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Abstract: Laboratory-based gait assessments are indicative of clinical outcomes (e.g., disease iden-
tification). Real-world gait may be more sensitive to clinical outcomes, as impairments may be
exaggerated in complex environments. This study aims to investigate how different environments
(e.g., lab, real world) impact gait. Different walking bout lengths in the real world will be considered
proxy measures of context. Data collected in different dementia disease subtypes will be analysed
as disease-specific gait impairments are reported between these groups. Thirty-two people with
cognitive impairment due to Alzheimer’s disease (AD), 28 due to dementia with Lewy bodies (DLB)
and 25 controls were recruited. Participants wore a tri-axial accelerometer for six 10 m walks in lab
settings, and continuously for seven days in the real world. Fourteen gait characteristics across five
domains were measured (i.e., pace, variability, rhythm, asymmetry, postural control). In the lab,
the DLB group showed greater step length variability (p = 0.008) compared to AD. Both subtypes
demonstrated significant gait impairments (p < 0.01) compared to controls. In the real world, only
very short walking bouts (<10 s) demonstrated different gait impairments between subtypes. The
context where walking occurs impacts signatures of gait impairment in dementia subtypes. To
develop real-world gait assessment as a clinical tool, algorithms and metrics must accommodate for
changes in context.

Keywords: wearable technology; gait; dementia; accelerometer; continuous monitoring; real-
world environments

1. Introduction

Gait assessment may produce clinically meaningful outcomes, such as prediction
and discrimination of neurological disorders from healthy controls [1–5], differentiation of
dementia disease subtypes [3], monitoring progression of disease [6], reflecting cognitive
impairments [7], identification of fall risk and freezing of gait [8–11], and assessment of
treatment and rehabilitation efficacy [12,13]. While the majority of gait assessment occurs in
clinical or lab-based environments, the advent of wearable technology has led to growing
interest in continuously assessing gait in the real world in neurological populations such as
those with dementia and Parkinson’s disease (PD). Wearable technology refers to mobile
devices incorporating sensors which can be worn on the body or embedded into clothing,
watches or bracelets. They can be worn continuously for extended periods of time, offering
a novel and realistic perspective of gait [12]. There has been a significant growth in research
examining real-world gait using wearable technology, with many studies employing a single
tri-axial accelerometer on the body for unobtrusive data collection [8,14,15]. Accelerometers
are a useful method of real-world data collection due to their inexpensive nature, ability to
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collect spatiotemporal and macro gait information (e.g., physical activity measures) and
their timely set-up.

It is hypothesised that real-world gait is more sensitive to disease-specific signatures of
gait impairment compared to clinical and lab settings, due to the complexity and challenges
of the environments [16]. While gait in the lab usually involves walking in a straight line at
a consistent pace, real-world gait involves manoeuvring over different terrains, sharp and
gradual turns and adaption of gait characteristics to differing environments. Therefore,
measuring gait in a clinic or lab may only provide a narrow snapshot of performance ca-
pacity (i.e., what you can do in the best possible circumstances) as opposed to a continuous
picture of true function (i.e., what you really do in a varying environment). Following
this proposal, it has been suggested that real-world gait, as obtained by digital technology
such as accelerometers, may provide more sensitive clinical endpoints for diagnostic and
therapeutic purposes [15,17].

However, real-world gait analysis is still in its early stages and there is limited under-
standing surrounding “best practice” for data processing, analysis and interpretation [15].
One key area to gain a better understanding of is the impact of environment on gait and
how to account for this when using gait as a clinical endpoint. This is integral to refin-
ing algorithms and applications of wearable technology for gait assessment in the real
world. Initial comparisons of gait in the lab (measuring performance capacity) and in the
real world (measuring true function) are required to form the base of this understanding.
Additionally, considering the different contexts people move within may be a useful con-
sideration for interpreting real-world data. Different walking bout lengths likely reflect
different environmental contexts of walking. For example, if a person is walking from one
room to the next, we may expect a short walking bout (<30 s), while walking outside in a
community environment may be a period of sustained walking (>60 s; [15]). To choose the
optimal environment and context for assessing gait for future clinical use, we must first
understand how these circumstances impact signatures of gait impairment.

This paper aims to investigate if gait assessments in both the lab and the real world
can provide signatures of gait impairment that can discriminate between dementia disease
subtypes and normal ageing, as assessed by wearable technology and if different walking
bout lengths (serving as a proxy for real-world environmental contexts) can affect these
signatures of gait impairment. It will report data from cognitively intact older adults and
people with cognitive impairment due to Alzheimer’s disease (AD) and dementia with
Lewy bodies (DLB), as these have previously been shown to have distinguishing signatures
of gait impairment [3,18]. Therefore, we hypothesise that (1) DLB will demonstrate greater
gait impairments compared to AD in all environments, (2) AD and DLB will demonstrate
significant gait impairments compared to cognitively intact older adults when undertaking
longer bout lengths in the real world, and (3) a greater number of gait characteristics will
be impaired in dementia disease subtypes when in real-world environments compared to
the lab. The intention of this exploratory cross-sectional study is to present gait data from
both lab-based and real-world settings in dementia disease subtypes and controls, to allow
for future generation of hypotheses, assessments and study protocols. Hypotheses will be
explored through comparative analysis between the three groups.

