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Abstract: In recent years, ontologies have become a
mainstream topic in biomedical research. When biological
entities are described using a common schema, such as an
ontology, they can be compared by means of their
annotations. This type of comparison is called semantic
similarity, since it assesses the degree of relatedness
between two entities by the similarity in meaning of their
annotations. The application of semantic similarity to
biomedical ontologies is recent; nevertheless, several
studies have been published in the last few years
describing and evaluating diverse approaches. Semantic
similarity has become a valuable tool for validating the
results drawn from biomedical studies such as gene
clustering, gene expression data analysis, prediction and
validation of molecular interactions, and disease gene
prioritization. We review semantic similarity measures
applied to biomedical ontologies and propose their
classification according to the strategies they employ:
node-based versus edge-based and pairwise versus
groupwise. We also present comparative assessment
studies and discuss the implications of their results. We
survey the existing implementations of semantic similarity
measures, and we describe examples of applications to
biomedical research. This will clarify how biomedical
researchers can benefit from semantic similarity measures
and help them choose the approach most suitable for
their studies. Biomedical ontologies are evolving toward
increased coverage, formality, and integration, and their
use for annotation is increasingly becoming a focus of
both effort by biomedical experts and application of
automated annotation procedures to create corpora of
higher quality and completeness than are currently
available. Given that semantic similarity measures are
directly dependent on these evolutions, we can expect to
see them gaining more relevance and even becoming as
essential as sequence similarity is today in biomedical
research.

Introduction

Comparison and classification have been central pillars of

biology since Linnaeus proposed his taxonomy and Darwin

observed the mockingbirds on the Galapagos Islands. Like most

scientific knowledge, biological laws and models are derived from

comparing entities (such as genes, cells, organisms, populations,

species) and finding their similarities and differences. However,

biology is unlike other sciences in that its knowledge can seldom be

reduced to mathematical form. Thus, biologists either record their

knowledge in natural language—for example, in scientific

publications—or they must seek other forms of representation to

organize it, such as classification schemes. When new entities arise,

biologists approach them by comparing them to known entities

and making inferences according to their degree of similarity.

Comparing entities is not always trivial. For instance, while the

sequences or structures of two gene products can be compared

directly (through alignment algorithms), the same is not true of

their functional aspects. The difference is that sequences and

structures have an objective representation and measurable

properties, whereas functional aspects have neither. This does

not mean that it is impossible to compare functional aspects, but

that to be compared they must be expressed in a common and

objective form.

The advent of automated sequencing has had deep repercus-

sions on knowledge representation in biology. As experimental

methods shift in scope from the gene level to the genomic level,

computational analysis is proving essential in handling the

increasing amount of data. Thus it has become crucial to adopt

common and objective knowledge representations to help

knowledge sharing and computer reasoning. This need led to

the development of ontologies for goals such as annotating gene

products (Gene Ontology), annotating sequences (Sequence

Ontology), and annotating experimental assays (Microarray and

Gene Expression Data Ontology).

The adoption of ontologies for annotation provides a means to

compare entities on aspects that would otherwise not be

comparable. For instance, if two gene products are annotated

within the same schema, we can compare them by comparing the

terms with which they are annotated. While this comparison is

often done implicitly (for instance, by finding the common terms in

a set of interacting gene products), it is possible to do an explicit

comparison with semantic similarity measures. Within the context

of this article, we define a semantic similarity measure as a

function that, given two ontology terms or two sets of terms

annotating two entities, returns a numerical value reflecting the

closeness in meaning between them.

The Gene Ontology (GO) [1] is the main focus of investigation

of semantic similarity in molecular biology, not only because it is

the ontology most widely adopted by the life sciences community,

but also because comparing gene products at the functional level is

crucial for a variety of applications. Semantic similarity applied to

the GO annotations of gene products provides a measure of their

functional similarity. From this point forward, we will use the term
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‘‘functional similarity’’ when referring to the similarity between

two gene products given by the semantic similarity between the

sets of GO terms with which they are annotated. As such, the

semantic similarity measures and the studies reviewed in this

article are presented in the context of GO, notwithstanding the

fact that they are applicable to other biological ontologies.

GO provides a schema for representing gene product function

in the cellular context. Figure 1 shows how GO is structured as

three independent directed acyclic graphs (DAGs) that correspond

to orthogonal categories of gene product function: molecular function,

biological process, and cellular component. The nodes in the graph

represent terms that describe components of gene product

function. GO links the terms to each other by relationships, most

commonly of the types ‘is a’ and ‘part of’, the former expressing a

simple class–subclass relationship and the latter expressing a part–

whole relationship. Gene products that are described by GO terms

are said to be annotated with them, either directly or through

inheritance, since annotation to a given term implies annotation to

all of its ancestors (true path rule). The Gene Ontology Consortium is

responsible for developing and maintaining GO terms, their

relationships, and their annotations to genes and gene products of

the collaborating databases. Moreover, GO Consortium is also

responsible for developing tools that support the creation,

maintenance, and use of all this information.

Classification of Semantic Similarity Measures

Several approaches are available to quantify semantic similarity

between terms or annotated entities in an ontology represented as

a DAG such as GO. This article distinguishes these approaches in

the following way:

Scope: Which entities they intend to compare, that is, GO terms

versus gene products;

Data source: Which components of the ontology they use, i.e.,

edges versus nodes;

Metric: How they quantify and combine the information stored

on those components.

