phase, 
there were bipolar microglia that expressed both M1 and 
M2 markers and had a spindle shape; then on days 5–10, the 
morphology of the microglia transformed to an amoeboid 
shape, with high expression of CD206 and a M2 phenotype, 
reflecting an activated status (Zheng et al., 2020). Bipolar-
shaped microglia have also been observed in an animal 
model of epilepsy (Benson et al., 2015). It is relevant to note 
that these animal experiments are of great importance to 
SAH research; they represent the most widely used method 
in SAH neuroinflammation research and are important for 
understanding the pathophysiological processes involved in 
SAH microglial activation. Most previous studies have focused 
on cellular functions in the EBI stage following SAH or the 
delayed effects on cognition; in this article, we mainly focus 
on the EBI stage following SAH (Coulibaly and Provencio, 
2020).

Previous reports have shown microglial activation in the brain 
tissue of SAH patients (Lu et al., 2018). Peroxiredoxin 2 (Prx2) 
is known to activate microglia and has been found in the CSF 
of patients with SAH; the level of Prx2 in these patients has 
been found to positively correlate with their neurological 
status (Lu et al., 2018). Patients with SAH have also been 
found to have higher microglial heme oxygenase 1 (HO-1) 
activity in the CSF (Schallner et al., 2015). Following SAH, 
microglia have been found to exhibit an activated phenotype 
with a macrophage-like morphology, high levels of CD45 
and major histocompatibility complex (MHC) class II, and 
decreased levels of CX3CL1 and CX3CR1 (Chen et al., 2020). 
These changes have also been found for microglial activation 
in the brain tissue of rats (Chen et al., 2020). 

Gene co-expression in the microglia of humans and mice 
represents a promising area for future translational research 
on SAH. Specifically, clusters that share the same gene 
expression may lead to new therapeutic developments. 
However, the differences between human and mouse 
microglia need to be further evaluated for this work to 
advance. It would also be of benefit to carry out further 
immunohistochemical studies using animal models of SAH 
and to obtain biomarker information relating to microglia-
mediated inflammation in SAH patients. In addition, it will be 
important to further investigate changes in the function and 
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transcriptional heterogeneity of microglia subclusters, as this 
has the potential to guide the development of modulators of 
microglial activation, as well as anti-inflammatory drugs for 
patients with SAH. Finally, because the specific mechanisms 
and functions of microglial activation are not completely 
understood, further research is urgently needed to decipher 
the underlying patterns and pathways.

Modulators of Microglial Activation and 
Polarization in Subarachnoid Hemorrhage
The microglia-mediated neuroinflammation that follows SAH 
involves signaling pathways and transcription factors that 
are not well mapped out. It is important to determine how 
various factors can affect microglial activation and early brain 
injury in order to develop effective treatments for SAH. In this 
section, we summarize the modulators of signaling pathways 
that are involved in microglial activation (Table 1).

Modulators of the Toll-like receptor signaling pathway 
Modulators of the Toll-like receptor (TLR) is a key component 
of the innate immune system and is widely expressed in the 
CNS, being found in microglia, neurons, astrocytes, smooth 
muscle cells of the cerebral arteries, and peripheral blood 
cells (Buchanan et al., 2010). Within the TLR family, TLR4 
is unique because it can signal through both the myeloid 
differentiation primary response 88 protein (MyD88) and 
the TRIF pathways. This enables it to coordinate the maximal 
inflammatory response in SAH (O’Neill and Bowie, 2007). It 
has been found that TLR4 expression increases in response to 
SAH in EBI. In addition, the TLR4/nuclear factor-kappaB (NF-κB) 
signaling pathway has been identified as playing a major role 
in the microglial activation and neuroinflammation seen in EBI 
(Liu et al., 2018; Lu et al., 2018). In one study, TLR4 knockout 
mice with a cisternal blood injection were used as a model 
of SAH. It was found that during EBI, neuronal apoptosis 
occurred that was mainly caused by the TLR4-MyD88 and 
TLR4-TRIF signaling pathways (Hanafy, 2013). In another study, 
Zhang et al. (2019) also used a rodent model of SAH through 
prechiasmatic cistern injection. They found that treatment 
with astaxanthin significantly inhibited the activation of 
TLR4, increased the expression of sirtuin 1, and inhibited the 
inflammatory response. Astaxanthin was found to reduce 
neuronal death, but it did not improve neurological function 
in the TLR4 knockout mice. In a study on patients with SAH, Lu 
et al. (2018) found that the levels of peroxiredoxin 2 positively 
correlated with the Hunt-Hess grades, which might have 
been due to microglial activation via the TLR4/MyD88/NF-κB 
signaling pathway. In a rat model of SAH, dexmedetomidine 
was also found to reduce the neutrophil infiltration, microglial 
activation, pro-inflammatory factor release, and cell apoptosis 
(at 24 hours after SAH) by suppressing the TLR4/NF-κB 
pathway and the NLRP3 inflammasome (Yin et al., 2018). 
Other potential modulators of neuroinflammation via the 
TLR4/NF-κB signaling pathway include Fisetin (a natural, 
neuroprotective flavonoid) (Zhou et al., 2015), Curcumin (a 
natural phytochemical compound, which is anti-inflammatory 
and can induce the transformation of microglial phenotypes)
(Gao et al., 2019), and Baicalein (a neuroprotective flavonoid) 
(Wang et al., 2015). However, at present there are no clinical 
data available relating to their use in SAH. 