2. Materials and Methods
2.1. Study Participants

Participants included people with mild cognitive impairment (MCI) and probable
dementia due to AD and DLB and similarly aged controls without any signs of cognitive
impairment. Participants were recruited through a number of channels, including through
Old Age Psychiatric, Geriatric Medicine or Neurology services after routine diagnostic
assessments according to usual NHS practice, via the National Institute for Health Research
Clinical Research Network portfolio, and by liaising with other ongoing clinical studies at
Newcastle University to identify and approach potential suitable participants.



Sensors 2021, 21, 813 3 of 15

Participants’ medical notes and assessments were reviewed by two independent
clinicians who verified disease diagnosis, with a third clinician providing consensus di-
agnosis when disagreements arose. Formal diagnostic criteria for AD and DLB [19,20]
and MCI [21,22] were used; MCI due to AD and Lewy body disease were identified as
described in Donaghy [23] and King [24]. Inclusion and exclusion criteria for this study
has previously been described in Mc Ardle [3]. This study was approved by the NHS Local
Research Ethics Committee, Newcastle and North Tyneside. Reference: 16/NE/005, IRAS
project ID: 192941.

2.2. Clinical and Cognitive Assessment

Age, sex, height, body mass and falls incidence in the last 12 months were recorded.
The Cumulative illness rating scale—Geriatrics (CIRS-G) assessed co-morbidities, the
National Adult Reading Test (NART) measured premorbid intelligence and the Bristol
Activities of Daily Living Scale (BADLS) assessed impairments in activities of daily living.
Movement Disorders Society Unified Parkinson’s Disease Rating Scale Part III (UPDRS-III)
assessed severity of motor disease, and the Clinical Dementia Rating Scale (CDR) assessed
dementia severity. Global cognition was measured using the standardised Mini Mental
State Examination (sMMSE) and Addenbrookes Cognitive Examination III (ACE-III).

2.3. Gait Assessment

For lab-based gait assessment, participants were asked to wear a body-worn mon-
itor (Axivity AX3, York, UK; dimensions 23.0 × 32.5 × 7.6 mm; weight: 11 g; real-time
accuracy/precision 20 parts per million) on their lower back. The monitor was attached
to the skin above the fifth lumbar vertebra (L5) with double-sided tape and secured with
Hypafix tape (see Figure 1). Participants were asked to carry out six ten-metre walks at
their comfortable pace [3,18]. For real-world gait assessment, the body-worn monitor was
placed on participants’ lower backs continuously for seven days [14].

2.4. Data Processing

For both lab-based and real-world gait, fourteen spatiotemporal gait characteristics
were derived. Data from the body-worn monitors were downloaded to a computer and
segmented by day. Analysis was carried out using a MATLAB®(2015A) programme. The
full process from initial placement of the body-worn sensor through to data extraction and
output is described in Figure 1. Accelerometer signals were transformed to a horizontal-
vertical coordinate system and filtered with a 4th order Butterworth filter at 20 Hz in order
to remove noise from the signal. Walking bouts were identified by applying selective
thresholds on the magnitude of vector and the standard deviation of tri-axial acceleration
signals (further detailed in Hickey [25]). For the real-world data processing, a minimum
bout length of three consecutive steps was applied and a resting time threshold of 2.5 s—for
example, if an individual stopped for longer than 2.5 s, their next three steps would be
considered a new walking bout. This enhanced robustness and allowed us to remain
consistent with previous published findings [2,14].

For each bout, the Gaussian continuous wavelet transform was applied to the vertical
acceleration signal to allow identification of initial contact (heel strike) and final contact
(toe-off) event of the gait cycle were identified, representing a step. From this, the mean
time it takes to make a step can be calculated, subsequently allowing the calculation of
mean stance and swing time [26]. Step length is calculated using the inverted pendulum
model [27,28]. This approach uses the vertical motion of the trunk and monitor height
(as a proxy for leg length) to estimate mean step length by assuming movement in the
sagittal plane which approximately follows a sinusoidal motion during each single-leg
stance phase.
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Figure 1. Illustration of gait protocol from initial body-worn monitor placement to data output, adapted from Mc Ardle 
[14]. (a) Example of body worn monitor placement for free-living data collection on L5 centrally located on the lower back; 
(b) gait protocols for lab and real-world assessment; (c) examples of lab and real-world accelerometer signals; (d) the raw 
vertical acceleration signal segmented into walking bouts; (e) conceptual model of gait representing domains and 14 gait 

Figure 1. Illustration of gait protocol from initial body-worn monitor placement to data output, adapted from Mc Ardle [14].
(a) Example of body worn monitor placement for free-living data collection on L5 centrally located on the lower back;
(b) gait protocols for lab and real-world assessment; (c) examples of lab and real-world accelerometer signals; (d) the
raw vertical acceleration signal segmented into walking bouts; (e) conceptual model of gait representing domains and 14
gait characteristics. Figure adapted from Mc Ardle et al. (2018). The publication is available at IOS Press through DOI:
10.3233/JAD-171116.
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Step velocity was calculated from the ratio of step length to step time [27]. Variability
of step, stance and swing time, step velocity and step length were determined by the
standard deviations of all steps. Asymmetry was calculated using the absolute difference
of consecutive steps (i.e., odd and even). These characteristics have been validated in the
lab with measures obtained from the GaitRite Mat [26]; however, there was poor–moderate
agreement with asymmetry and variability characteristics, which should be noted when
interpreting results.