Comparing Terms
There are essentially two types of approaches for comparing

terms in a graph-structured ontology such as GO: edge-based,

which use the edges and their types as the data source; and node-

based, in which the main data sources are the nodes and their

properties. We summarize the different techniques employed in

these approaches in Figure 2 and describe them in the following

sections. Note that there are other approaches for comparing

terms that do not use semantic similarity—for example, systems

that select a group of terms that best summarize or classify a given

subject based on the discrete mathematics of finite partially

ordered sets [2].
Edge-based. Edge-based approaches are based mainly on

counting the number of edges in the graph path between two

terms [3]. The most common technique, distance, selects either the

shortest path or the average of all paths, when more than one path

exists. This technique yields a measure of the distance between two

terms, which can be easily converted into a similarity measure.

Alternatively, the common path technique calculates the similarity

directly by the length of the path from the lowest common

ancestor of the two terms to the root node [4].

While these approaches are intuitive, they are based on two

assumptions that are seldom true in biological ontologies: (1) nodes

and edges are uniformly distributed [5], and (2) edges at the same

Figure 1. Section of the GO graph showing the three aspects (molecular function, biological process, and cellular component) and some
of their descendant terms. The fact that GO is a DAG rather than a tree is illustrated by the term ‘‘transcription factor activity’’ which has two
parents. An example of a part of relationship is also shown between the terms cell part and cell.
doi:10.1371/journal.pcbi.1000443.g001
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level in the ontology correspond to the same semantic distance

between terms. Several strategies have been proposed to attenuate

these issues, such as weighting edges differently according to their

hierarchical depth, or using node density and type of link [6].

However, terms at the same depth do not necessarily have the

same specificity, and edges at the same level do not necessarily

represent the same semantic distance, so the issues caused by the

aforementioned assumptions are not solved by those strategies.

Node-based. Node-based approaches rely on comparing the

properties of the terms involved, which can be related to the terms

themselves, their ancestors, or their descendants. One concept

commonly used in these approaches is information content (IC),

which gives a measure how specific and informative a term is. The

IC of a term c can be quantified as the negative log likelihood,

{log p cð Þ

where p(c) is the probability of occurrence of c in a specific corpus

(such as the UniProt Knowledgebase), being normally estimated

by its frequency of annotation. Alternatively, the IC can also be

calculated from the number of children a term has in the GO

structure [7], although this approach is less commonly used.

The concept of IC can be applied to the common ancestors two

terms have, to quantify the information they share and thus

measure their semantic similarity. There are two main approaches

for doing this: the most informative common ancestor (MICA

technique), in which only the common ancestor with the highest

IC is considered [8]; and the disjoint common ancestors (DCA

technique), in which all disjoint common ancestors (the common

ancestors that do not subsume any other common ancestor) are

considered [9].

Approaches based on IC are less sensitive to the issues of

variable semantic distance and variable node density than edge-

based measures [8], because the IC gives a measure of a term’s

specificity that is independent of its depth in the ontology (the IC

of a term is dependent on its children but not on its parents).

However, the IC is biased by current trends in biomedical

research, because terms related to areas of scientific interest are

expected to be more frequently annotated than other terms.

Nevertheless, the use of the IC still makes sense from a

probabilistic point of view: it is more probable (and less

meaningful) that two gene products share a commonly used term

than an uncommonly used term, regardless of whether that term is

common because it is generic or because it is related to a hot

research topic.

Other node-based approaches include looking at the number of

shared annotations, that is, the number of gene products

annotated with both terms [10]; computing the number of shared

ancestors across the GO structure; and using other types of

information such as node depth and node link density (i.e., node

degree) [11].

Comparing Gene Products
Gene products can be annotated with several GO terms within

each of the three GO categories. Gene product function is often

described by several molecular function terms, and gene products

often participate in multiple biological processes and are located in

various cellular components. Thus, to assess the functional similarity

Figure 2. Main approaches for comparing terms: node-based and edge-based and the techniques used by each approach. DCA, disjoint
common ancestors; IC, information content; MICA, most informative common ancestor.
doi:10.1371/journal.pcbi.1000443.g002
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between gene products (within a particular GO category) it is

necessary to compare sets of terms rather than single terms.

Several strategies have been proposed for this, which we have

divided into two categories: pairwise and groupwise approaches, as

shown in Figure 3.

Pairwise. Pairwise approaches measure functional similarity

between two gene products by combining the semantic similarities

between their terms. Each gene product is represented by its set of

direct annotations, and semantic similarity is calculated between

terms in one set and terms in the other (using one of the approaches

described previously for comparing terms). Some approaches

consider every pairwise combination of terms from the two sets

(all pairs technique), while others consider only the best-matching

pair for each term (best pairs technique). A global functional similarity

score between the gene products is obtained by combining these

pairwise semantic similarities, with the most common combination

approaches being the average, the maximum, and the sum.

Groupwise. Groupwise approaches do not rely on combining

similarities between individual terms to calculate gene product

similarity, but calculate it directly by one of three approaches: set,

graph, or vector.

In set approaches only direct annotations are considered and

functional similarity is calculated using set similarity techniques.

In graph approaches gene products are represented as the

subgraphs of GO corresponding to all their annotations (direct and

inherited). Functional similarity can be calculated either using

graph matching techniques or, because these are computationally

intensive, by considering the subgraphs as sets of terms and

applying set similarity techniques.

In vector approaches a gene product is represented in vector

space, with each term corresponding to a dimension, and

functional similarity is calculated using vector similarity measures.

Vectors can be binary, with each dimension denoting presence or

absence of the term in the set of annotations of a given gene

product, or scalar, with each dimension representing a given

property of the term (for example, its IC).

Survey of Semantic Similarity Measures

Since the first application of semantic similarity in biology, by

Lord et al. [12], several semantic similarity measures have been

developed for use with GO, as shown in Table 1. The following

sections present a survey of semantic similarity measures proposed

within the context of GO.

