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Maize growth promotion 
by inoculation with Azospirillum brasilense 
and metabolites of Rhizobium tropici enriched 
on lipo‑chitooligosaccharides (LCOs)
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Ricardo Silva Araujo3 and Mariangela Hungria1*

Abstract 

There is an increasing interest in the development and use of inoculants carrying plant growth-promoting bacteria 
(PGPB) in crops of agronomic interest. The great majority of the inoculants commercialized worldwide contain rhizo-
bia for legume crops, but the use of PGPB as Azospirillum spp. for non-legume is expanding, as well as of inoculants 
combining microorganisms and microbial metabolites. In this study we evaluated the effects of inoculants containing 
Azospirillum brasilense with or without metabolites of Rhizobium tropici strain CIAT 899 highly enriched in lipo-chitooli-
gosaccharides (LCOs) in six field experiments performed for three summer crop seasons in Brazil with maize (Zea mays 
L.). Inoculants and metabolites were applied either at sowing by seed inoculation, or by leaf spray at the V3 stage of 
plant growth. Improvement in shoot dry weight (SDW) and total N accumulated in shoots (TNS) by single, but espe-
cially by dual inoculation was observed in some of the experiments. Statistically significant increases in grain yield in 
relation to the non-inoculated control were observed in five out of six experiments when maize was inoculated with 
Azospirillum supplied with enriched metabolites of R. tropici applied by seed or leaf spray inoculation. The results give 
strength to the development of a new generation of inoculants carrying microorganisms and microbial molecules.
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Introduction
Inoculation of crops of agronomic interest with plant 
growth-promoting bacteria (PGPB)—especially those 
belonging to the group of rhizobia associated with leg-
umes—represents a biotechnological practice con-
solidated worldwide (Bashan et  al. 2014). In Brazil, for 
example, about 25 million doses of inoculants are com-
mercialized every year, 95  % of which for the soybean 
(Glycine max [L.] Merr.) crop (Hungria and Mendes 
2015).

The symbiotic interaction between rhizobia and the 
host legumes to establish the biological nitrogen fixation 

process involves an intense exchange of signals between 
the partners. The dialogue starts with the exudation of 
molecules by the plant—especially flavonoids—which act 
as signals to the rhizobia (Hungria et  al. 1992; Hungria 
and Phillips 1993; de Rijke et  al. 2006). The interaction 
occurs by means of a key protein in rhizobia—NodD—
launching the expression of all other bacterial nodulation 
genes; in the following step, rhizobia reply with the syn-
thesis and secretion of Nod Factors (Phillips 2000). Nod 
Factors are lipo-chitooligosaccharides (LCOs), which 
may comprise up to 60 different structural arrangements 
(D’Haeze and Holsters 2002), depending on the bacterial 
species and the environmental conditions (Folch-Mallol 
et  al. 1996; Debellé et  al. 2003; Estévez et  al. 2009; del 
Cerro et al. 2015a, b). LCOs act directly in root coloniza-
tion and cortex cell division (Spaink et  al. 1998; Darda-
nelli et al. 2008).
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Intriguingly, it has been reported that LCOs can 
also promote growth of non-leguminous plants, one 
possible explanation being because they mimic the 
effects of plant hormones such as cytokinins and aux-
ins (Rélic et al. 1993), resulting in increased seed ger-
mination and resistance to pathogens (Miransari and 
Smith 2009). With the current knowledge about the 
effects of LCOs, a new generation of inoculants based 
on, or enriched with LCOs has proven to be very 
effective with legumes, and is now advancing to the 
use with non-legumes (Marks et al. 2013; Smith et al. 
2015).