For lab-based assessment, we considered each walking pass separately, while in the
real-world data, we calculated gait characteristics for each discrete walking bout and then
calculated the mean across all bouts [8,14,26].

2.5. Data Analysis

Data were assessed for normality by inspection of histograms and boxplots and the
Shapiro–Wilk test. Levene’s test assessed homogeneity of variance. Chi-square tests
determined differences between groups for gender and faller status (participants with
and without falls during the previous year). One-way analysis of variance (ANOVA) and
Kruskal Wallis tests examined differences between groups for all demographic, cognitive
and clinical variables (determined by p < 0.05); where the differences lay was established
using post-hoc analysis of independent t-tests and Mann Whitney U tests. In line with
Aim One, we used one-way ANOVA and Kruskal Wallis tests to investigate if the three
groups demonstrated between-group differences for each gait characteristic measured in
the lab and the real world (encompassing all walking bouts). Post-hoc independent t-tests
and Mann Whitney U tests were used to identify where the differences lay. Sensitivity
analysis was conducted whereby results from both parametric and non-parametric tests
were compared for non-normally distributed variables; where results did not change
interpretation, results from one-way ANOVAs were reported. The value of statistical
significance was set at (α = 0.01) in order to account for multiple comparisons; this was
applied to both between-group analysis and subsequent post-hoc tests. A threshold of
α = 0.01 was set a priori to aid interpretation of results and was a compromise between
protecting against type I errors due to multiple corrections, and type II errors, given the
exploratory nature of this study [29,30]. For full transparency and to allow the readers to
assess the robustness of our interpretation, we have provided unadjusted α values up to
3 decimal points in our results section. In line with Aim Two, we used one-way ANOVA
and Kruskal Wallis tests, where appropriate, to explore between-group differences for
each gait characteristic measured in different walking bout lengths. This encompassed
four discrete bout lengths: in only very short real-world walking bouts (<10 s), in only
real-world short walking bouts (<30 s), in only medium real-world walking bouts (30–60 s),
and in only long real-world walking bouts (>60 s). Similarly, post-hoc independent t-tests
and Mann Whitney U tests identified where the differences lay, and statistical significance
was set at (α = 0.01).

We also undertook secondary analysis using Pearson’s correlations to identify as-
sociations between characteristics for lab-based and real-world gait to aid interpretation
of data.

3. Results
3.1. Participants

In total, 125 participants were recruited to the study; only AD, DLB and control
participants with both lab-based and real-world gait assessment were included in this
analysis (n = 85). This left 32 with cognitive impairment due to AD, 28 due to DLB, and
25 controls. Groups were composed of predominately mild dementia cases (see Table 1
for all clinical and demographic information). All participants had capacity to consent to
participation in the study in accordance with the Mental Capacity Act [31], and provided
written informed consent.
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Table 1. Demographic, clinical and cognitive information for all groups.

Differences between
All Groups

Controls AD DLB F/X2 P

N 25 32 28
Age 74 ± 9 77 ± 6 76 ± 6 0.9 0.405

Gender (m/f) 11/14 D 15/17 D 22/6 A,C 8.3 (138) * 0.015
Height (m) 1.67 ± 0.10 1.67 ± 0.11 1.70 ± 0.10 1.5 † 0.464
Weight (kg) 75.6 ± 16.4 72.3 ± 12.2 78.0 ± 12.8 2.4 † 0.300

BMI 26.83 ± 4.33 26.03 ± 4.62 27.24 ± 4.82 0.1 0.833
Faller (Yes/No) 5/19 A,D 15/17 C 17/11 C 8.5 * 0.014

NART 122 ± 3 A,D 117 ± 6 C 115 ± 6 C 23.3 † <0.001
sMMSE (0–30) 29 ± 1 A,D 23 ± 4 C 24 ± 4 C 44.5 † <0.001
ACE-III (0–100) 96 ± 3 A,D 72 ± 13 C 73 ± 18 C 50.0 † <0.001

CDR (0–3) 0 ± 0 A,D 0.8 ± 0.3 C 0.8 ± 0.3 C 70.0 <0.001
UPDRS (0–108) 2 ± 3 A,D 7 ± 6 C,D 23 ± 15 C,A 43.2 † <0.001

CIRS-G 5 ± 3 A,D 8 ± 4 C 10 ± 4 C 21.8 † <0.001
GDS 1 ± 1 A,D 4 ± 3 C 5 ± 3 C 29.2 † <0.001
ABC 93 ± 10 A,D 80 ± 18 C 81 ± 17 C 12.9 † 0.002

BADLS 0 ± 0 A,*,D 9 ± 7 C 13 ± 6 C 43.8 † <0.001
BMI = Body Mass Index, NART = National Adult Reading Test, sMMSE = Standardised Mini Mental State
Examination, CDR = Clinical Dementia Rating Scale, UPDRS-III = Unified Parkinson’s Disease Rating Scale III,
CIRS-G = Cumulative Illness Rating Scale—Geriatrics, GDS = Geriatric Depression Scale, ABC = Activity Balance
Confidence Scale, BADLS = Bristol Activities of Daily Living Scale. P value in the table represents difference
between groups derived from Kruskal Wallis tests, ANOVA or chi-square tests; * marks results determined
from chi-square tests, † indicates where results were determined from Kruskal Wallis tests. Degrees of freedom
relating to ANOVA and chi-square results = 2. Annotations within table represents differences between groups
from t-tests, Mann Whitney U tests, or chi-square tests and are interpreted as follows: C = different to controls,
A = different to AD, D = different to DLB.