Measures for Terms
Node-based. The most common semantic similarity measures

used with GO have been Resnik’s, Lin’s, and Jiang and Conrath’s,

which are node-based measures relying on IC [8,13,14]. They were

originally developed for the WordNet, and then applied to GO

[12,15]. Resnik measures similarity between two terms as simply the

IC of their most informative common ancestor (MICA):

simRes c1,c2ð Þ~IC cMICAð Þ ð1Þ

While this measure is effective in determining the information

shared by two terms, it does not consider how distant the terms are

Figure 3. Main approaches for comparing gene products: pairwise and groupwise and the techniques used by each approach.
doi:10.1371/journal.pcbi.1000443.g003

Table 1. Summary of term measures, their approaches, and
their techniques.

Measure Approach Techniques

Resnik [8] Node-based MICA

Lin [13] Node-based MICA

Jiang and Conrath [14] Node-based MICA

GraSM [9] Node-based DCA

Schlicker et al. [16] Node-based MICA

Wu et al. [22] Edge-based Shared path

Wu et al. [23] Edge-based Shared path; distance

Bodenreider et al. [17] Node-based Shared annotations

Othman et al. [11] Hybrid IC/depth/number of
children; distance

Wang et al. [25] Hybrid Shared ancestors

Riensche et al. [18] Node-based IC/MICA; shared
annotations

Yu et al. [20] Edge-based Shared path

Cheng et al. [21] Edge-based Shared path

Pozo et al. [24] Edge-based Shared path

doi:10.1371/journal.pcbi.1000443.t001
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from their common ancestor. To take that distance into account,

Lin’s and Jiang and Conrath’s measures relate the IC of the MICA

to the IC of the terms being compared:

simLin c1,c2ð Þ~ 2|IC cMICAð Þ
IC c1ð ÞzIC c2ð Þ

ð2Þ

simJC c1,c2ð Þ~1{IC c1ð ÞzIC c2ð Þ{2|IC cMICAð Þ ð3Þ

However, being relative measures, simLin and simJC are

displaced from the graph. This means that these measures are

proportional to the IC differences between the terms and their

common ancestor, independently of the absolute IC of the

ancestor.

To overcome this limitation, Schlicker et al. [16] have proposed

the relevance similarity measure, which is based on Lin’s measure,

but uses the probability of annotation of the MICA as a weighting

factor to provide graph placement.

simRel c1,c2ð Þ~simLin c1,c2ð Þ| 1{p cAð Þð Þ ð4Þ

A constraint all of these measures share is that they look only at

a single common ancestor (the MICA) despite the fact that GO

terms can have several DCA. To avoid this, Couto et al. [9]

proposed the GraSM approach, which can be applied to any of

the measures previously described, and where the IC of the MICA

is replaced by the average IC of all DCA.

Bodenreider et al. [17] developed a node-based measure that

also uses annotation data but does not rely on information theory.

It represents each GO term as a vector of all gene products

annotated with it, and measures similarity between two terms by

computing the scalar product of their vectors.

Riensche et al. used coannotation data to map terms between

different GO categories and calculate a weighting factor, which

can then be applied to a standard node-based semantic similarity

measure [18].

Edge-based. Within the edge-based approaches, Pekar and

Staab proposed a measure based on the length of the longest path

between two terms’ lowest common ancestor and the root

(maximum common ancestor depth), and on the length of the

longest path between each of the terms and that common ancestor

[19]. It is given by the expression

simPS c1,c2ð Þ~ d ca,rootð Þ
d ca,rootð Þzd c1,cað Þzd c2,cað Þ ð5Þ

where d(c1,c2) is the length in number of edges of the longest

distance between term c1 and term c2. This measure was first

applied to GO by Yu et al. [20].

Cheng et al. also proposed a maximum common ancestor depth

measure, but weighted each edge to reflect depth [21]. Wu et al.

proposed a nonweighted maximum common ancestor depth

measure [22]. An adjustment of this measure was proposed by Wu

et al., introducing the distance to the nearest leaf node and the

distance to the lowest common ancestor to take term specificity

into account [23].

A distinct approach was proposed by Pozo et al. [24], where a

‘‘Functional Tree’’ for molecular function terms is first derived from

their co-occurrence in the same set of Interpro entries, and

semantic similarity between two terms is calculated from the

height of their lowest common ancestor in this ‘‘Functional Tree’’

rather than in the GO graph. With this approach, the authors

intend to reveal natural biological links between the terms.

Hybrid. Wang et al. [25] developed a hybrid measure in

which each edge is given a weight according to the type of

relationship. For a given term c1 and its ancestor ca, the authors

define the semantic contribution of ca to c1, as the product of all

edge weights in the ‘‘best’’ path from ca to c1, where the ‘‘best’’

path is the one that maximizes the product. Semantic similarity

between two terms is then calculated by summing the semantic

contributions of all common ancestors to each of the terms and

dividing by the total semantic contribution of each term’s

ancestors to that term. Othman et al. proposed a hybrid

distance measure in which each edge is weighted by node depth,

node link density, and difference in IC between the nodes linked

by that edge [11].

Measures for Gene Products
Several measures for calculating the functional similarity

between gene products have also been developed, as shown in

Tables 2 and 3.

Pairwise. The most common methods of measuring gene

product functional similarity have been pairwise approaches based

on node-based term measures, namely, Resnik’s, Lin’s, and Jiang

and Conrath’s. Lord et al. were the first to apply these measures,

using the average of all pairwise similarities as the combination

strategy [12]; Sevilla et al. applied them using the maximum of the

pairwise similarities instead [26]; while Couto et al. and Azuaje et

al. opted for a composite average in which only the best-matching

term pairs are considered (best-match average) [9,27]. Schlicker et

al. all proposed a variation of the best-match average, by

combining semantic similarities for both molecular function and

biological process aspects of GO [16]; while Tao et al. used a

threshold of minimum similarity for selecting best-matching term

pairs, and considered only reciprocal pairs to reduce the noise

[28]. Riensche et al. also employed the maximum combination

strategy, but introduced a variation to allow comparison of terms

from different aspects of GO (see node-based term measures) [18].