The technology of inoculation of non-legumes with 
non-symbiotic PGPB—whose main representative is 
Azospirillum spp.—is also being increasingly adopted 
in several countries, especially for crops such as maize 
(Zea mays L.) and wheat (Triticum aestivum L.) (Díaz-
Zorita and Fernandez-Canigia 2009; Hartmann and 
Bashan 2009; Smith et  al. 2015). In Brazil, inoculants 
containing Azospirillum brasilense strains Ab-V5 and 
Ab-V6 were exponentially employed by farmers in 
the past 5  years for maize and wheat (Hungria et  al. 
2010; Hungria 2011). More recently, co-inoculation 
of soybean with rhizobia and azospirilla has also been 
adopted as an agronomic practice by several farmers, 
with reported positive effects on nodulation precoc-
ity (Chibeba et  al. 2015) and increases in grain yield 
(Hungria et  al. 2013, 2015b); positive effects on com-
mon bean (Phaseolus vulgaris L.) yield have also been 
reported (Hungria et  al. 2013). Among the benefits of 
inoculation with non-symbiotic PGPB, the contribu-
tions of biological nitrogen fixation (Ashraf et al. 2011), 
production of phytohormones (Strzelczyk et  al. 1994), 
phosphate solubilization (Rodriguez et  al. 2004) and 
control of plant pathogens (Araujo et  al. 2005; Wang 
et al. 2009) are commonly cited.

Studies of the application of LCOs associated with 
Azospirillum to cereals crops are still incipient. Our 
research group has previously reported that the addi-
tion of concentrated metabolites (CM) from two 
strains of rhizobia containing LCOs resulted in sig-
nificant increases in maize grain yield (Marks et  al. 
2013). Rhizobium tropici is a very interesting species 
that synthesizes a wide variety of LCOs, even in the 
absence of plant inducers (Estévez et al. 2009; del Cerro 
et al. 2015a, b), making it an interesting bacterium for 
metabolite production. In this study, metabolites of R. 
tropici strain CIAT 899 highly enriched in LCOs were 
obtained and applied along with A. brasilense in six 
field experiments performed in 3 years, aiming at get-
ting a better understanding of the combined effects 
Azospirillum and rhizobial molecules on the growth 
and yield of cereals.

Materials and methods
Inoculant and lipo‑chitooligosaccharides (LCOs) 
preparation
Liquid inoculants were prepared with A. brasilense 
strains CNPSo 2083 (=Ab-V5) and CNPSo 2084 (=Ab-
V6). Strains are deposited in the Diazotrophic and 
Plant Growth Promoting Bacteria Culture Collection of 
Embrapa Soja (WFCC Collection #1213, WDCM Col-
lection #1054). These two elite strains were identified in 
a previous selection program for the maize and wheat 
crops (Hungria et  al. 2010; Hungria 2011) and are used 
in commercial inoculants in Brazil. Inoculant concentra-
tion was determined by spread-plating on NFb (Hungria 
and Araujo 1994; Döbereiner et al. 1995) and RC (Cassán 
et al. 2010) solid media and adjusted to the concentration 
of 2 × 108 CFU (colony forming units) mL−1 in all three 
crop seasons.

Metabolites of R. tropici strain CIAT 899 enriched 
in LCOs were produced with a combination of proce-
dures. Bacterium growth and extraction of the superna-
tant n-butanol were performed as described by Sanjuan 
et  al. (1992). Purification was accomplished by solid-
phase chromatography, with SPE C18 Resprep, Teknok-
roma column, concentration and lyophilization were 
performed as described by Soria-Díaz et  al. (2003) and 
Guasch-Vidal (2011). Prior to sowing, lyophilized metab-
olites of R. tropici CIAT 899 were re-suspended in a mix-
ture of acetonitrile and water (20 %). The concentration 
was adjusted to 0.1  mL  L−1, corresponding to approxi-
mately 10−9 M. The metabolites were added to the inocu-
lant containing Azospirillum at the time of inoculation, 
either when applied to the seeds, or by spraying.