3.2. Proportion of Complete Datasets

For the lab-based gait assessment, six participant datasets (6%) were lost due to user
error, such as device not syncing (n = 3), wrong trial time recorded (n = 2), and accelerometer
not turned on (n = 1). For the real-world gait assessment, four participant datasets (4%)
were lost due to problems with data upload (n = 2), refusal to wear the monitor (n = 1)
and the monitor being lost in the post (n = 1). Therefore, we included 89% of the original
datasets collected in participant’s with AD, DLB and controls.

From the included datasets, five participants (6%) had less than seven days data
collected due to hospitalisation (n = 1), discomfort (n = 1) and quality checks (n = 3). All
participants had over three days of data collected; 3–7 days of data collection is the current
standard of free-living gait analysis [15].

3.3. Does Lab-Based and Real-World Gait Assessment Produce Similar Signatures of Gait
Impairment?
3.3.1. Lab-Based Gait Assessment

In the lab, people with DLB demonstrated significantly greater step length variability
(p = 0.008) compared to people with AD (see Table 2). Both dementia disease groups were
more variable for step, stance and swing time (p < 0.01), spent longer in swing time (<0.01)
and had greater swing time asymmetry (p < 0.01) in comparison to controls. Additionally,
people with DLB walked slower (p = 0.010), with greater step velocity variability (p < 0.001)
and longer step time (p = 0.001) compared to controls.
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Table 2. Differences in gait impairment between dementia disease groups and controls in both lab and real-world settings.

Lab-Based Gait Controls AD DLB F p Sig Real-World Gait Controls AD DLB F p Sig

N 25 32 28 25 32 28

Mean step count 109 115 11 99,224 78,794 72,482

Pace Pace

Step Velocity (m/s) 1.02 ± 143 0.90 ± 0.17 0.92 ± 0.13 9.05 0.014 Step Velocity (m/s) 1.08 ± 0.08 1.02 ± 0.11 0.98 ± 0.10 7.2 0.001 b
Step Length (m) 0.55 ± 0.08 0.52 ± 0.08 0.54 ± 0.065 1.7 0.193 Step Length (m) 0.61 ± 0.04 0.58 ± 0.05 0.56 ± 0.05 7.2 0.001 b
Step Time SD (s) 0.026 ± 0.015 0.043 ± 0.025 0.062 ± 0.045 9.1 <0.001 a,b Step Time SD (s) 0.166 ± 0.014 0.175 ± 0.018 0.177 ± 0.016 4.8 0.010 b

Swing Time SD (s) 0.021 ± 0.009 0.042 ± 0.024 0.053 ± 0.030 12.8 <0.001 a,b Swing Time SD (s) 0.140 ± 0.012 0.146 ± 0.015 0.152 ± 0.014 5.0 0.009 b
Stance Time SD (s) 0.027 ± 0.013 0.048 ± 0.027 0.065 ± 0.042 10.7 <0.001 a,b Stance Time SD (s) 0.177 ± 0.016 0.187 ± 0.019 0.193 ± 0.018 5.2 0.007 b

Variability Variability

Step Length SD (m) 0.043 ± 0.019 0.060 ± 0.026 0.082 ± 0.034 13.4 <0.001 a,b,c Step Length SD (m) 0.149 ± 0.017 0.147 ± 0.013 0.153 ± 0.008 1.5 0.226
Step Vel SD (m/s) 0.084 ± 0.032 0.107 ± 0.045 0.142 ± 0.057 10.6 <0.001 b Step Vel SD (m/s) 0.359 ± 0.033 0.358 ± 0.033 0.369 ± 0.037 0.8 0.445

Rhythm Rhythm

Step Time (s) 0.543 ± 0.048 0.576 ± 0.056 0.594 ± 0.060 5.8 0.004 b Step Time (s) 0.594 ± 0.030 0.604 ± 0.024 0.603 ± 0.030 1.1 0.333
Swing Time (s) 0.387 ± 0.041 0.423 ± 0.053 0.441 ± 0.064 7.0 0.002 a,b Swing Time (s) 0.445 ± 0.029 0.458 ± 0.026 0.457 ± 0.028 0.9 0.396
Stance Time (s) 0.699 ± 0.059 0.727 ± 0.067 0.744 ± 0.066 3.3 0.042 Stance Time (s) 0.743 ± 0.034 0.754 ± 0.025 0.752 ± 0.035 1.9 0.150

Asymmetry Asymmetry

Step Time Asy (s) 0.024 ± 0.016 0.034 ± 0.023 0.034 ± 0.019 2.3 0.112 Step Time Asy (s) 0.093 ± 0.008 0.099 ± 0.013 0.095 ± 0.008 2.7 0.073
Swing Time Asy (s) 0.021 ± 0.012 0.039 ± 0.029 0.034 ± 0.020 5.2 0.007 a,b Swing Time Asy (s) 0.086 ± 0.008 0.090 ± 0.011 0.089 ± 0.009 1.8 0.179
Stance Time Asy (s) 0.021 ± 0.012 0.039 ± 0.027 0.034 ± 0.019 4.7 0.011 Stance Time Asy (s) 0.095 ± 0.008 0.100 ± 0.013 0.096 ± 0.010 2.4 0.096