Pairwise approaches have also been applied to edge-based

measures: Wang et al. and Pozo et al. used a best-match average

combination strategy with their measures [24,25], and Lei et al.

Table 2. Summary of pairwise approaches.

Measure Approach Techniques Term Comparison

Lord et al. [12] All pairs Average Resnik/Lin/Jiang

Sevillla et al. [26] All pairs Maximum Resnik/Lin/Jiang

Riensche et al. [18] (XOA) All pairs Maximum XOA

Azuaje et al. [27] Best pairs Average Resnik/Lin/Jiang

Couto et al. [9] Best pairs Average GraSM+(Resnik/Lin/
Jiang)

Schlicker et al. [16] (funSim) Best pairs Average simRel

Wang et al. [25] Best pairs Average Wang

Tao et al. [61] (ITSS) Best pairs Average
Min. threshold

Lin

Pozo et al. [24] Best pairs Average Pozo

Lei et al. [29] All pairs
Best pairsa

Average
Max, Sum

Depth of LCA

aLei et. al also consider exact matches only.
doi:10.1371/journal.pcbi.1000443.t002
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tested a number of different combination approaches, including

the average, maximum, and sum for all pairs, best pairs, and only

exact matches [29].

Of the several combination strategies employed in pairwise

measures, the best-match average variants are the best overall.

The maximum approach can answer the question of whether two

gene products share a functional aspect, but is unsuitable to assess

their global similarity, as it is indifferent to the number of

functional aspects they share and to the number of functional

aspects in which they differ. For instance, a gene product A with

terms t1 and t2 will be considered 100% similar to a gene product

B with terms t1 and t3 under the maximum approach, which

obviously does not reflect the differences between the gene

products. As for the average approach, because it makes an all-

against-all comparison of the terms of two gene products, it will

produce counterintuitive results for gene products that have

several distinct functional aspects. For instance, two gene products,

A and B, that share the same two unrelated terms, t1 and t2, will be

50% similar under the average approach, because similarity will

be calculated between both the matching and the opposite terms

of the two gene products. The best-match average approach

provides a good balance between the maximum and average

approaches by considering all terms but only the most significant

matching.

Groupwise. Purely set-based approaches are not common,

because few measures consider only direct annotations, but many

graph-based approaches use set similarity techniques to simplify

the problem of graph matching. The first graph-based measure to

be applied to GO was that of Lee et al. [30], in which the

similarity between gene products is defined by the number of

terms they share (term overlap [TO]). More recently, Mistry et al.

[31] proposed a normalized version of Lee’s measure (NTO), in

which the number of overlapping terms is divided by the

annotation set size for the gene with the lower number of

annotations. GOToolBox also implements some set similarity

techniques applied to GO graphs, namely Czekanowski-Dice and

Jaccard [32]. Gentleman’s simLP and simUI measures were also

among the first graph-based measures to be applied to GO [33]:

simLP extends the maximum common ancestor depth concept to

gene products, so two gene products are as similar as the depth of

the term that is the lowest common ancestor to all the terms’ direct

annotations; whereas simUI considers gene products as the set of

terms in their annotation subgraphs, and uses the Jaccard index to

calculate the similarity between them:

J(A,B)~
jA\Bj
jA|Bj ð6Þ

Based also on the Jaccard index, Pesquita et al. have proposed

the simGIC measure, in which each GO term is weighted by its IC

[34].

Ye et al. proposed a normalized version of simLP that takes into

account the minimum and maximum depths within each GO

category [35].

Cho et al. developed a simpler groupwise approach, in which the

semantic similarity between two gene products is given by the

information content of the most informative term they share [36].

This produces the same result as Resnik’s measure with the

maximum combination strategy, but is simpler to apply to gene

products, as it does not require computing pairwise term similarities.

Other graph-based measures consider the probability of a gene

product being annotated with a particular set of terms (annotation

set probability). Lin et al. calculate the similarity between two gene

product subgraphs as the frequency of occurrence of the graph

resulting from the intersection of both subgraphs, that is, the

frequency of gene products whose annotation subgraph contains

the intersect graph [37]. Yu et al. proposed the ‘‘total ancestry

similarity’’ measure, a probabilistic approach in which similarity is

given by the probability that any two gene products have exactly

the same set of lowest common ancestors as the two gene products

being compared [38]. The SSA algorithm by Sheehan et al. is

based on the probability of any given gene product being

annotated with the nearest common ancestors of two gene

products. This probability is then transformed into an IC measure

that the authors use to compute Resnik’s and Lin’s measures to

obtain a final gene product similarity value [39]. This algorithm

also considers the types of relations between the terms in the

subgraphs and corrects the number of annotations for the parent

term in a part_of relation, if its number of annotations is smaller

than its child’s, to comply with the logic that if the part exists,

necessarily the whole does too.

Table 3. Summary of groupwise approaches.

Measure Approach Techniques Weighting

Lee et al. [30] (TO) Graph-based Term overlap None

Mistry et al. [31] (NTO) Graph-based Term overlap, Normalized None

Gentleman [33] (simLP) Graph-based Shared-path None

Gentleman [33] (simUI) Graph-based Jaccard None

Martin et al. [32] (GOToolBox) Graph-based Czekanowski-Dice, Jaccard None

Pesquita et al. [44] (simUI) Graph-based Jaccard IC

Ye et al. [35] Graph-based LCA, Normalized None

Cho et al. [36] Graph-based LCA IC

Lin et al. [37] Graph-based Intersection Annotation set probability

Yu et al. [38] Graph-based LCA Annotation set probability

Sheehan et al. [39] (SSA) Graph-based Resnik, Lin Annotation set probability

Huang et al. [40] Vector-based Kappa-statistic None

Chabalier et al. [41] Vector-based Cosine IC

doi:10.1371/journal.pcbi.1000443.t003
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As for vector-based approaches, Huang et al. developed a gene

product similarity measure based on annotation profiles that

includes GO terms as well as many other derived from varied

sources for the tool DAVID [40]. Each gene product is

represented as a binary vector with each term having the value

1 if it is annotated to the gene product or 0 otherwise. Similarity is

calculated through kappa-statistics, which are a co-occurrence

probability measure corrected for chance.

