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it difficult to gauge small discrepancies from ideal choice behavior. 
As a result, ideal and MAX models are often equally applicable to 
human vision (Pelli, 1985; Cohn and Lasley, 1986). Furthermore it 
has proven challenging to decide whether an alternative model may 
be more appropriate than these two, as most simulated observers 
make similar predictions in terms of standard detectability metrics 
in relation to a number of important topics in visual detection, e.g., 
quantum efficiency (Cohn and Lasley, 1986), Birdsall’s linearization 
(pertaining to the impact of internal noise on signal transduc-
tion; Klein and Levi, 2009), dipper effects (the non-monotonic 
behavior of some sensory threshold characteristics Solomon, 2009), 
stochastic-resonance-like phenomena (Perez et al., 2007).

A possible route to resolving this empirical issue may be to 
employ experimental techniques that allow a more detailed char-
acterization of the underlying process than detectability metrics 
alone (Abbey and Eckstein, 2006; Tjan and Nandy, 2006; Levi 
et al., 2008). The introduction of reverse correlation methodolo-
gies into visual psychophysics (whereby noisy perturbations of the 
input stimulus are linked to the resulting behavioral responses) 
has offered an attractive tool of this kind: psychophysical reverse 
correlation allows retrieval of the perceptual template used by the 
human observer to perform certain tasks under specific stimulus 
conditions (Ahumada, 2002) and has been successfully applied 
to a range of problems in human vision (Victor, 2005; Neri and 
Levi, 2006). However it is not obvious that this technique would 
help to clarify the issue of interest here, because it suffers from the 
significant limitation that its properties are well understood only 
under certain assumptions about the detection process, in particu-
lar that it conforms to a linear template followed by a decisional 
rule (Ahumada, 2002; Murray et al., 2005). Uncertainty represents a 

1 IntroductIon
There are virtually no situations, whether in the laboratory or in 
the natural environment, when the human visual system has exact 
knowledge of all aspects concerning the task at hand (Pelli, 1985; 
Cohn and Lasley, 1986; Tjan and Nandy, 2006). Even in highly 
artificial and specified conditions, human observers behave as 
though they are uncertain about some aspects of the visual stim-
ulus (Peterson et al., 1954; Tanner, 1961; Nachmias and Kocher, 
1970; Cohn and Wardlaw, 1985; Pelli, 1985; Tjan and Nandy, 2006). 
Uncertainty is pervasive to all forms of visual processing, from the 
simplest visual detection task to the more complex recognition task. 
Its relevance was emphasized with distinct clarity over 20 years ago 
by a landmark article (Pelli, 1985) in which Pelli described how the 
concept of uncertainty, instantiated by a MAX model, could lead 
to important insights into various aspects of visual processing. If 
the template filter used by the model is well-matched to the target 
(except for the uncertain property), the detection process imple-
mented by the MAX model approaches the optimal performance 
of an ideal observer (Pelli, 1985; Tjan and Nandy, 2006).

Is it empirically feasible to distinguish this model from the ideal 
model or from other candidate models of how humans cope with 
uncertainty? This problem turns out to be surprisingly difficult. As 
mentioned above, it is known that under some conditions MAX per-
formance is nearly identical to ideal performance (see Theoretical 
Properties of MAX Kernels in Appendix for an analytical dem-
onstration). Under a variety of situations human performance is 
explained by a simple model which adopts a nearly ideal strategy, 
but is corrupted by a late internal noise source (Burgess et al., 1981; 
Cohn and Lasley, 1986) (an ‘inefficient ideal observer’). Internal 
noise is sizeable (Burgess and Colborne, 1988; Neri, 2009), making 
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direct violation of this assumption, a problem that has been appro-
priately highlighted by previous authors (Murray et al., 2002; Tjan 
and Nandy, 2006).

Can this technique be exploited nonetheless to yield some 
useful insights into the underlying process? Previous work has 
shown that the non-linearities associated with uncertainty (and 
other forms of non-linear processing) can often be character-
ized using psychophysical reverse correlation, at least to a limited 
extent. Of specific relevance here are two methods: signal-clamping 
(an approach that capitalizes on the distinction between target-
present and  target-absent noise samples; Tjan and Nandy, 2006) 
and covariance analysis (a technique whereby second-order statis-
tical properties of the input noise source are exploited to further 
refine system characterization; Neri, 2004, 2009). In this article we 
describe an organized collection of theoretical and experimental 
results that are of immediate relevance to both methodologies, and 
use these results to infer the structural properties of human sensory 
processing under uncertainty. More specifically, we derive analytical 
expressions for perceptual kernels obtained from signal clamp-
ing (Theoretical Properties of Signal-Clamped (Target-Present) 
Kernels in Appendix) and show that they return an estimate of the 
front-end filter only under limited circumstances. We derive similar 
expressions for second-order kernels computed using covariance 
analysis and show that the MAX model makes a strong predic-
tion for their structure (Theoretical Properties of MAX Kernels in 
Appendix), a prediction which we then demonstrate to be directly 
violated by experimental data. Instead, the observed kernel struc-
ture is consistent with theoretical predictions from a class of simple 
models known as Hammerstein nonlinear–linear (NL) cascades 
(Hunter and Korenberg, 1986). We propose that this class of models 
should be considered as a viable alternative to the MAX model 
for explaining the properties of human visual processing under 
conditions of uncertain information about target structure; in the 
conditions of our visual detection experiments the MAX model 
appears inapplicable.