Field experiments
Sites description
Six field experiments were conducted over a 3-year 
period, always in the summer crop season. Two experi-
ments were conducted in 2012/2013, in Ponta Grossa, 
State of Paraná (southern region) and Cachoeira Dour-
ada, State of Goiás (central-western region), two others in 
2013/2014, in Rio Verde, State of Goiás (central-western 
region), and Maracaí, State of São Paulo (southeastern 
region), and two others in the crop season of 2014/2015, 
in Londrina, State of Paraná (southern region) and Ponta 
Grossa.

Ponta Grossa (25°13′S, 50°1′W) is at 880 m of altitude 
and has a Köppen-Geiger climate type Cfb (temper-
ate with mild summer). Cachoeira Dourada (18°29′S; 
49°28′W) is at 450  m of altitude and has a climate type 
Aw (tropical with dry season in the winter). Rio Verde 
(17°47′S; 50°54′W) is at 730 m altitude and has a climate 
type Aw, Maracaí (22°36′S; 50°40′O) is at 475 m and has 
a climate type Cfa (tropical humid with warm summer) 
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and Londrina (23°11′S, 51°11′W) is at 620  m altitude 
and has a climate type Cfa. The trials were performed on 
soils classified as Latossolo Vermelho Distrófico (Brazil-
ian classification) (Typic Hapludox, USA Soil Taxonomy) 
(Ponta Grossa, Cachoeira Dourada, Rio Verde, Maracaí), 
and Latossolo Vermelho Eutroférrico (Brazilian clas-
sification) (Rhodic Eutrudox, USA Soil Taxonomy) in 
Londrina.

At each site, 2 months before the experiments were 
established twenty soil samples (0–20  cm depth) were 
taken to evaluate chemical properties, granulometry and 
biological properties. For chemical analyses, the samples 
were previously dried (60 °C for 48 h), sieved (2 mm), and 
analyzed as described before; soil granulometry was also 
analyzed as described before (Hungria et al. 2010; Hungria 
et al. 2015a). Population of free-living diazotrophic bacteria 
was estimated by the NMP method with dilutions in NFb 
semi-solid medium (Hungria and Araujo 1994; Döbereiner 
et al. 1995). Soil properties are shown in Table 1.

About 50 days before starting the experiment, lime was 
applied to alleviate acidity when necessary, based on soil 
pH values. The amount of lime applied was estimated 
for a base saturation of 50 %, to increase the pH to 5.5 or 
higher.

Treatments, experimental design and field management
The maize hybrids used in the experiments were 
DOW 2B 707 HX (Dow AgroSciences) in 2012/2013, 
DKB-350-PRÓ (Dekalb) in 2013/2014, and DKB-350-
PRÓ2 (Dekalb) in 2014/2015. Seeds were not surface 
disinfected.

Two methods for the inoculation with A. brasilense 
strains CNPSo 2083 and CNPSo 2084 were tested. The 
first method consisted of seed inoculation at sowing and 
the second of leaf spray with the same inoculant at the V3 
stage (third leave developed).

The experiments consisted of five treatments: (1) non-
inoculated control (NI); (2) seed inoculation (SI) with 
Azospirillum at sowing; (3) SI  +  metabolites enriched 
with LCOs applied at sowing; (4) leaf spray inocula-
tion (LSI) with Azospirillum strains at V3 stage; (5) 
LSI + enriched metabolites at the V3 stage.

Seed inoculation was performed at a rate of 100  mL 
20  kg−1 of seeds (2 ×  108 CFU  mL−1) while the spray 
inoculation was applied at a rate of 200 mL ha−1 (2 × 108 
CFU mL−1) diluted in 100 L of water; 20 kg of seeds give 
rise to a population of about 60,000 plants ha−1. Enriched 
metabolites were prepared at a concentration of 0.1 mL 
L−1 and mixed with the inoculant before application at a 
rate of 50 mL 20 kg−1 of seeds when applied to the seeds 
and of 100 mL ha−1 when sprayed.