Modulators of the Janus kinase-signal transducer and signal 
transducer and activator of transcription
The Janus kinase-signal transducer and signal transducer and 
activator of transcription (JAK-STAT) is an important signaling 
pathway. It responds to cytokines and transfers signals from 
the cell surface to the nucleus. Type I and type II interferons 
can activate the JAK-STAT signaling pathway and thus regulate 
cellular proliferation, apoptosis, and inflammation (Kim et al., 
2002; Arimoto et al., 2017). The JAK/STAT3 signaling pathway 

is widely expressed throughout the entire brain. Samraj 
et al. (2014) found that unphosphorylated STAT3 directly 
binds to DNA and affects the genes that are involved in the 
neuroinflammation and delayed cerebral ischemia (DCI) seen 
in SAH. Using a rat model of SAH, it has been shown that 
IL-6 is produced in the CSF within two hours following SAH; 
this activates the JAK-STAT signaling pathway in the basilar 
artery one to two days following SAH (Osuka et al., 2006). It 
has also been found that the JAK/STAT3 pathway is activated 
and upregulated within 24 hours following SAH, leading 
to increased expression of pro-inflammatory cytokines. 
Persistent activation of STAT3 leads to the production of 
suppressor of cytokine signaling-3 (SOCS3), a feedback 
inhibitor that limits the excessive release of cytokines. An 
in vitro study using SOCS3-deficient mice found that STAT3 
activation and proinflammatory cytokine signaling led to 
microglial polarization to the M1 phenotype. This was 
associated with increased expression of iNOS, IL-1β, IL-12 p40, 
IL-23 p9, IL-6, CC-motif chemokine 2 (CCL2), and CXCL10 (Qin 
et al., 2012). In another study, it was found that recombinant 
human erythropoietin activated the JAK2/STAT3 pathway 
in the basilar artery and decreased the apoptosis index of 
endothelial cells following SAH (Chen et al., 2009). A study by 
Li et al. (2019b) also found that melatonin activated the JAK1/
STAT3 signaling pathway, improved neurological function, and 
reduced neuronal apoptosis and brain edema in EBI following 
SAH. It has been found that AG490 significantly inhibits JAK2/
STAT3 phosphorylation; it also suppresses the expression 
and translocation of High mobility group box 1 (HMGB1) and 
reduces cortical apoptosis, brain edema, and neurological 
deficits in SAH animal model (An et al., 2018). It will be 
important to further investigate the interactions between 
these modulators and the JAK/STAT proteins in SAH.

It has been shown that the plasma matricellular protein 
galectin-3 increases after aneurysmal SAH, but the exact 
function of this protein is still unclear (Jayakumar et al., 
2017). In a clinical setting, higher plasma galectin-3 levels 
at admission have been found to correlate significantly with 
more severe SAH, as well as poorer outcomes at 6 months 
(Liu et al., 2016). In these patients with aneurysmal SAH, 
higher plasma galectin-3 from day 1 to day 3 was seen to 
relate to DCI but not to vasospasm (Nishikawa et al., 2018a). 
Galectin-3 is widely expressed in microglia, astrocytes, 
and oligodendrocytes, and it controls the progression and 
resolution of CNS inflammation (Pasquini et al., 2011). 
There is evidence that Galectin-3 is expressed by active 
microglia interacting with pro-inflammatory stimuli and that 
it participates in brain immune responses (Yip et al., 2017; 
Nishikawa and Suzuki, 2018; Venkatraman et al., 2018). 
Galectin-3 has also been found to participate in post-ischemic 
repair involving angiogenesis and the migration of microglia; 
there is evidence that this occurs through integrin-linked 
kinase signaling pathways (Wesley et al., 2013). Nishikawa 
et al. (2018b) found that modified citrus pectin, a galectin-3 
inhibitor, could prevent disruption to the blood-brain barrier 
following SAH. This was found to involve modified citrus 
pectin binding to TLR4 and activating ERK1/2, STAT-3, and 
MMP-9, and thus provided protection against EBI following 
SAH. This neuroprotective effect is promising and should be 
studied further. In another study, Jeon et al. (2010) found that 
galectin-3 mediates neuroinflammation by activating the JAK/
STAT and NF-κB pathways. Such signaling pathways, specifically 
JAK/STAT and TLR4, are enriched in various brain cells. In the 
future, knockout animals with an inactivated microglia-specific 
gene, such as the microglia-specific STAT3 knockout mice, 
could be used to clarify the connection between microglial 
signaling pathways and the neuroinflammation that occurs 
following SAH.