Chabalier et al. also consider gene products as a vector of all

GO terms, but weight them according to their IC. Semantic

similarity is then calculated through the cosine similarity

algorithm, which is commonly used to measure document

similarity in information retrieval [41]:

CoSim A,Bð Þ~
A:B

Aj j2z Bj j2{A:B
ð7Þ

Evaluation of Semantic Similarity Measures

Given the variety of approaches and measures for semantic

similarity, a fundamental question arises: How well does each

measure capture the similarity in function between two gene

products?

Addressing this question is not trivial, because there is no direct

way to ascertain the true functional similarity between two gene

products. If there were, there would be no need to apply semantic

similarity in the first place. However, there are independent

properties, such as sequence similarity or coexpression data, that

can be used as measures of similarity at different levels, and by

correlating semantic similarity with such properties it is feasible to

assess how well a given measure captures the similarity between

gene products.

The choice of how to evaluate measures is still a subject of

debate, because no gold standard and few global comparative

studies exist. Furthermore, most authors test only a few measures

of interest for their particular applications. Table 4 summarizes the

most prominent studies and the best measure identified by them.

The first assessment study was done by Lord et al., who tested

Resnik’s, Lin’s, and Jiang and Conrath’s measures against

sequence similarity using the average combination approach

[15]. They used linear correlation as the evaluation criterion,

concluding that it was highest for the molecular function aspect, as

would be expected given the strong relationship between function

and sequence. Of the three measures tested, Resnik’s measure had

consistently the highest correlation.

Later, Wang et al. tested the same measures against gene

coexpression data, also using linear correlation. Although a high

correlation was found, no conclusion was drawn about the relative

performance of the measures [42].

Sevilla et al. also used gene coexpression data, but tested these

measures with the maximum combination approach rather than

the average. In agreement with Lord et al., they found Resnik’s

measure to perform best, and found the biological process aspect

to have the highest correlation with gene coexpression. This result

was far from unexpected, since genes with similar expression

patterns are likely to be involved in the same biological processes

[26].

Couto et al. tested the GraSM variation of these measures using

a best-match average combination strategy, correlating sequence

similarity with the number of Pfam families shared. They found

the highest correlation with Jiang and Conrath’s measure and the

biological process aspect [9].

Schlicker et al. compared their measure with Resnik’s measure

by viewing the distribution of sequence similarity over semantic

similarity, considering discrete levels. They found their measure to

perform best, particularly in distinguishing orthologous gene

products from gene products with other levels of sequence

similarity, for both molecular function and biological process

aspects [16].

Lei et al. tested several semantic similarity measures in an

application for predicting subnuclear location, using the multi-

class classification results (Matthews correlation coefficient) as an

evaluation criterion [29]. Regarding term measures, these authors

compared Resnik’s measure with the simLP measure (adapted for

term similarity) and an exact term-matching approach, finding

them not to be significantly different in performance. They also

tested several combination strategies for applying simLP to gene

product similarity, concluding that the sum of exact-matching

term pair similarities produced the best results. This outcome is

not surprising, given the precise nature of their application, as the

subnuclear location of a gene product will often be related to the

presence of specific GO terms.

Guo et al. evaluated simUI, simLP, Resnik’s, Lin’s, and Jiang

and Conrath’s measures on their ability to characterize human

regulatory pathways. They concluded that the pairwise approach-

es tested performed better than groupwise approaches, with

Resnik’s measure being the best performing overall [43].

Wang et al. tested their measure against Resnik’s by clustering

gene pairs according to their semantic similarity and comparing

the resulting clusters with a human perspective. They showed that

their measure produced results closer to human expectations [25].

Recently, Pesquita et al. have done an evaluation of semantic

similarity measures by modeling their behavior as function of

sequence similarity. These authors compared Resnik’s, Lin’s, and

Jiang and Conrath’s measures, using several combination

strategies, and also the groupwise measures simUI and simGIC,

showing that the relationship between semantic similarity and

sequence similarity is not linear for any of these measures. They

found that the average and maximum combination strategies

produce worse results than the best-match average and, consistent

with Lord’s and Sevilla’s results, found that Resnik’s measure

performs better than the other two term-based measures. Overall

the best measure for gene product similarity was shown to be

Table 4. Summary of assessment studies performed on
semantic similarity measures in GO, detailing the properties
used in the evaluation and the best performing measures.

Study Standard Best Measure

Lord et al. [15] Sequence similarity Resnik (average)

Wang et al. [42] Gene expression None

Sevillla et al. [26] Gene expression Resnik (max)

Couto et al. [9] Family similarity Jiang and Conrath

Schlicker et al. [16] Sequence and family similarity Schlicker et al.

Lei et al. [29] Subnuclear location TO

Guo et al. [43] Human regulatory pathways Resnik (average)

Wang et al. [25] Clustering Wang et al.

Pesquita et al. [44] Sequence similarity simGIC

Xu et al. [45] PPI/gene expression Resnik(Max)

Mistry et al. [31] Sequence similarity TO/Resnik(Max)

doi:10.1371/journal.pcbi.1000443.t004
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simGIC, slightly surpassing Resnik’s measure using the ‘‘pairwise-

best pairs-average’’ approach in resolution [44].

