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Abstract

Variability in the risk of transmission for respiratory pathogens can result from several factors, including the intrinsic
properties of the pathogen, the immune state of the host and the host’s behaviour. It has been proposed that self-reported
social mixing patterns can explain the behavioural component of this variability, with simulated intervention studies based
on these data used routinely to inform public health policy. However, in the absence of robust studies with biological
endpoints for individuals, it is unclear how age and social behaviour contribute to infection risk. To examine how the
structure and nature of social contacts influenced infection risk over the course of a single epidemic, we designed a flexible
disease modelling framework: the population was divided into a series of increasingly detailed age and social contact
classes, with the transmissibility of each age-contact class determined by the average contacts of that class. Fitting the
models to serologically confirmed infection data from the 2009 Hong Kong influenza A/H1N1p pandemic, we found that an
individual’s risk of infection was influenced strongly by the average reported social mixing behaviour of their age group,
rather than by their personal reported contacts. We also identified the resolution of social mixing that shaped transmission:
epidemic dynamics were driven by intense contacts between children, a post-childhood drop in risky contacts and a
subsequent rise in contacts for individuals aged 35–50. Our results demonstrate that self-reported social contact surveys can
account for age-associated heterogeneity in the transmission of a respiratory pathogen in humans, and show robustly how
these individual-level behaviours manifest themselves through assortative age groups. Our results suggest it is possible to
profile the social structure of different populations and to use these aggregated data to predict their inherent transmission
potential.
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Introduction

For directly transmitted respiratory pathogens such as influenza,

an individual’s risk of infection depends on several factors. As well

as host physiology and the immune system changing naturally with

age, previous exposure to related pathogens can affect the

outcome of subsequent exposures [1,2]. In addition, infection risk

depends on behaviour that generates potentially infectious

contacts [3,4]. One way to measure such behaviour is through

surveys of self-reported social contact patterns [4–8].

Mechanistic models incorporating data on self-reported contacts

are being used increasingly frequently to examine the effect of

social mixing on disease dynamics [8–11] and to assess potential

control measures [12–20]. In these models, populations are

structured by age, with the force of infection for a specific age

group depending on their reported contacts with other ages [3].

Although there is some statistical evidence from age-aggregated

cross-sectional serological data that such models capture infection

risk [8,11,21], it is not conclusive. Further, it is not known what

resolution of age-structured model – both in terms of number and

size of age groups – reproduces observed attack rates best.

Here, we report a comparison of alternate hypotheses about

how age and self-reported social contacts influence risk of

infection. We developed a flexible model framework that could

incorporate both age and contact behaviour. The population was

divided into increasingly finely resolved age and contact classes,

with the transmission rate from one class to another proportional

to reported contacts between those classes. Our formulation

generalised a number of commonly used transmission models

(Figure 1): by varying the number of age groups and contact
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classes, we could implement a simple mass-action model, an age-

structured model [8–20], or a model in which individuals were

structured only by their number of contacts [7,22,23]. Using data

from a 2009/10 survey in Hong Kong [24], which included both

reported social contacts and biologically confirmed infection

status, we first explored how different model structures influenced

patterns of infection. Next, we assessed to the extent to which each

model captured observed attack rates, and established the

structure and nature of social contacts that best explained

influenza infection risk. Finally, we used these results to identify

the resolution of social mixing that likely shaped influenza A/

H1N1p transmission in 2009.

Results

First we explored the theoretical potential of age and social

behaviour to affect the infection attack rate in different population

subgroups (Figure 2A). Incorporating the Hong Kong contact

data, but not yet fitting to serological data, our model framework

could produce a number of different patterns for the risk of

infection. Figures 2B–G show the predicted risk of infection in

different models compared with reported age and number of

contacts for each of the 762 individuals sampled in the survey. If

transmission was based on reported interactions between age

groups, an individual’s risk of infection was dependent solely on

their age. Thus we obtained vertical bands in Figures 2B and 2E.

It is noticeable that when close contacts were used, there was a

much higher relative risk in school-aged individuals compared

with older groups (Figure 2E). If we assumed transmission was

dependent on reported contacts rather than on age, we see the

opposite pattern: risk of infection fell into horizontal bands

(Figures 2C and 2F). Based on existing literature

[7,8,10,11,18,22,23], we might expect that a combination of age

and contact structure would capture the observed data best

(Figures 2D and 2G).