Modulators of HMGB1 and other mediators of inflammation 
High mobility group protein B1 (HMG1) is a DNA-binding 
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protein that regulates gene transcription (Kim et al., 2006; 
Lee et al., 2014). HMG1 also has proinflammatory functions, 
which can be downregulated using inflachromene. This anti-
inflammatory agent has been found to suppress microglia-
mediated neuroinflammation, as shown in a study by Lee et 
al. (2014), which might provide neuroprotection against EBI. It 
has been found that anti-HMGB1 antibodies can significantly 
downregulate the expression of TLR4, IL-6, tumor necrosis 
factor-α, and iNOS, and reverse basilar artery vasospasm 
(Haruma et al., 2016). Modulators of HMGB1 have also been 
identified that downregulate M1-related cytokines in an 
animal model of SAH. These modulators include glycyrrhizin 
and glycyrrhizin acid, rhinacanthin-C, purpurogallin, and 
4′-O-β-D-glucosyl-5-O-methylvisamminol (Sun et al., 2013; 
Chang and Lin, 2014; Chang et al., 2015, 2016; Li et al., 2017; 
Ieong et al., 2018). It is possible that the beneficial effects 
of these modulators may result from the attenuation of 
microglial activation and the inhibition of TLR4. Mediators of 
microglial changes have also been studied, such as albumin, 
which suppresses microglial activation, resulting in reduced 
Iba-1 and CD68 staining in the cortex one day after SAH (Xie 
et al., 2017); peli1, an E3 ubiquitin ligase, which mediates the 
induction of proinflammatory cytokines in microglia via the 
mitogen-activated protein kinase signaling pathway (Huang et 
al., 2017) and tumor-specific glycoprotein-6, which transforms 
the SAH-driven M1 polarization to a skewed M2 polarization (Li 
et al., 2018).

Modulators of inflammation in clinical studies of SAH
Anti-inflammatory drugs have recently been proposed for 
treating stroke and neurological diseases. There have already 
been some encouraging results from clinical trials on patients 
with ischemic stroke (Zhu et al., 2015; Tian et al., 2018) and 
intracerebral hemorrhage (Fu et al., 2014). In these studies, 
fingolimod and alteplase were used, the former having 
been previously tested for the treatment of MS. In the case 
of aneurysmal SAH, interleukin-1 receptor antagonist (IL-
1Ra) has been tested in a randomized, open-label, single-
blinded study conducted by Galea et al. (2018). In this study, 
patients were administered 100 mg IL-1Ra subcutaneously 
twice daily, starting within three days following aneurysmal 
SAH and ending after 21 days or upon discharge. It was found 
that subcutaneous IL-1Ra was safe and well tolerated by 
the patients; recovery was assessed at 6 months using the 
Glasgow Outcome Scale Extended and was found to be better 
in the experimental group, although this was not statistically 
significant. A phase III study of IL-1Ra for the treatment of 
aneurysmal SAH is now planned. In another study, edaravone, 
a free radical scavenger, was used to treat aneurysmal SAH. 
The results were promising, showing a trend toward a reduced 
incidence of delayed ischemic neurological deficit and fewer 
poor outcomes caused by cerebral vasospasm (Munakata et 
al., 2009). A further study also assessed the use of simvastatin 
for the treatment of aneurysmal SAH, although this was not 
found to be beneficial (Vergouwen et al., 2009; Wong et al., 
2015).

It is relevant to note that markers of inflammation have not 
always been found to relate to the clinical outcomes. For 
instance, Rasmussen et al. (2019) found that plasma levels of 
interleukin-6, vascular cell adhesion molecule-1, intercellular 
adhesion molecule-1, interleukin-8, interleukin-10, interferon 
gamma, and tumor necrosis factor alpha were not associated 
with DCI, angiographic vasospasm, or clinical outcome at three 
months. In another study, Gris et al. (2019) found that IL-6 
levels in patients increased following SAH, similar to the SAH 
mouse model; however, in this study, high levels of Flt-1 and 
VEGF at admission were associated with poorer outcomes.

It can be seen that studies on the use of anti-inflammatory 
agents for SAH are l imited. In experimental studies, 
some agents have been found to be effective, but clinical 

translational studies are needed to assess their therapeutic 
benefits. An improved understanding of the microglial 
activation and neuroinflammation in SAH will enable new 
targets and modulators to be explored. It will also be relevant 
to assess the use of modulators of TLR, JAK-STAT3, and 
HMGB1, as well as fingolimod, for treating SAH in patients.

Conclusion
Microglial activation and polarization are now recognized to 
play an important role in the pathophysiological processes 
that follow SAH. Recent single-cell analysis studies have 
indicated that potential interventions could target the 
microglia-mediated neuroinflammation in SAH. However, it 
is important to further analyze microglial subclusters in SAH 
using single-cell technology in order to better understand the 
evolution and roles of homeostatic and activated microglia in 
SAH. It will be necessary to carry out further research using 
animal models of SAH to identify potential pharmacological 
modulators of microglial activation that are both effective 
and safe. Subsequently, translational research will be needed 
to assess the clinical benefits of these modulators in patients 
with SAH. 
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