Xu et. al have also conducted an evaluation study using

protein–protein interactions and gene expression datasets of

Saccharomyces cerevisiae as the standard [45]. They tested the

maximum and average techniques with Resnik’s term similarity,

and also Tao’s, Schlicker’s, and Wang’s measures with receiver

operator characteristic (ROC) analysis. The maximum approach

was found to be the best performer in all GO categories. A positive

influence of the number of annotations per gene product was also

found.

Mistry et al. evaluated eleven measures: Resnik, Lin, and Jiang

and Conrath with both the average and maximum approaches;

three vector-based measures (cosine, weighted cosine, and kappa);

and TO and NTO. They investigated the correlation between

measures and the correlation with sequence similarity. They found

a good correlation between TO and Resnik’s maximum and

average. These three measures also correlated well to sequence

similarity, with TO presenting the highest correlation.

What we can draw from these studies is that there is no clear best

measure for comparing terms or gene products. Different measures

have performed differently under different circumstances, and a

given measure can be well suited for a specific task but perform

poorly in another. For instance, simUI was found by Guo et al. to be

the weakest measure when evaluated for its ability to characterize

human regulatory pathways, while Pesquita et al. found it to be

fairly good when evaluated against sequence similarity. However,

one result has been obtained consistently: pairwise measures using

Resnik’s term similarity outperform Lin’s and Jiang & Conrath’s

methods in all studies except family similarity.

There is also no clear best strategy for evaluating GO-based

semantic similarity measures; there are arguments for and against

most of the strategies employed. For instance, sequence similarity

is well known to be related to functional similarity, but it is just as

well known that there are gene products with similar sequences but

distinct functions and vice-versa. Another example are Pfam

families, which are related to global functional aspects of gene

products, but will likely not be suitable to compare with detailed

GO annotations.

Semantic Similarity Implementations

The rise in number of semantic similarity measures was

accompanied by the development of tools to calculate them.

Currently available tools fall into three categories: Web tools,

standalone tools, or R packages (see Table 5).

Web tools, such as FuSSiMeG (http://xldb.fc.ul.pt/rebil/ssm) [46],

GOToolBox (http://burgundy.cmmt.ubc.ca/GOToolBox) [32], Pro-

teInOn (http://xldb.fc.ul.pt/biotools/proteinon) [47], FunSimMat

(http://funsimmat.bioinf.mpi-inf.mpg.de) [48], and G-SESAME

(http://bioinformatics.clemson.edu/G-SESAME) [25], are readily

available and simple to use, and their maintenance and updating are

at the expense of the provider. However, they are limited to a pre-set

number of options.

Standalone applications, such as DynGO (http://gauss.dbb.

georgetown.edu/liblab/dyngo.html) [49] and UTMGO (available

upon request) [11], have the advantages that they are not limited

in the size of input data (unlike many Web tools) and can support

heavier computations (DynGO supports semantic retrieval of both

similar terms and gene products, while UTMGO supports

retrieval of similar terms). However, they require a local

installation, which can be less appealing for some users (DynGO

in particular works as a server–client application), and must be

updated by the end user.

The R packages SemSim (http://www.bioconductor.org/packages/

2.2/bioc/html/SemSim.html) and GOvis (http://bioconductor.org/

packages/2.3/bioc/html/GOstats.html) are part of the Bioconductor

project, which comprises many R packages for bioinformatics and

biostatistics applications. A more recent R based package for semantic

similarity, csbl.go (http://csbi.ltdk.helsinki.fi/csbl.go/) [50], also imple-

ments semantic similarity-based clustering, but it relies on users to load

annotation data. The main advantage of these implementations is the

possibility of integration between the semantic similarity and other

packages, such as visualization tools or statistical analysis.

Although no single tool implements all existing semantic

similarity measures, FuSSiMeG, ProteInOn, FunSimMat, Sem-

Sim, and csbl.go provide a wide range of them, and enable the

user to choose one or even to compare several (in the case of

FunSimMat). Most of the tools mentioned above also provide

other types of services and information, such as protein

interactions (ProteInOn), GO graph visualization (GOvis,

DynGO), GO browsing (DynGO), and clustering (GOToolBox,

G-SESAME, csbl.go).

Semantic Similarity Applications

The application of semantic similarity allows gene products to

be compared at different levels. This section presents several

Table 5. Tools for GO-based semantic similarity measures.

Tool Format Available Measures Implemented Input Sizea Annotation Types Extras

FuSSiMeG Web Several 2 All None

GOToolBox Web Several Unlimited Single Representation, Clustering, Semantic retrieval

ProteInOn Web Several 10 All/manual Protein interaction

G-SESAME Web Wang et al. [25] 2 All manual, Single manual Clustering, Filter by species

FunSimMat Web Several Unlimited All Filter by protein family, Filter by species

DynGO Standalone AVG(Resnik) Unlimited All ECs Visualization, Browsing, Semantic retrieval

UTMGO Standalone Othman et al. [11] NA IEA/non-IEA Semantic retrieval of terms

SemSim R Several NA all/non-IEA Support for clustering, filter by species

GOvis R simLP+simUI NA All Visualization

csbl.go R Several NA NA Clustering

aAcceptable number of terms or gene products.
doi:10.1371/journal.pcbi.1000443.t005
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scenarios in which GO-based semantic similarity measures have

been successfully applied.

For instance, GO-based semantic similarity can be used to

compare gene products by their biochemical function (molecular

function), the cellular and supracellular processes in which they are

involved (biological process), and their cellular or extracellular location

(cellular component). Comparing the molecular function aspect, we can

measure the functional similarity between gene products and gain

insight into function-related characteristics such as domains and

active sites. The biological process aspect can be related to protein

interaction, both physical and indirect (involved in the same process

network), and thus can be used to predict them and to analyze

coexpression data. The cellular component aspect can be linked to

colocalization and in that context be used to validate physical

interaction and localization-dependent functions and processes.