Postural Control Postural Control

Step Length Asy (m) 0.067 ± 0.039 0.104 ± 0.070 0.088 ± 0.061 2.7 0.076 Step Length Asy (m) 0.086 ± 0.007 0.089 ± 0.012 0.082 ± 0.010 3.4 0.040

p value in table represents differences between all groups as reported from ANOVA. Statistical significance set at α = 0.01. Sig annotations within table represents differences between groups from t-tests and are
interpreted as follows: a = differences between AD and controls, b = difference between DLB and controls, c = differences between AD and DLB. Other abbreviations include: SD = within-person standard
deviation (i.e., gait variability), asy = asymmetry, m = metre, s = second, ms = millisecond.
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3.3.2. Real-World Gait

When considering all bouts over three steps in the real world, there were no significant
differences between AD and DLB or between AD and controls at the threshold of p ≤ 0.01
(see Table 2). People with DLB walked slower (p < 0.001) with shorter steps (p < 0.001),
and greater variability for step (p = 0.002), swing (p = 0.002) and stance time (p = 0.001)
compared to controls.

3.3.3. Associations between Lab-Based and Real-World Gait

There were moderate–positive correlations between performance in the lab and the
real world for pace (step velocity (r = 0.530, p < 0.001), step length (r = 0.589, p < 0.001)),
rhythm (step time (r = 0.523, p < 0.001), swing time (r = 0.522, p < 0.001), stance time
(r = 0.552, p < 0.001)) and asymmetry (step time asymmetry (r = 0.451, p < 0.001), swing
time asymmetry (r = 0.476, p < 0.001) and stance time asymmetry (r = 0.499, p < 0.001)).

However, there were no correlations (p > 0.05) between the lab and the real world
for any characteristics pertaining to variability or postural control (step length asymme-
try). When examining trends, all groups appear to walk faster with longer steps, greater
variability and asymmetry and longer timing of gait in the real world compared to in
the lab.

3.4. Do Discrete Bout Lengths Impact Discriminative Signatures of Gait Impairment in the
Real World?

<10 s walking bouts
When considering very short walking bouts, people with DLB demonstrated signifi-

cantly shorter steps (p = 0.007) and less step length asymmetry (p = 0.002) compared to the
AD group (see Table 3). They also had shorter steps (p < 0.001), less step length variability
(p = 0.002) and less step length asymmetry (p = 0.003) compared to controls. There were no
differences between the AD group and controls. All results are illustrated in Figure 2.
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Figure 2. Gait impairments between groups across all conditions. Green = characteristic is significantly greater in the first
group than the second. Red = characteristic is significantly less in the first group than the second.
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Table 3. Differences in gait impairment between groups in discrete walking bout lengths in the real world.

<10 s Bouts 10–30 s Bouts

Controls AD DLB (p) Controls AD DLB (p)

Bouts per day 359 ± 102 356 ± 151 339 ± 126 0.723 199 ± 59 195 ± 70 186 ± 74 0.697
Steps per day 1775 ± 546 1763 ± 735 1784 ± 700 0.992 3694 ± 1093 3660 ± 1314 3583 ± 1424 0.950

Pace

Step Velocity (m/s) 0.91 ± 0.06 0.89 ± 0.09 0.86 ± 0.08 0.062 1.01 ± 0.06 0.98 ± 0.09 0.96 ± 0.09 0.019 †
Step Length (m) 0.53 ± 0.02 0.52 ± 0.03 0.49 ± 0.03 ≤0.001 † 0.58 ± 0.03 0.56 ± 0.04 0.54 ± 0.04 0.001 †

Swing SD (s) 0.170 ± 0.013 0.169 ± 0.012 0.170 ± 0.012 0.951 0.156 ± 0.012 0.155 ± 0.015 0.160 ± 0.015 0.336
Step Time SD (s) 0.206 ± 0.013 0.207 ± 0.01 0.205 ± 0.014 0.564 † 0.183 ± 0.014 0.184 ± 0.016 0.189 ± 0.018 0.702 †

Stance SD (s) 0.220 ± 0.013 0.220 ± 0.014 0.220 ± 0.014 0.881 † 0.195 ± 0.014 0.196 ± 0.016 0.202 ± 0.020 0.263

Variability (SD)

Step Velocity SD
(m/s) 0.384 ± 0.027 0.376 ± 0.044 0.370 ± 0.042 0.276 † 0.380 ± 0.030 0.372 ± 0.039 0.379 ± 0.042 0.588

Step Length SD (m) 0.163 ± 0.007 0.158 ± 0.009 0.156 ± 0.009 0.009 † 0.153 ± 0.009 0.151 ± 0.009 0.153 ± 0.008 0.548 †

Rhythm

Step Time (ms) 0.616 ± 0.022 0.614 ± 0.029 0.602 ± 0.025 0.107 0.618 ± 0.027 0.618 ± 0.030 0.610 ± 0.030 0.476
Swing (ms) 0.472 ± 0.023 0.471 ± 0.029 0.461 ± 0.023 0.163 † 0.473 ± 0.028 0.476 ± 0.32 0.468 ± 0.029 0.560
Stance (ms) 0.764 ± 0.024 0.763 ± 0.031 0.750 ± 0.030 0.131 † 0.767 ± 0.028 0.765 ± 0.030 0.758 ± 0.035 0.516