2 Methods
2.1 VIsual stIMulI and task
The display had three regions (Figure 1A): a central region where 
the stimulus appeared briefly for 50 ms, and two identical regions 
(one directly above and one directly below the stimulus region) 
where the uncertainty markers were always present throughout 
the entire block. Similarly to the uncertainty markers, the central 
fixation marker never disappeared. Two instances of the stimu-
lus appeared in temporal succession on every trial (separated by 
500 ms): one was a ‘non-target’ interval containing only the ‘noise’ 
stimulus, the other a ‘target’ interval containing both ‘noise’ and 
‘target’ stimuli (summed). Observers were asked to select the inter-
val (first or second) that contained the target (two-interval forced 
choice). We opted for a temporal interval (rather than a spatial 
interval) protocol because we wished to present stimuli in the fovea; 
the reason for using the fovea is that our goal was to manipulate 
spatial uncertainty on a fine scale, which is often prohibitive in 
the periphery due to its intrinsic uncertainty (Cohn and Wardlaw, 
1985; Tjan and Nandy, 2006). The ‘noise’ stimulus consisted of 27 
adjacent vertical noise bars (each bar was 81 × 9 (height × width) 
arcmin) whose luminance was independently modulated according 

to a random Gaussian process with mean (equal to background 
luminance) 35 cd/m2 and standard deviation (SD) 3.5 cd/m2; we 
denote it using the vector n[q,z], the noise sample associated with the 
non-target (q = 0) or with the target interval (q = 1), and with an 
incorrect (z = 0) or correct (z = 1) response by the observer. Each 
element of n is n(x

k
) where x

k
 indicates the spatial position of the 

bar with respect to fixation: bars to the left of fixation are indicated 
by a negative k index, the bar at fixation by k = 0, bars to the right 
of fixation by a positive k index. k ranges from −13 to +13. Noise 
samples were independently generated between intervals and across 
trials. The target stimulus consisted of a fixed luminance increment 
(gray trace in Figure 1B) added to one of the noise bars within the 
region indicated by the uncertainty markers and is denoted by the 
vector t[ϕ], where ϕ represents the shift (in units of number of bars) 
applied to the target within the extrinsic uncertainty window: each 
element of t is t[ϕ](x

k
) = ρδ

kϕ (Kronecker δ) for −M/2 ≤ ϕ ≤ M/2, 
where M defines the extrinsic uncertainty window indicated by the 
markers and ρ is the signed signal-to-noise ratio (SNR) ρ = kSNR 
where k = +1 for bright target and k = −1 for dark target; SNR is 
the ratio between target intensity and noise SD σ

N
. Signals at differ-

ent locations were therefore orthogonal (〈 〉 =t t[ ] [ ],ϕ ϕ1 2 0 for ϕ
1
 ≠ ϕ

2
 

where 〈,〉 is inner product). Uncertainty markers consisted of red 
rectangles whose horizontal extent explicitly indicated the spatial 
extent within which the target bar could appear; they are denoted 
by the vector u[M], each element being u[M](x

k
) = (k/M) (normal-

ized boxcar function (x) = 0 for | | /x > 1 2, = 1 2/  for | | /x = 1 2, = 1 
for | | /x < 1 2). We tested four (logarithmically spaced) values of 
M = 3(j−1) for j = 1 to 4 in different blocks: at the beginning of each 
block the uncertainty markers informed the observer of the specific 
extrinsic uncertainty window used for that block, and remained 
the same throughout the block. On the following block a different 
extrinsic uncertainty range was randomly selected out of the four 
detailed above. The bulk of our data was collected using a bright 
target bar (ρ > 0) on 10 naive observers; we collected an average 
of ∼8K ± 4K (±SD across observers) trials per observer. All subjects 
were paid by the hour for their participation; most were experienced 
psychophysical observers, but none was aware of the purpose or 
methodology used in the experiments. On a subset of these observ-
ers (6 out of 10) we performed additional measurements using a 
dark target bar (ρ < 0); for this condition we collected ∼1.1K ± 0.2K 
trials per observer.