As mentioned above, the main objective of our study 
was to verify the plant growth-promoting activity of the 

enriched bacterial metabolites. Therefore, all treatments 
received the same fertilization, consisting of 300 kg ha−1 
of a formulation of 08-20-20 (corresponding to 24 kg of 
N, 60 kg of P and 60 kg of K ha−1) at sowing and a top-
dressing fertilization at the V4 stage (four fully developed 
leaves), representing 75 % of the usual dose of N-fertilizer 
recommended for the crop in Brazil, corresponding to 
90 kg N ha−1 of urea (67.5 kg N ha−1).

Plots measured 4.5 m (width) × 8 m (length) (=27 m2), 
with rows spaced by 0.9 m and plots were separated by 
2 m terraces to prevent contamination by superficial run-
off containing bacteria, metabolites or fertilizers. The 
experiments were set in a complete randomized block 
design with six replicates.

Cultural and phytosanitary managements followed the 
technical recommendations for the maize crop (Embrapa 
2011). The experiments were not irrigated.

Plant sampling, harvesting and analyses
Between 29 and 57 days after sowing (DAS), depending 
on the climatic conditions, five plants were randomly col-
lected from each plot to evaluate the performance at the 
vegetative growth. Shoots were washed and dried to con-
stant weight at 50  °C for evaluation of shoot dry weight 
(SDW). Shoots were then ground (20 mesh) and total N 
was determined by sulfuric digestion followed by semi-
micro Kjeldahl distillation method, as described before 
(Hungria et al. 2015a).

At the time of physiological maturity, plant height 
(PH) was determined based on the average of six plants, 
and plant population was also estimated. Grain yields 
(kg  ha−1) were determined by harvesting a 6.3  m2 area 
(0.9 m wide × 7 m long) from the central portion of each 
plot. Grains were cleaned and weighed, the humidity 
evaluated in a grain moisture tester and the content cor-
rected to 13 % moisture. In 2013/2014 and 2014/2015 the 
N content of seeds was also determined, as described for 
shoots.

It is worth mentioning that all field experiments were 
performed according to the Brazilian legislation required 
for the registration of commercial inoculants or technol-
ogies of inoculation for plant growth-promoting bacteria 
(MAPA 2011).

Statistical analyses
Data from each experiment were first submitted to tests 
of normality and homogeneity of variances for each 
variable and then to the analysis of variance (ANOVA). 
When significant differences were detected by the F 
test, Duncan’s multiple-range test at p ≤  0.05 and 0.10 
(for inoculant products the Brazilian legislation accepts 
p ≤ 0.10; MAPA 2011) was used as a multiple compari-
sons procedure.
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Results
In the 2012/2013 crop season, in Ponta Grossa, grain 
yield of maize plants inoculated with A. brasilense and 
supplied with enriched metabolites either at sowing or at 
the V3 stage was significantly higher than the other treat-
ments (Table 2). In Cachoeira Dourada, shoot dry weight 
(SDW) and total N accumulated in shoots (TNS) were 
significantly increased when Azospirillum was inocu-
lated on the seeds (Table  2). The supplementation with 
enriched metabolites associated to seed inoculation with 
Azospirillum seemed to improve the same parameters at 
this site, even though this treatment did not show signifi-
cantly higher SDW than the other treatments (Table 2). 
In addition, in Cachoeira Dourada both treatments with 
Azospirillum inoculated on seeds along with enriched 
metabolites, and Azospirillum-inoculated by leaf spray 
added of enriched metabolites promoted higher yield 
than the other treatments (Table 2).

In 2013/2014, in Rio Verde, the supplementation of 
both treatments that received Azospirillum inoculation, 
either on seeds or by leaf spray, with enriched metabo-
lites resulted in significant increases in the N content of 
the grains (TNG, Table  3). In Maracaí, the best perfor-
mance was achieved again in the treatment pulverized 
with A. brasilense supplied with enriched metabolites, 
resulting in greater yield, values of accumulation of N in 
grains (NG) and TNG, in general statistically higher than 
all other treatments (Table 3).