Asymmetry

Step Time Asy (ms) 0.162 ± 0.012 0.170 ± 0.021 0.160 ± 0.013 0.086 † 0.072 ± 0.007 0.075 ± 0.012 0.072 ± 0.009 0.573 †
Swing Asy (ms) 0.123 ± 0.010 0.127 ± 0.017 0.122 ± 0.012 0.765 † 0.067 ± 0.007 0.070 ± 0.011 0.067 ± 0.009 0.526 †
Stance Asy (ms) 0.165 ± 0.011 0.171 ± 0.019 0.162 ± 0.014 0.132 † 0.073 ± 0.007 0.076 ± 0.012 0.073 ± 0.009 0.565 †

Postural Control

Step Length Asy (m) 0.121 ± 0.010 0.121 ± 0.015 0.110 ± 0.014 0.002 † 0.081 ± 0.008 0.080 ± 0.013 0.073 ± 0.012 0.014 †

30–60 s bouts >60 s bouts

Controls AD DLB (p) Controls AD DLB (p)

Bouts per day 42 ± 15 38 ± 16 36 ± 19 0.311 26 ± 12 18 ± 8 16 ± 11 0.011

Steps per day 2105 ± 715 1846 ± 788 1783 ± 956 0.334 6601 ± 3621 4228 ± 2956 3205 ± 2786 0.001

Pace

Step Velocity (m/s) 1.05 ± 0.06 1.01 ± 0.08 1.00 ± 0.11 0.112 1.15 ± 0.11 1.08 ± 0.13 1.05 ± 0.13 0.010
Step Length (m) 0.60 ± 0.03 0.58 ± 0.04 0.57 ± 0.04 0.019 † 0.63 ± 0.06 0.60 ± 0.06 0.59 ± 0.06 0.044

Swing SD (s) 0.149 ± 0.010 0.151 ± 0.015 0.155 ± 0.018 0.283 0.114 ± 0.019 0.125 ± 0.025 0.129 ± 0.025 0.069
Step Time SD (s) 0.175 ± 0.012 0.179 ± 0.019 0.183 ± 0.022 0.263 0.137 ± 0.024 0.149 ± 0.033 0.153 ± 0.032 0.119

Stance SD (s) 0.186 ± 0.013 0.190 ± 0.021 0.195 ± 0.023 0.225 0.147 ± 0.027 0.161 ± 0.036 0.153 ± 0.032 0.110

Variability (SD)

Step Velocity SD
(m/s) 0.366 ± 0.030 0.364 ± 0.037 0.372 ± 0.042 0.706 0.316 ± 0.054 0.320 ± 0.063 0.329 ± 0.058 0.719

Step Length SD (m) 0.150 ± 0.011 0.148 ± 0.012 0.151 ± 0.010 0.702 † 0.132 ± 0.028 0.133 ± 0.025 0.138 ± 0.020 0.534 †

Rhythm

Step Time (ms) 0.614 ± 0.027 0.615 ± 0.025 0.612 ± 0.036 0.934 0.570 ± 0.042 0.588 ± 0.031 0.594 ± 0.39 0.161 †
Swing (ms) 0.466 ± 0.026 0.470 ± 0.025 0.467 ± 0.034 0.876 0.419 ± 0.035 0.437 ± 0.027 0.443 ± 0.036 0.023
Stance (ms) 0.763 ± 0.029 0.764 ± 0.026 0.761 ± 0.042 0.920 0.719 ± 0.050 0.737 ± 0.036 0.746 ± 0.044 0.194 †

Asymmetry

Step Time Asy (ms) 0.040 ± 0.005 0.042 ± 0.007 0.043 ± 0.006 0.327 † 0.023 ± 0.006 0.027 ± 0.006 0.027 ± 0.007 0.040 †
Swing Asy (ms) 0.036 ± 0.005 0.038 ± 0.006 0.038 ± 0.006 0.206 † 0.021 ± 0.005 0.025 ± 0.006 0.025 ± 0.006 0.022 †
Stance Asy (ms) 0.040 ± 0.005 0.042 ± 0.007 0.042 ± 0.007 0.410 † 0.023 ± 0.005 0.027 ± 0.006 0.026 ± 0.007 0.017 †

Postural Control

Step Length Asy (m) 0.048 ± 0.006 0.50 ± 0.010 0.047 ± 0.009 0.308 † 0.026 ± 0.007 0.031 ± 0.015 0.032 ± 0.009 0.040

p value in table represents differences between all groups as reported from ANOVA/Kruskal Wallis tests. † indicates where results were
determined from Kruskal Wallis tests. Statistical significance set at α = 0.01. Other abbreviations include: SD =within-person standard
deviation (i.e., gait variability), asy = asymmetry, m = metre, s = second, ms = millisecond.

10–30 s walking bouts
In short walking bouts, people with DLB had significantly shorter steps (p <0.001) than

controls (see Table 3). However, there were no other group differences found (p ≤ 0.01).
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30–60 s walking bouts
There were no differences in gait impairment between groups during medium walking

bouts (p ≤ 0.01; see Table 3).
>60 s walking bouts
In sustained walking bouts, people with DLB walked slower (p = 0.003) compared to

controls; there were no other differences between groups (p > 0.01; see Table 3).
Associations between Lab-Based and Real-World Gait Characteristics within Discrete

Bout Lengths.
<10 s walking bouts
There were weak–moderate correlations between gait in the lab and gait in the real

world for very short walking bouts in the following characteristics: pace (step length
(r = 0.360; p < 0.001)), rhythm (stance time (r = 0.224, p = 0.041)) and asymmetry (swing
time asymmetry (r = 0.420; p < 0.001) and stance time asymmetry (r = 0.410, p < 0.001)).