To assess how contributions from age and social contact

behaviour influenced risk of infection, we compared model outputs

with observed patterns of infection in each group. First, we used a

simulation study to test whether our model could correctly identify

the ‘true’ model among a range of candidate models. We

simulated data for each of the 762 participants from a model

with a specific number of age and contact classes and contact type

(see Supplementary Text S1 for details), then compared model

performance by considering the difference in Akaike Information

Criterion [25] (DAIC) for each possible model in our framework.

For four different simulation models, our framework correctly

identified the structure of the original model each time (Figure S1).

Having tested the robustness of our inference method, we

considered infection data from the 2009 pandemic in Hong Kong.

Figures 3A–B show the performance of models with different

numbers of age groups and contact classes. We found that age-

based models, parameterised by the average social behaviour of

each age group, gave the most parsimonious explanation of our

data. The best performing model according to the difference in

Akaike Information Criterion had 10 age groups, with only one

contact class in each, and assumed transmission was driven by

reported close contacts. In both Figures 3A and 3B, additional

contact classes led to worse model performance: the best

performing models assumed homogeneous mixing within each

age group.

Models incorporating transmission based on close contacts gave

a good prediction when there were few contact classes, but a very

poor prediction when within-age group contact resolution

increased (Figure 3B). Some of the models with multiple contact

classes in Figure 3B had classes consisting solely of individuals –

some of whom had been infected – that had no reported close

contacts. The likelihood of such people seeing infection given the

model assumptions was therefore zero. To assess whether our

results were sensitive to these assumptions, we considered a

framework with an additional small background rate of random

contact among all members of the population (see Supplementary

Text S1 for details). This extra parameter resulted in a non-zero

likelihood for all age all contact classes (Figure S2), but did not

change the overall pattern in Figures 3A–B.

Figure 1. Schematic of model framework. By dividing the
population into different numbers of age groups and contact classes,
it was possible to recreate a number of commonly used model
structures. If only one age groups and one contact classes were
included, the framework produced a simple mass-action model, in
which all individuals had the same risk of infection. When there was
only one contact class in each age group, we obtained an age-
structured model. Alternatively, when only one age group was used,
risk of infection depended only on the contact class an individual was
in.
doi:10.1371/journal.ppat.1004206.g001

Author Summary

For infections such as influenza, there are several aspects
to the transmission process, including the properties of the
pathogen itself, the host immune system and host
behaviour. Although it has been proposed that self-
reported social mixing patterns can be used to explain
the behavioural component of infection – and mathemat-
ical modelling studies based on reported social contacts
are used routinely to inform health policy – it is not clear
how these contacts contribute to individual- and group-
level infection risk. By analysing the relationship between
social contacts and infection patterns during the 2009
Hong Kong influenza pandemic, we show that infection
risk was strongly influenced by the average reported social
mixing behaviour of an individual’s age group, rather than
by their personal reported contacts. We also demonstrate
how social contact surveys can be combined with
mathematical models to create useful tools with which
to study respiratory infections in humans. This should
make it possible to predict how the impact of interven-
tions will vary from one population to the next based on
their contacts and, potentially, to explain differences in
infection attack rates between groups with different
mixing behaviours.

Social Contacts and Infection

PLOS Pathogens | www.plospathogens.org 2 June 2014 | Volume 10 | Issue 6 | e1004206



The best performing model in Figure 3B underestimated attack

rates in the under 18s (Figure S3). This was likely because we had

not accounted for differences in susceptibility between older and

younger age groups to the influenza A/H1N1p virus [26].

Therefore we also considered a model in which the relative

degree of susceptibility of over-18s could vary (details in Text S1),

denoted by parameter a. With the addition of a to the basic

reproduction number, R0, we were using only two free parameters.

Figures 3C–D show the performance of different models when this

additional parameter was included. The qualitative pattern

remained the same, but there was a significant reduction in the

AIC for many of the models. The best-supported model, which

had 20 age groups, was not significantly different than the

saturated model for 20 age groups (likelihood ratio test, 18 degrees

of freedom, p-value = 0.993). Even considering the multiple

model comparisons in our study, the similarity between the

saturated likelihood and our best fit two-parameter likelihood

suggests that this framework effectively captures key aspects of

these data.