In Londrina, in 2014/2015, leaf spray with Azospiril-
lum resulted in significant increases in SDW relative to 
the non-inoculated controls, either in the presence or in 
absence of enriched metabolites (Table  4). Seed inocu-
lation resulted in increased grain yield relative to the 
non-inoculated control, but no further increases were 
observed when metabolites were added; in contrast, leaf 
spray inoculation only resulted in yield increases when 
supplemented with enriched metabolites (Table  4). In 
Ponta Grossa, the addition of the enriched metabolites to 
both inoculation with Azospirillum by seeds or leaf spray 
resulted in increased grain yield when compared to the 
non-inoculated control and to the treatments inoculated 
only with Azospirillum (Table 4).

Discussion
One of the main goals of new biotechnological prod-
ucts is to reduce the agricultural utilization of pesticides 
and/or chemical fertilizers, providing higher sustain-
ability associated with enhanced environmental quality 
(Hameeda et  al. 2006). In this study, we observed that 
when maize seeds were inoculated with A. brasilense 
strains CNPSo 2083 and CNPSo 2084, there were no 
increases in grain yield in the leaf spray treatment. When 
Azospirillum was applied on seeds, statistically significant 
increases were observed in two out of six experiments. 
Although this percentage is lower than usually reported 
(Okon and Labandera-Gonzalez 1994; Díaz-Zorita and 

Table 2  Effect of  Azospirillum brasilense strains CNPSo 2083 and  CNPSo 2084 and  of enriched metabolites of  R. tropici 
strain CIAT 899 applied to the seeds at sowing or by leaf spray at the V3 stage on plant growth (shoot dry weight, SDW; 
plant height, PH), shoot N (content [NS] and total N accumulated in shoots [TNS]) at 57 and 51 days after sowing (DAS), 
and grain (yield) at the physiological maturity of maize hybrid DOW 2B 707 HX

Field experiments performed in Ponta Grossa and Cachoeira Dourada, Brazil, in the summer crop season of 2012/2013. Means (n = 6) on the same column which are 
followed by different letters are significantly different (p ≤ 0.10, Duncan test)

n.s. statistically non-significant

Treatment Ponta Grossa Cachoeira Dourada

57 DAS Maturity 51 DAS Maturity

SDW (g pl−1) PH (cm) NS (g kg−1) TNS (mgN 
pl−1)

Yield 
(kg ha−1)

SDW (g pl−1) PH (cm) N (g kg−1) TNS (mgN 
pl−1)

Yield 
(kg ha−1)

Non-inoculated 
control

56.1ns 252ns 23.04ns 1292ns 8406 b 33.1 c 234ns 21.16ns 700 b 6310 b

Seed inoculated 
(Azospirillum)

58.3 260 23.86 1391 8850 b 44.1 a 242 21.00 926 a 6567 b

Seed inoculated 
(Azospiril-
lum + enriched 
metabolites)

52.7 253 22.64 1193 9225 a 40.8 ab 243 21.94 895 a 7373 a

Leaf spray inocula-
tion (Azospirillum)

55.0 258 22.45 1235 8567 b 36.9 bc 241 21.10 779 b 6543 b

Leaf spray inocula-
tion (Azospiril-
lum + enriched 
metabolites)

55.2 256 22.71 1254 9256 a 36.4 bc 238 21.06 766 b 7286 a
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Fernandez-Canigia 2009; Hungria et al. 2010), increments 
in yield were observed in all trials, and when a combined 
analysis was performed, there was a statistically signifi-
cant gain of 358 kg ha−1 in relation to the non-inoculated 
treatment. However, when the Azospirillum inoculant 
was supplemented with LCO-enriched metabolites from 
R. tropici strain CIAT 899, either by seed inoculation or 
by leaf spray, statistically significant increases in grain 
yield in comparison to the non-inoculated control were 
observed in five out of six field experiments, and when 
compared to the single inoculation with Azospirillum, in 
three and five out of six experiments for seeds and leaf 
spray, respectively.