Overall, GO-based semantic similarity measures have been applied

mainly for validating and predicting functions and interactions, and

for analyzing transcriptomics and proteomics data.

Automated prediction of gene product function has been a

cornerstone of genome annotation, because experimental methods

are too costly and time consuming to be able to cope with the size and

continuous growth of genetic data [51]. Semantic similarity can be

used to assess the performance of automated function prediction

methods (as was used in the Automated Function Prediction 2005

Special Interest Group meeting of ISMB 2005 in Detroit, USA) and to

validate their results [52,53]. It has also been used as a component of

several function prediction systems, based on protein–protein

interactions [54], on structural similarity of protein surface [55], and

on clustering using semantic similarity [56]; and to validate automatic

annotations [57]. Tao et al. have developed a function prediction

system in which annotations are transferred between proteins with the

only criterion being their semantic similarity [28].

Semantic similarity can also play an important role in both

predicting and validating gene product interactions and interac-

tion networks. Regarding prediction, some authors developed

methods based solely on semantic similarity [23,41], whereas

others combined semantic similarity with gene expression data

[43,58,59]. As for validation of interactions, semantic similarity

has been used to select a negative dataset of noninteracting

proteins to assess prediction methods [60], to improve the

performance of predictions by excluding false positives [61], and

to assess the quality of predicted interaction networks by

comparing them to experimentally verified interactions [48]. Also

in the context of interactions, semantic similarity has been used to

extract functional modules from interaction networks [62], to align

biological pathways [63] to generate functionally meaningful

network subsets [64], and to characterize protein interaction

networks to support breast cancer outcome prediction [65].

In the analysis of transcriptomics and proteomics data, the main

role of semantic similarity has been to improve the clustering of

coexpressed gene products by taking into account their functional

similarity [56,66–69]. However, it can also be used to link and

compare results from different assays [30], to improve data quality

[70], and to validate gene selection for biomedical purposes [71].

Other biological applications of semantic similarity include

determining interfold similarity based on sequence/structure

fragments [72], evaluating the biological significance of coex-

pressed chromosome domains [73], predicting domain distances

[2], and predicting cellular localization [29]. There are also other

applications such as integration of semantic search [75,76].

Unfortunately, most application studies use only one measure and

results are not comparable across studies, making it difficult to assess

which measure is best for which purpose. However, based on the few

comparative studies that exist, we can identify the most successful

measures so far in the three main applications of GO-based semantic

similarity: function prediction/validation, protein–protein interaction

prediction/validation, and cellular location prediction (see Table 6).

Discussion

Semantic similarity measures are dependent on the quality and

completeness of both the ontology and the annotated corpus they

use. Biomedical ontologies have several irregularities, such as

variable edge length (edges at the same level convey different

semantic distances), variable depth (terms at the same level have

different levels of detail), and variable node density (some areas of

the ontology have a greater density of terms than others). These

are due to the irregular nature of biomedical knowledge and our

limited understanding of it, and should be taken into account by

semantic similarity measures, particularly edge-based measures,

which are sensible to these issues. There are also problems with the

use of annotated corpora in node-based measures, because these

are biased by biomedical research interests (since terms related to

subjects of research focus are expected to be more frequently

annotated than other terms) and limited by current experimental

techniques (if the currently most popular technique can discover

gene product functional aspects only to a certain level of detail,

then more detailed terms will seldom be used for annotation).

Despite these issues, the use of IC on semantic similarity measures

still makes sense probabilistically, if not always semantically,

because commonly used terms are more likely to be shared by

gene products than uncommonly used terms.

Another issue particular to GO is that not all annotations are equal,

because evidence codes show the type of evidence that supports the

annotation. While most evidence codes symbolize experimental

methods and the corresponding annotations are manually curated,

the most prevalent evidence code (IEA) indicates the annotation was

inferred electronically (by sequence similarity, from other databases, or

from keyword mapping files) and not manually curated. Whether IEA

annotations should be used or disregarded for semantic similarity is still

a subject of open debate, because using them entails a loss of precision

but not using them entails a loss of coverage (over 97% of all

annotations in the GOA-UniProt database are IEA, and less than 2%

of the GO terms have non-IEA annotations [77]). As the proportion of

IEA annotations continues to increase, and they steadily improve in

quality (up to 91%–100% precision having been reported [78]), there

will be fewer reasons to ignore them, and they will eventually be widely

adopted. Since IEA annotations are usually made by inference through

similarity to sequences of model organisms, improvements in the

experimental annotation of model organisms will result in higher-

quality IEA annotations. Meanwhile, perhaps the best way to decide

whether to include or discard IEA annotations for a particular study is

to first analyze the corpus in question and verify if the gene products of

interest are well characterized with manually curated annotations or if

IEA annotations are essential for their characterization. Note that using

Table 6. Best measures for the main applications of GO-
based semantic similarity measures.

Application Best Measure Reference

Functiona p/v BMA(Resnik)/simGIC [44]

Protein-protein interaction p/v Max(Resnik) [43,45]

Cellular location prediction SUM(EM) [29]

aIdentified by sequence similarity.
p/v, prediction/validation.
doi:10.1371/journal.pcbi.1000443.t006
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different sets of annotations (such as all, or just the manually curated

ones, etc.) will have an impact in the IC values calculated for the terms,

preventing their comparison. It is also important to stress that only

results obtained with the same versions of GO’s ontology and

annotation data are comparable, since changes to both the ontologies

and the annotations made with them affects semantic similarity .