By examining the difference between observed and predicted

values we were able to illustrate the reason for the decrease in AIC

with increased contact classes. When the population is divided into

10 age groups, and these groups are sorted by the observed attack

rate in each, the output from models using all reported contacts

(Figure 4A) and close contacts (Figure 4B) is consistent with real

patterns of infection. The addition of a second contact class in

each age group, creating a total of 20 risk groups, leads to

substantially worse performance, with models failing to capture

observed attack rates in most at-risk groups by a substantial

margin (Figures 4C–D). However, it is interesting that when all

reported contacts are incorporated into a model with two contact

classes per age group (Figure 4C), model predictions are closer to

the observed data than when close contacts are used (Figure 4D).

Figures 5A–5B shows the performance of the age-only models

(i.e. the top row in each grid in Figures 3A–D) as the number of

age groups increased in small increments. When all ages were

equally susceptible, models using close contacts performed

significantly better than their counterparts based on total contacts

(Figure 5A). When we allowed relative susceptibility in the over

18s to vary, models incorporating close and total contacts both had

similar levels of support (Figure 5B), although the model with

transmission based on total contacts required a much lower

relative susceptibility in older ages (Figure S4). Estimates for the

basic reproduction number, R0, are shown in Table S1. As before,

the best performing model included transmission based on close

contacts (Tables S2). Overall, the results were robust to choice of

age cut-off for relative susceptibility: having reduced susceptibility

in the over-10s or over-30s instead of over-18s did not substantially

change the overall pattern of the AIC (Figure S5).

We used two types of data in our analysis: the reported social

contact data and the paired sera. Although we accounted for the

observation error in the sera with the Bernoulli distributed

likelihood terms in Equation 2, our framework made the

assumption that social contacts in our sample were representative

of the population. To test the sensitivity of results in Figure 5B to

this assumption, we repeated our analysis using alternative datasets

Figure 2. Risk of infection in different models. (A) Possible model structures. Given the size of the Hong Kong dataset, the maximum possible
number of age and/or contact groups in a particular model was limited 60. (B) and (E) Results from model X, which has 20 age groups, each
containing one contact class. Each point represents one of the 762 individuals surveyed, with position based on reported age and total number of
contacts, and colour showing risk of infection predicted by the model. (C) and (F) Results from model Y (1 age group with 20 contact classes). (D) and
(G) Results from model Z (5 age groups, each with 5 contact classes). Models are either based on all reported contacts (B, C and D), or close contacts
only (E, F and G). R0 = 1.5.
doi:10.1371/journal.ppat.1004206.g002

Social Contacts and Infection
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generated using bootstrap samples of the Hong Kong data (details

in Text S1). The pattern of improvement in model performance as

the number of age groups increased remained consistent when

these bootstrap datasets were used (Figure S6).

We also assessed how our mechanistic model, which predicted

final epidemic size (Equation 1), compared with a simple statistical

framework. We considered a two-parameter logistic regression

model that predicted infection risk using reported contacts only.

Although the regression model performed well when there are 10

age groups, performance grew significantly worse as the resolution

of the model increased (Figure S7). In contrast, the final size model

generally continued to perform well once a high enough resolution

was reached (Figure 5A–B), suggesting that the well-supported

regression model relied on the age group boundaries falling at

specific intervals (Figure S5), which happened to occur when there

were 10 age groups (Figure S8). There was a fundamental

difference in the structure of these two models: only the final-size

model accounted for infection from secondary and tertiary

contacts.

Figure 5C shows age-specific risk of infection in the overall best

performing model, which had 20 age groups and variable

susceptibility in the over-18s. The model reproduced the observed

drop in risk of infection after childhood, and the small peak that

occurs in individuals of parental age. In contrast, the equivalent

model with 35 age classes did not reproduce this pattern as well

(Figure 5D), and hence had less support.

Although we did not use data on which participants were

parents, the rise in observed infection risk correlates well with the

age groups that reported having a child in their household (Figure

S9). To assess which component of the adults’ contacts was driving

the rise in infection risk (the within-group contacts to other adults

or the between-group contacts to other ages), we assumed that

certain age groups had no reported contacts with individuals aged

35–50. We saw little change in model performance if we removed

the contacts – and hence contribution to the force of infection – of

age groups over 20 (Table S3). However, there was a substantial

reduction in performance if we assumed that individuals under 20

reported no contacts in the 35–50 age group, and hence made no

contribution to force of infection acting upon the 35–50 group.