The beneficial relationships between PGPB such as 
Azospirillum, and several plant species have been previ-
ously described (Okon, and Labandera-Gonzalez 1994; 
Bashan and de Bashan 2010; Cassán et  al. 2013). Field 
experiments have shown increases in grain yield rang-
ing from 5 to 75 % (Okon and Labandera-Gonzalez 1994; 
Fuentes-Ramirez and Caballero-Mellado 2005; Castro-
Sowinski et al. 2007; Rodrigues et al. 2008; Hungria et al. 
2010). These increases are commonly attributed to root 
growth promotion, accomplished by phytohormones 
produced by the bacterium, with an emphasis on indole 
acetic acid, gibberellins and cytokinins (Tien et al. 1979). 
Moreover, it is inferred that the application of Azospiril-
lum is also responsible for higher rates of absorption of 
water and minerals by the plant (Okon, and Kapulnik 
1986; Dardanelli et al. 2008) and higher tolerance to abi-
otic stresses, such as drought and salinity (Cassán et  al. 
2009; Zawonski et al. 2011).

The relationship between different soil microorgan-
isms and the role of metabolites secreted by them on 
growth of other surrounding microbial species and 
plants has been the subject of numerous studies. For 
example, Massoud et al. (2009) studied the effects of the 
combined inoculation of mycorrhizal fungi, Bacillus cir-
culans, Rhizobium sp., Azospirillum lipoferum, Azoto-
bacter chroococcum and mineral rocks on common bean 
(Phaseolus vulgaris L.) plants. The inoculum consortium 
promoted higher nitrogenase activity and increased the 
availability of macronutrients, besides promoting plant 
growth, resulting in increased yield in comparison to 
the single inoculation (Massoud et al. 2009). The authors 
attributed these results at least partially to the exudation 
of beneficial molecules by the microorganisms (Mas-
soud et al. 2009). The positive effects of molecules such 
as LCOs, exopolysaccharides (EPSs), and plant hormones 
on plant growth (hosts or non-hosts) may be associated 
with increased survival and capacity of plant infection 
by beneficial rhizospheric bacteria and fungi and/or with 
plant growth promotion (Marks et  al. 2013). In a study 
with the legume model Medicago truncatula, application 

of LCOs of Sinorhizobium meliloti facilitated root infec-
tion by mycorrhizal fungi and stimulated lateral root hair 
development (Olah et al. 2005). It is possible that LCOs, 
although produced by rhizobia, have a direct influence 
on the rhizospheric microbial community by influencing 
interactions among microorganisms and promoting plant 
growth, including growth of non-host plants.

The LCOs secreted by rhizobia are described as 
responsible for several physiological modifications in the 
root hairs of legumes. Such changes include alterations in 
ion flux, membrane depolarization of root cells, intra and 
extracellular alkalization, synthesis of phosphatidic acid 
and diacylglycerol, accumulation of reactive oxygen spe-
cies, root hair deformations involving changes in actin 
cytoskeleton, cell division activation and induction of 
the expression of genes involved in nodulation (Mulder 
et  al. 2006; Cooper 2007). All these changes allow the 
rhizobia to invade the host plant, leading to the forma-
tion of nodule primordia (Riely et  al. 2004), and there-
fore, LCOs would behave as mitogenic and morphogenic 
agents (Rélic et  al. 1993). However, intriguingly, LCOs 
have also been described as growth regulators of a wide 
variety of non-leguminous plants (Prithiviraj et al. 2003), 
inducing various physiological responses (Souleimanov 
et  al. 2002), as increased seed germination, lateral root 
development and nutrient uptake (Smith et al. 2015). The 
study by Rélic et al. (1993) supports the hypothesis that 
the LCOs may act as plant hormones when applied to 
non-host plants. Previous studies with cells and plants of 
tobacco (Nicotiana sp.) (Baier et al. 1999), tomato (Sola-
num lycopersicum L.) (Staehelin et  al. 1994) and carrot 
(Dacus carota L.) (De Jong et al. 1993) have shown that 
LCOs are activators of cell division and embryonic devel-
opment of non-host plants.