10–30 s walking bouts
There were weak–moderate correlations between gait in the lab and gait in the real

world for short walking bouts in the following characteristics: pace (step velocity (r = 0.289;
p = 0.008), step length (r = 0.496; p < 0.001)), rhythm (step time (r = 0.319; p = 0.003), swing
time (r = 0.276; p = 0.011), stance time (r = 0.411, p < 0.001)) and asymmetry (step time
asymmetry (r = 0.259, p = 0.017), swing time asymmetry (r = 0.452; p < 0.001) and stance
time asymmetry (r = 0.409; p < 0.001)).

30–60 s walking bouts
There were weak–moderate correlations between gait in the lab and gait in the real

world for medium walking bouts in the following characteristics: pace (step velocity
(r = 0.348; p < 0.001), step length (r = 0.569; p < 0.001)), rhythm (step time (r = 0.356;
p < 0.001), swing time (r = 0.341; p = 0.002), stance time (r = 0.424, p < 0.001)) and asymmetry
(step time asymmetry (r = 0.397, p < 0.001), swing time asymmetry (r = 0.486; p < 0.001)
and stance time asymmetry (r = 0.501; p < 0.001)).

>60 s walking bouts
There were weak–moderate correlations between gait in the lab and gait in the real

world for sustained walking bouts in the following characteristics: pace (step velocity
(r = 0.548; p < 0.001), step length (r = 0.641; p < 0.001)), rhythm (step time (r = 0.535;
p < 0.001), swing time (r = 0.542; p = 0.002), stance time (r = 0.539, p < 0.001)) and asymmetry
(step time asymmetry (r = 0.286, p = 0.008), swing time asymmetry (r = 0.437; p < 0.001)
and stance time asymmetry (r = 0.377; p < 0.001)).

4. Discussion

The main aim of this paper was to investigate if assessing gait with wearable tech-
nology in the lab and the real world provides similar signatures of gait impairment that
discriminate between dementia disease groups and normal ageing, and to consider the
impact of different walking bout lengths, as proxy measures of different contexts, on pat-
terns of gait impairment. Data from people with AD, DLB and cognitively intact older
adults were reported, as disease-specific signatures of gait impairment has previously
been demonstrated [3]. Contrary to speculations in the literature [15], results from this
study indicate that gait impairments measured in controlled lab-based conditions may be
better at distinguishing between AD and DLB, and between AD and controls, regardless of
walking bout length. Therefore, gait in the lab and the real world depict different patterns
of gait impairment, regardless of walking bout length.

4.1. The Impact of Environment on Gait

As expected and predicted by Hypotheses 1 and 2, people with DLB had significantly
greater gait impairment than the AD group and both disease groups had impaired patterns
of gait compared to controls. However, in contrast to Hypothesis 3, these findings were
most evident in controlled laboratory settings; there were no significant differences be-
tween AD and controls during real-world gait, and only very short walking bouts showed
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differences between DLB and AD. This brings back the question of performance capacity
versus true function, and how these differing strategies and environments may affect gait.
In laboratory settings, participants are asked to attend to the gait task and may improve
their performance compared to their real-world gait. However, this may depend on cog-
nitive capacity as gait requires significant interaction with complex cognitive processes
such as executive function and attention [7,32], and people with cognitive impairment may
not be able to improve their gait to the same degree as similarly aged cognitively intact
individuals. Control participants may have greater capacity to cognitively engage with gait
compared to AD participants, and therefore their “best” gait performance underlies the
significant differences in gait performance between these groups. In real-world environ-
ments, controls are demonstrating their “normal” gait without obtrusive observation; thus,
their daily function may more closely align to that of AD. Future research should consider
the diverse applications of assessing performance capacity and true function, as discrete
questions may require different methods, such as assessing impairments in performance
capacity to detect cognitive impairment.

Surprisingly, this study demonstrates that monitoring real-world gait could only iden-
tify impairments in people with DLB. Exploring gait in different walking bout lengths did
appear to reveal different patterns of gait impairment; longer walking bouts demonstrated
less differences in gait between groups. Perhaps the added environmental complexity of
the real world actually makes it more difficult to discern unique signatures of gait between
different pathologies. Real-world settings experienced between our participants are not
necessarily comparable. For example, it is suggested that longer walking bouts would more
likely take place in environments outside of the home [2]. For one participant, this may
require navigation around unkempt pavements or walking up steep slopes; for another,
it may be walking on a straight flat surface. Both environments are likely to impact gait
differently [33], and potentially explain why there were limited differences between groups
in the real world. When all participants carry out the same walking task in the same
environment such as a lab, the different patterns of gait impairment may be more likely to
be disease-specific or cognitively driven. When we monitor gait in the real world across
a range of varying complex environments, the differing environments themselves may
significantly confound our results. It is important to acknowledge such limitations when
choosing which method of gait analysis to use, as lab-based and real-world gait may be
better suited to different purposes. Lab-based gait may be best applied when examining
between-group differences, such as differentiating disease subtypes [18] while real-world
gait may be useful to monitor within-person changes such as disease progression and
responses to therapeutics or interventions [15].