These results suggest that children, through interactions with their

peers and their parents, were responsible for much of the observed

infection patterns.

Discussion

Using a flexible model framework in which the population was

structured by age and/or self-reported contacts, we compared

theoretical predictions with serologically confirmed infection taken

from a study of influenza A/H1N1p in Hong Kong [24]. We

found strong evidence that an individual’s risk of infection was

influenced by the average social mixing behaviour of their age

group, rather than by their personal reported contacts. Further, we

found that finely resolved age classes were required to reproduce

the observed distribution of infection. Our results suggest that the

post-childhood drop and subsequent parental rise in social mixing

are a crucial component of the transmission dynamics of

respiratory pathogens like influenza.

There are some limitations to our study. We have only

considered contact and serological data from Hong Kong: it

would be helpful to test transmission models against observed

disease prevalence in other countries. Moreover, we assumed that

the one-day contact survey was representative of an individual’s

behaviour over the period of the epidemic. It would be interesting

to see to what extent individual contact patterns vary over time:

such changes could be measured in a longitudinal study, and

compared with population-level variance in number of contacts.

We also used a single parameter to control the relative

susceptibility of individuals who were over a specified age.

However, a more detailed parameterisation may be required for

other viruses, such as seasonal influenza strains [27]. Finally,

although participants provided information on their number of

contacts with each age group, we did not know which contact class

these reported contacts were in. It was therefore necessary to infer

interactions between different contact classes from the original

egocentric data (see Supplementary Text S1). The age distribution

of contacts of individuals in low, medium and high-contact groups

follows a similar pattern (Figure S10), which suggests that this

assumption of independence is reasonable, at least when it comes

to modelling the age-specific of force of infection between different

contact classes. However, factors such as clustering and location

may also have an effect on the distribution of contacts: a future

challenge would be to develop techniques that could incorporate

such information and examine the impact on dynamics.

Social contact data can also be collected using electronic

proximity sensors, which automatically record participants’

interactions, rather than diary-based questionnaires. Such ap-

proaches can provide high-resolution information about the

frequency and structure of contacts between participants [28,29].

However, in a large community, a questionnaire-based approach

has the advantage that contacts are recorded regardless of whether

Figure 3. Comparison of different models in Figure 1A. (A)
Model based on all contacts with relative susceptibility of over-18s, a,
equal to one. (B) Model based on close contacts with a = 1. (C) Model
based on all contacts with variable a. (D) Model based on close contacts
with variable a. Colour shows model support under the Akaike
Information Criterion (AIC). Note that models with numerous contact
classes in B and D had some classes consisting solely of individuals –
some of whom had been infected – that had no reported close
contacts. The likelihood of such people seeing infection given the
model assumptions was zero; the difference in AIC was therefore
infinite.
doi:10.1371/journal.ppat.1004206.g003

Social Contacts and Infection
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they wore sensors or not: it is not necessary to include all potential

contacts in the study. Therefore, we suggest that both methods

have merit, but that self-reported diary-based methods are perhaps

the most useful currently because they can be applied to much

larger study populations than device-based methods.

The results we present here build directly on recent statistical

analysis of these same data in which it was concluded that, at the

individual-level, a participant’s self-reported social contacts alone

were not a good predictor of their odds of influenza infection [30].

Specifically, an explicit age term was always also required when

alternate explanatory variables were compared. These two sets of

analyses are not inconsistent. The final size model presented here

captures the combined risk of multiple generations of infection in

the age-specific mixing matrix. Also, in the empirical study itself,

we were not able to ask about behaviour immediately prior to

infection. If we were to use a case-control design with confirmed

currently infectious individuals as cases, we may find a much

better correspondence between self-reported contacts and indi-

vidual infection.

Of the models we tested, the best performing model included

transmission based on close contacts. Previous work also has

suggested that reported close contacts are a better proxy for

parvovirus [11], varicella [11] and influenza [27] transmission

than total contacts. However, it is still not clear which types of

contact lead to transmission of influenza and how (or if) these risky

contacts are reported in surveys of social contacts. Further, models

with a large number of age groups generally perform worse under

the AIC than models with 10–25 groups (Figures 5A–B). This

might be owing to the sample size we used: at a fine resolution,

mixing patterns are informed by only a small group of individuals.