An important issue in the evaluation of semantic similarity measures

based on the IC is that of data circularity between the data used to

evaluate the measures and the GO annotations. For instance, if a given

measure is evaluated by correlation with sequence similarity, then using

annotations based on sequence similarity (those with evidence codes

ISS and IEA) to calculate the IC leads to data circularity, as there is

direct dependency between both data sources. The same is true for the

use of annotations inferred by physical interaction (IPI) when a

measure is evaluated by correlation with protein-protein interactions,

and other similar cases. To minimize the effect of data circularity,

evaluation studies should (and usually do) remove annotations based on

evidence of the same nature as the data used to evaluate the measures.

Data circularity is not the only problem in evaluating GO-based

semantic similarity measures. The lack of a gold standard for

evaluating semantic similarity makes it hard to assess the quality of

the different measures and to find out which are best for which

goals. One of the reasons for the continued lack of a gold standard

is that measures are often developed for specific goals and

evaluated only in that context. Furthermore, there are pros and

cons to all data sources used to evaluate semantic similarity. The

best solution is likely that a gold standard be designed by experts to

cover most applications of semantic similarity, not based on

proxies for true functional similarity, such as sequence similarity or

gene coexpression.

How to Choose a Semantic Similarity Measure
Researchers who wish to employ semantic similarity in their

work need to spend some time defining their requirements to

choose an adequate measure. Since different measures interpret

ontology and annotation information in different ways, researchers

need to understand the differences and decide which interpreta-

tion is best suited to their needs. Below, we outline some of the

steps that should be taken before choosing a semantic similarity

measure.

1. Identify your scope: Comparing one aspect versus comparing

multiple aspects of gene products;

2. Identify your level of detail: Comparing gene products in

specific functions or overall similarity; and

3. Analyze the annotations of your dataset: Determining the

number of annotations per gene product, including and

excluding IEA annotations and annotation depth.

When wishing to compare single aspects of gene products,

researchers should opt for maximum approaches (‘‘pairwise–all

pairs–maximum’’). These will give a measure of how similar two

gene products are at their most similar aspect. For comparing

multiple aspects, the best measures are ‘‘pairwise–best pairs–

average’’ or groupwise approaches, since they allow for the

comparison of several terms. However, depending on the level of

detail desired, ‘‘pairwise–best pairs–average’’ or ‘‘groupwise–set’’

should be used for a higher degree of specificity (since only direct

annotations are used) and ‘‘groupwise–vector’’ or graph for a more

generalized similarity (since all annotations are used). To further

minimize the relevance of specificity, unweighted graph or vector

measures can be employed, so that high-level GO terms are not

considered less relevant.

However, having to analyze the dataset before deciding which

measure to use can be cumbersome to researchers who just need a

‘‘quick and dirty’’ semantic similarity calculation. In this case,

researchers should resort to one of the several semantic similarity

tools available and use their good judgment in analyzing the

results. Most semantic similarity measures proposed so far have

shown fair if not good results, and for less detailed analyses any

one of them can give a good overview of the similarities between

gene products.

Conclusions
Over the last decade, ontologies have become an increasingly

important component of biomedical research studies, because they

provide the formalism, objectivity, and common terminology

necessary for researchers to describe their results in a way that can

be easily shared and reused by both humans and computers. One

benefit of the use of ontologies is that concepts, and entities

annotated with those concepts, can be objectively compared

through the use of semantic similarity measures. Although the use

of semantic similarity in the biomedical field is recent, there is

already a wide variety of measures available that can be classified

according to the approach they use.

There are two main semantic similarity approaches for

comparing concepts: edge-based, which rely on the structure of

the ontology; and node-based, which rely on the terms themselves,

using information content to quantify their semantic meaning.

Node-based measures are typically more reliable in the biomedical

field because most edge-based measures assume that all relation-

ships in an ontology are either equidistant or have a distance as

function of the depth, neither of which is true for existing

biomedical ontologies.

Because biomedical entities are often annotated with several

concepts, semantic similarity measures for comparing entities need

to rely on sets of concepts rather than single concepts. There are

two main approaches for this comparison: pairwise, in which

entities are represented as lists of concepts that are then compared

individually; and groupwise, in which the annotation graphs of

each entity are compared as a whole.

Several studies have been conducted to assess the performance

of different similarity measures, by correlating semantic similarity

with biological properties such as sequence similarity, or other

classification schemas such as Pfam. Most measures were shown to

perform well, but as few comprehensive studies have been

conducted, it is difficult to draw any conclusion about which

measure is best for any given goal.

Until now, most research efforts in this area developed novel

measures or adapted preexisting ones to biomedical ontologies,

with most novel measures sporting an increased complexity

compared to previous ones. This increased complexity is mainly

a result of more recent measures combining several strategies to

arrive at a final score. Although the need for improved measures is

unquestionable, this trend fails to answer the most pressing

community needs: (1) easy application to both small and large

datasets, which would be best achieved by developing tools that

are at once easy to use and powerful; and (2) elucidation of which

measure is better fitted to the researcher’s needs, which would

imply comparative studies of all existing measures and approaches.

Although important efforts in these two areas have already been

made, semantic similarity is still far from reaching the status of

other gene product similarities, such as sequence-based ones, in

which fast and reliable algorithms coupled with the development

of ever-growing databases has made them the cornerstone of

present day molecular biology. One important step forward would

be the development of a gold standard for gene product function
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that would allow the effective comparison of semantic similarity

measures. Nevertheless, semantic similarity is not restricted to gene

products and it can be expected that, as more biomedical

ontologies are developed and used, these measures will soon be

applied to different scenarios. It is then crucial that bioinforma-

ticians focus on strategies to make semantic similarity a practical,

useful, and meaningful approach to biological questions.
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