Marks et al. (2013) observed, in previous field experi-
ments, an 11.4 % increase in the grain yield of maize inoc-
ulated with the same strains of A. brasilense and supplied 
with concentrated metabolites of R. tropici that included 
LCOs. Although the mechanisms responsible for the 
benefits of LCOs in non-leguminous are not fully under-
stood, the application of such molecules must somehow 
modify the hormone balance, affecting plant growth and 
development (Souleimanov et al. 2002). The most effec-
tive contribution of LCOs to non-leguminous plants 
might be the stimulation of root development, increas-
ing the absorption of water and nutrients and resulting in 
improved plant growth and yields (Smith et al. 2015). In 
the field experiments performed in our study, the appli-
cation of LCOs-rich rhizobial metabolites seems to have 
affected the N metabolism, increasing the N content of 
shoots and grains, and also influencing grain yield.

Our results have also shown that the application of 
LCOs-rich rhizobial metabolites by leaf spray resulted 
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in higher grain yields. Khan (2003) also observed that 
the leaf application of LCOs in maize stimulated pho-
tosynthesis, increased leaf area and shoot dry weight. 
In another study, Chen et  al. (2006) applied LCOs 
of Bradyrhizobium japonicum to tomato leaves and 
observed the anticipation of flowering and fruiting and 
an increase in the number and weight of fruits under 
greenhouse conditions, as well as a 30 % increase in the 
number and fruit weight in a field experiment. The ben-
efits of LCOs leaf spray can be attributed to the fact that 
these molecules indirectly affect the photosynthesis and 
accelerate growth, probably by the stimulation of mitotic 
activity in meristematic tissue of leaves (Khan et al. 2008). 
It can also be inferred that the foliar application of LCOs 
promotes the suppression of innate immune responses, 
which possibly facilitates the microbial interactions, such 
as the invasion and colonization by endophytic bacteria 
(Liang et al. 2013).

The rationale of the utilization of metabolites of R. trop-
ici CIAT 899 enriched on LCOs was based on some inter-
esting properties of this strain, which produces a broad 
variety of LCOs, even in the absence of inducing flavo-
noids, when subjected to abiotic stresses such as acid-
ity (Morón et  al. 2005) and salinity (Estévez et  al. 2009; 
del Cerro et al. 2015a, b). R. tropici carries five copies of 
nod gene (Ormeño-Orrillo et al. 2012) and, recently, the 
synthesis of several LCOs structures related to nodD1, 
nodD2, nodD3, nodD4 and nodD5 genes has been eluci-
dated (del Cerro et al. 2015a, b). The production of a large 
variety of LCOs by R. tropici CIAT 899 may represent a 
strategy for nodulation of several host plants under vari-
ous environmental stressful conditions (Liang et al. 2013; 
del Cerro et al. 2015a, b). Consequently, it is possible that 
these LCOs also favor the systemic resistance, particu-
larly in leaf spray, giving greater vigor to the plants, and 
resulting in increases in crops yields. Therefore, it is likely 
that LCOs have a broad spectrum of action in regulating 
plant growth, in addition to its primary function in nodu-
lation of legumes.

The results of our study reveal the biotechnological 
potential of adding microbial metabolites, in our case 
rhizobial metabolites enriched with LCOs to products 
for leaf spray and seed inoculation of non-leguminous 
plants, such as maize. This knowledge can be applied 
to the improvement of commercial products, taking 
into account the need for developing a new generation 
of inoculants carrying microorganisms and microbial 
metabolites.
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