Ideally, future studies would test transmission models against

observed disease prevalence using larger cohorts.

Our results suggest that infection risk is strongly influenced by

the average social mixing behaviour of a person’s age group,

rather than by their individual reported contacts. This demon-

strates that self-reported contacts have useful epidemiological

value, as the average behaviour of a population can be used to

predict individual infection patterns. Further, we have identified

the likely social resolution of influenza transmission during the

2009 Hong Kong pandemic. Although different countries have

different social and demographic structure, if the key age

transitions – specifically, the post-childhood drop in risky contacts

and subsequent parental rise – are fundamentally important to

epidemic dynamics, it should be possible to profile different

countries’ social structure and use these aggregate population data

to tailor predictions about infection attack rates. Such information

would be relatively straightforward to collect, and could prove

valuable in the future when targeting potentially costly interven-

tions during an outbreak.

Materials and Methods

Ethics statement
All study protocols and instruments were approved by the

institutional review boards of the University of Hong Kong.

Written informed consent was sought from each participant aged

18 or above. Written proxy consent was sought from the parent or

guardian of all participants aged 17 or below. In addition, the

written assent to participate was asked from participants of aged 7

or above and 17 or below.

Figure 4. Comparison of model fits to data, with classes sorted by empirically observed risk of infection. Thick blue line, model
prediction; light blue bars, data. Error bars give 95% binomial confidence interval. (A) Model based on all contacts with 10 age groups and 1 contact
class in each. (B) Model based on close contacts with 10 age groups and 1 contact class in each. (C) Model based on all contacts with 10 age groups
and 2 contact classes. (D) Model based on close contacts with 10 age groups and 2 contact classes in each. All models have variable relative
susceptibility in the over-18s.
doi:10.1371/journal.ppat.1004206.g004
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Data
We used age and contact data similar to that in the POLYMOD

study [6], but taken from a 2009/10 survey of 762 participants in

Hong Kong [24]. Participants were recruited by random calling of

residential landline numbers for Hong Kong. Data were collected

by embedding an interviewer-led social contact questionnaire

within a serological survey of influenza. On an assigned day,

participants recorded contacts who they touched or had a face-to-

face conversation with. The mean number of total contacts

reported across all participants was 17.5; the median was 8.0. The

frequency distribution of contact had a long tail, and we did not

find evidence of a preference for reporting ‘round’ numbers

ending in ‘0’ or ‘5’ (Figure S11).

As well as a social contact survey, paired sera were used to

identify which of the participants had been infected. This was

defined as a four-fold or more rise in titre, as measured by a

neutralization assay, between baseline and follow-up visit. The

assay tested for neutralizing antibody against influenza A/H1N1p.

Such tests have been shown to be more sensitive than hemagglu-

tination-inhibition assays: in a 2010 study, also conducted in Hong

Kong, 18 of 19 individuals with virologically confirmed A/H1N1p

infection exhibited at least a four-fold rise in neutralization titre

[31].

Baseline samples were taken between 4 July 2009 and 19

September 2009. Once clinical surveillance indicated that the peak

level of transmission had passed, follow-up samples were obtained

between 11 November 2009 and 6 February 2010.

In the Hong Kong serological survey, participants could report

contacts as being in one of three age groups: age under 20, 20 to

65, over 65. Relative to population size for each age group, under

20s reported fewer contacts with older groups than older groups

reported with under 20s. We therefore adjusted the reported

values to ensure reciprocity in contacts between each pair of age

groups: if ma,b was the mean number of contacts in group a

reported by individuals in group b and Pa was the proportion of the

population in age group a, we used a maximum likelihood

approach [8] to obtain estimates that satisfied ma,bPb = mb,aPa.

Model
We constructed a flexible model framework with which to

compare different mechanistic explanations for infection risk,

under the assumption that both age and contact behaviour were

known. To construct a model with A age groups and C contact

classes, we first sorted participants by age and divided them into A

groups, each containing an equal number of people; the final class

contained fewer individuals if there was a remainder after division.