Speculatively, such confounders may explain why there were no significant associa-
tions between measures of gait variability in the lab and the real world. Gait variability may
be particularly sensitive to environmental properties or dual-tasking inherent to everyday
life and change accordingly, and in turn, may have muted differences shown in the lab
between AD and controls, and AD and DLB. As gait variability is a key difference between
dementia disease subtypes, and is reflective of “higher-order” cognitive processes, such as
attention and executive function [3,7], it may be important to optimally assess this variable.
This is not to say that real-world gait should not be assessed, as it has potential to decrease
numbers of outpatient visits and reduce healthcare costs, provide objective evidence to
tailor and assess therapies and interventions, and improve how we deliver high-quality
care and precision medicine [34]. Unexpected results such as these simply serve to remind
us that there are still limitations to real-world gait assessment that need to be prioritised
and addressed.

4.2. Challenges and Future Directions for the Application of Wearable Technology to Assess
Real-World Gait

One of the key challenges to advancing real-world gait analysis is translating wearable
algorithms designed for and validated in controlled indoor experiments for use in real-
world settings [4,26]. These algorithms place a number of assumptions on experimental
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design, such as exact position of sensors and type of walking terrain. They do not account
for changes in environment or gait speed. Some algorithms have been developed by
simulating real-world environments, but their performance has yet to assessed for longer
periods of time [35]. The unobtrusive nature of wearable devices also means that in these
early stages of real-world gait assessment, we do not fully understand the impact of context
on discrete gait impairments. For example, in this study, people with DLB were less variable
and asymmetric compared to AD and controls in very short walking bouts—an unexpected
finding which is not easily interpretable without understanding how they interact with
environments experienced in very short walking bouts. The strongest correlations between
lab and real-world gait metrics were also found in the longer walking bouts, suggesting
the algorithm performs better in continuous walking—which only accounts for a small
proportion of total data collected. As such, we need to gain a better understanding about
how environmental context impacts gait, beyond considering length of walking bouts [36].
This could be done through initial validation with wearable cameras, and less obtrusively
with companion applications such as mobile GPS or assessment of the walkability of the
participants’ usual environment [37].

Additionally, there is yet to be a consensus on the best metrics to describe gait in the
real world. There are a wealth of alternative features of gait beyond those described in
this paper, such as frequency-based [12,38] and ambulatory activity metrics [39] alongside
emerging characteristics from gyroscopes applied to the real world [40], making it difficult
to pinpoint the most relevant characteristics within the literature. We recommend that
collaborative approaches should be adopted to move beyond small, isolated pilot studies
with a variety of metrics in order to accumulate and condense data, select target character-
istics and encourage “best-practice” standards for application and analysis of wearables
in clinical practice [34]. These collaborations should also engage with clinicians, patients
and regulatory bodies to ensure validated approaches are clinically relevant, easy to use,
cost-effective and contribute to clinical decisions beyond what can already be decided
from careful neurological examination and clinical phenotyping [41]. Target characteris-
tics should account for or be independent of environment and context, and may need to
characterise fluctuations in gait throughout the day as this may provide a more realistic
picture of functional abilities and disease progression [42]. As our knowledge advances,
we may need to consider real-world gait separately from lab-based gait, and understand
which method is most appropriate to answer discrete clinical questions.

4.3. Strengths and Limitations of the Current Study

A key strength of the current study is the acquisition of a well-characterised dementia
disease sample, whose disease subtype was ascertained via clinical consensus. This allows
greater confidence in our findings, although it should be noted that dementia diagnosis
can only be confirmed post-mortem. While this is the first study to report real-world gait
in AD and DLB, interpretation of results is limited by our small sample size. Due to the
exploratory nature of this study, we did not use stringent methods, such as Bonferroni
corrections, to account for multiple comparisons; as such, our results should be used to
guide future hypotheses in larger cohort studies to validate our findings. Additionally, the
algorithm employed in this study has previously been shown to exaggerate characteristics
of variability and asymmetry when compared to the same metrics derived from an instru-
mented walkway [18,26]. This may bring in the question of validity, and it could be argued
that using different or multiple sensor placements, such as one on the lower back and two
on the feet, or different devices, such as inertial measurement units or Kinect, may provide
more confidence in gait characteristics derived [43]. We chose to use a single accelerometer
placed on the lower back as this is less burdensome to wear for continuous monitoring of
gait, and the algorithm has been validated to accurately detect walking behaviours in the
real world [25]. However, the potential limitations that come with this approach highlight
the need for standardised assessment and reporting protocols in this field. As noted, we are
unaware of the environments that participants moved within for the duration of the study;
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future work could explore this by asking participants to keep a diary of their movements
or by integrating GPS devices into the study protocol. Different pathologies may require
different protocols and outcomes, and this should also be considered in future research.
Finally, our study results may have encountered social desirability bias, as participants
may have changed their walking behaviours due to wearing the device. As participants
wore the device continuously for seven days, habituation may have reduced this bias,
but without a follow-up questionnaire, we cannot confirm this. Future research should
examine this prospect in gait performance.

5. Conclusions

This study demonstrated that gait impairments assessed by wearable technology are
dependent on the environment in which walking takes place. Using wearable technology
in the lab may be useful as a clinical tool for differential diagnosis of dementia subtypes.
However, more research surrounding the role of environment and context is required to
translate these findings to real-world gait. Collaborative approaches are needed to address
these issues and studies such as this one may be more fruitful as strengthened algorithms
are applied retrospectively.
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