We then divided each age group into a further C classes, based on

reported contacts. The contact classes for each age group were

defined by sorting the individual reported number of contacts into

ascending order, then dividing the age group into C equal parts.

The output from each model was the final epidemic size, defined

as the proportion of individuals infected in each age and contact

group. As a result, we had only one model parameter to specify:

the basic reproduction number, R0. In this section, we outline the

general model framework, which could be used with any set of

reported social contact data; the technical details of how the 2009

Hong Kong dataset was incorporated into the framework are

given in Supplementary Text S1.

We used an SIR model for simulations, with individuals falling

into one of three compartments: susceptible, infective or recovered

(and hence immune). The force of infection acting on age-contact

class (a,i) as a result of infectives in age-contact class (b,j) was

proportional to two things: the mean number of contacts made by

members of (b,j) with age group a, and the fraction of total contacts

made by age group a that were with individuals in class (a,i). We

defined mai,bj as the mean number of contacts with individuals in

age group a and contact class i by participants in age group b and

class j. The transmission rate to group (a,i) from group (b,j) was

therefore given by bai,bj = qmai,bj/Pai, where q was a scaling factor

dependent on the basic reproduction number and Pai was the

proportion of the population in group (a,i) [8]. The final epidemic

size in each age-contact class (a,i), Qai, could therefore be found by

solving the following coupled equation [32],

wai~1{exp {
XA

b~1

XC

j~1

bai,bjPbjwbj

 !

In our framework, a population could be divided into arbitrarily

finely resolved age and contact classes (although the maximum

number of possible classes – and hence model resolution – would

ultimately be constrained by the total number of participants in

the social contact survey). Most modelling studies incorporating

age-stratified social contact data used between six and twenty age

groups [8–20]. In contrast, other studies have explored the effects

of the distribution of number of contacts on final epidemic size

[7,22,23], without using age-structure. Our framework encom-

passed all of these assumptions: depending on how many age

groups and contact classes included, the framework produced a

simple mass-action model, an age-structured formulation, or a

Figure 5. The social resolution of influenza transmission. (A)
Detailed analysis of AIC for models with age structure only and a = 0 (i.e.
top rows in Figure 3A–B), with transmission based on: red, total
contacts; blue, close contacts. (B) AIC for age-structured models with
variable a. (C) Performance of best-supported model in Figure 4B, which
has 20 age groups and transmission based on close contacts, against
data. Light grey bars show observed proportion of individuals that are
seropositive, with 95% binomial confidence interval given by error bars.
Blue solid line shows model prediction. (D) Comparison of residuals for
model in Figure 4C (blue line) and equivalent model with 35 age groups
(green line).
doi:10.1371/journal.ppat.1004206.g005

Social Contacts and Infection
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model dependent only on the degree distribution of contacts

(Figure 1). As there were only 762 participants in the Hong Kong

study, we limited the maximum possible number of age and/or

contact groups in a model to 60, to avoid groups containing too

few people (Figure 2A).

Relatively susceptibility in older groups
There was evidence that older age groups had some pre-existing

immunity to the 2009 influenza A/H1N1p strain [2,26]. We

included an additional parameter to reflect this immunity:

individuals above a certain age had their susceptibility reduced

by a factor a, where 0,a#1. The cut-off could vary: in our

analysis we considered a reduction in over-10s, over-18s and over-

30s (details in Supplementary Text S1).

Statistical inference
Given a set of parameters, h, we denoted the model prediction

for attack rate in age group a and contact class i by Qai(h). Let Y

denote the set of neutralization titres for the study group, and Yk

denote the titres for individual k. If individual k was aged a and in

contact class i, the likelihood of h given the data could therefore be

calculated with a Bernouilli probability mass function,

L(h; Yk)~
wai if k has a four fold risk in neutralization titre;

l{wai else:

�

We then found the parameter set h that maximises the log-

likelihood across all individuals,

l(h; Y )~
X

k

log L(h; Yk):

The models were compared using the Akaike Information

Criterion (AIC) [25]. If a model contains k parameters then

AIC = 2k–2l. Here k = 1 in the basic transmission model, and k = 2

in the model with variable susceptibility. Note that with 762

participants and only one or two parameters, it makes negligible

difference to our results whether we use AIC or AICc, the criterion

corrected for low sample size. For each model, we calculate DAIC,

the difference between the AIC for that model and the AIC of the

model with the lowest AIC. The following approximate rules have

been suggested when using this measure [25]: models with DAIC#2

have substantial support compared to the best model; those with 4#

DAIC#7 have much less; those with DAIC.10 have practically no

support compared with the best model given the data.

Supporting Information

Figure S1 Identification of true model using simulated
data. First we simulated data for each of the 762 participants from

a model with a specific number of age and contact classes and

contact type (see Supplementary Text S1 for details). We then

calculated model support under the Akaike Information Criterion

for each possible model in our framework. The left column shows

AIC for models based on all contacts; the right column shows results

from models using close contacts. Each row uses simulated data

from one of four different ‘true’ models. (A) and (B), data simulated

using model with 10 age groups and 1 contact class, and all reported

contacts. The correct model is indicated with a blue ‘X’. (C) and (D),

data simulated using model with 10 age groups and 1 contact class,

and reported close contacts. (E) and (F), data simulated using model

with 1 age group and 10 contact classes, and all reported contacts.

(G) and (H), data simulated using model with 10 age groups and 1

contact class, and reported close contacts.

(TIFF)

Figure S2 Similar plots to Figure 1A and B with a small
background risk of infection included. There are 10 age

groups, with only one contact class in each, with transmission

based on reported close contacts.

(TIFF)

Figure S3 Risk of infection in best model of those shown
in Figures 2A–B. There are 10 age groups, with only one

contact class in each, with transmission based on reported close

contacts.

(TIFF)

Figure S4 Maximum likelihood point estimate for
relative susceptibility of over 18s, a, as number of age
groups varies. Red line shows model using total reported

contacts; blue, model using close contacts.

(TIFF)

Figure S5 Sensitivity of results to different cut offs for
drop in susceptibility. (A) Analysis of DAIC for models with

age structure only and variable a for age groups above 10, with

transmission based on: red, total contacts; blue, close contacts. (B)

DAIC for models with variable a for age groups above 30.

(TIFF)

Figure S6 Sensitivity of results in Figure 5B to different
social contact data. (A) DAIC for age-structured models with

variable a, with transmission based on total reported contacts.

Each line represents results from inference performed using a

bootstrap resample of the Hong Kong data. Ten such samples

were performed: each is shown in a different colour. (B) DAIC for

age-structured models with variable a, with transmission based on

total reported contacts.

(TIFF)

Figure S7 DAIC for logistic regression model as number
of age groups varies. Transmission is based on: red, total

contacts; blue, close contacts. The two parameter logistic

regression model predicts risk from reported contacts only. For

contact class i within age group a, risk of infection is given by

Qai = 1/(exp [2(m0+m1Mai)]+1) where Mai~
PA

b~1

PC
j~1 mbj,ai

and m0 and m1 are parameters to be fitted.

(TIFF)

Figure S8 Age boundaries used for different numbers of
age groups. Groups are defined by sorting the 762 survey

participants by age and dividing them into A groups, each

containing an equal number of people.

(TIFF)

Figure S9 Proportion of each age group in Figure 4C
that reported having a child in their household.
(TIFF)

Figure S10 Age distribution of contacts made with
different contact classes in model. We constructed a model

with 10 age groups, each containing 3 contact classes. For each

age group, we plotted age distribution of contacts made with age of

the three contact classes. Red points, low-contact class (the third of

the age group with fewest reported contacts); green points, middle

contact class; blue points, high-contact class (third of age group

with most reported contacts). Age boundaries for the 10 age

groups are shown in Figure S8.

(TIFF)
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Figure S11 Frequency distribution of contacts. Distribu-

tion of total reported contacts across all 762 study participants.

Numbers that end in ‘0’ or ‘5’ are indicated by red points: these do

not appear to be reported more frequently than neighbouring

numbers.

(TIFF)

Table S1 Maximum likelihood point estimate for R0 in
different models, arranged by contacts used.
(PDF)

Table S2 Difference in AIC between the best perform-
ing model (in bold) and other models, arranged by
contacts used.
(PDF)

Table S3 Change in model performance when different
components of the force of infection into groups aged
35–50 are omitted.

(PDF)

Text S1 The contribution of social behaviour to the
transmission of influenza A in a human population.

(PDF)
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