2.2 double-pass experIMents
We estimated internal noise (plotted on y axis in Figures 2E,F) 
via a double-pass methodology in which the same set of stimuli is 
presented twice (Burgess and Colborne, 1988). Double-pass experi-
ments consisted of 100-trial blocks (like in the main experiment). 
Observers were not aware of any difference with respect to blocks 
for the main experiment. In double-pass blocks, the second half of 
the block (last 50 trials) showed the same stimuli presented during 
the first 50 trials, but in randomly permuted order. We collected 
an average of ∼1.4K ± 0.6K trials per observer. Half of these (the 
first 50 trials of each block) were extracted and combined with 
trials from the main experiment for the purpose of computing 
kernels. On a subset of the observers (4 out of 10) we performed 
additional measurements at below ( 1

2 ×) and above (2×) threshold 
SNR to determine the dependence of internal noise on stimulus 
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intensity (Figure 2F). We collected an additional ∼3K ± 0.5K trials 
on average per observer for this condition. The notion of inter-
nal noise imparts a distinction between output d out′  defined by 
( ( ) ( ))/( )[ ] [ ] /r r N Is s1 0 2 2 1 2− +σ σ , i.e., the mean differential response to 
target + noise (r(s[1])) and noise-only divided by the combined 
SD of both external and internal (σ

I
) noise sources, and input d in′  

defined as d out′  but with σ
I
 = 0, i.e., before the addition of internal 

noise. The latter can be estimated, together with internal noise, 
from data obtained using the double-pass methodology described 
earlier (Burgess and Colborne, 1988; Neri, 2010a).

2.3 Modeling
We used variations of three main models (see Figure 1 and 
Theoretical Properties of MAX Kernels in Appendix): MAX 
(Pelli, 1985), for which the response to each stimulus s (s[1] = n + t 
on the target interval and s[0] = n on the non-target interval) 
is max(w  (f * s)) where f is the system front-end filter, w is 
the intrinsic uncertainty window,  is Hadamard product and 
* is convolution; Hammerstein (Hunter and Korenberg, 1986) 
responds 〈w, f * Φ(s)〉 where Φ(x) = ex or Φ(x) = (1 + x/n)n (which 
approximates ex for n→∞); Korenberg (Korenberg and Hunter, 
1986) responds 〈Φ(w  (f * s)), 1〉 where Φ(x) = ex (for theoreti-
cal (but not simulation) purposes we also consider Φ(x) = xn, see 
Theoretical Properties of MAX Kernels in Appendix). The ideal 
model in Gaussian noise, for example, is a specific case of the 
Korenberg model (see Theoretical Properties of MAX Kernels in 
Appendix). These models were challenged with the same stimuli 
used for human observers and generated a binary response by 
selecting the stimulus interval associated with largest response 
(decision-variable assumption; Pelli, 1985). The corresponding 
kernels (Figure 5) were computed via the same analysis used for 
human observers (see below). We ran simulations with and with-
out a late Gaussian internal noise source of SD equal to the SD 
of the model output r (average between SD of r(s[0]) and SD of 
r(s[1])). Figure 5 shows simulated kernels in the absence of inter-
nal noise; the addition of internal noise simply results in noisier 
rescaled traces (as expected). We chose to plot the noiseless results 
to demonstrate that the lack of second-order negative diagonal 
modulations for the MAX model is not due to lack of resolving 
power on the part of the simulations.

2.4 Kernel coMputation
Estimated first-order kernels (Ahumada, 2002): 
ˆ [ , ] [ , ] [ , ] [ , ]

,
[ , ]H n n n n n1

1 1 0 0 1 0 0 1= 〈 〉 + 〈 〉 − 〈 〉 − 〈 〉 = ∑ 〈 〉q z qz
q z∆  where 〈〉 is 

average across trials of the indexed type and ∆
qz

 = 2δ
qz

−1. Estimated 

second-order kernels (Neri, 2004): ˆ ( , ),
[ , ] [ , ]H n n2 = ∑q z qz
q z q zcov∆  

where cov() is the covariance matrix across trials. With a number 
of caveats, these two operators are proportional to the correspond-
ing first-order and second-order kernels of a Volterra expansion of 
the system (Neri, 2004, 2009, in press). Target-absent first-order 
kernels (those derived from the subset of noise fields that did not 
contain the target) were computed as detailed above but only for 
q = 0. Signal-clamped first-order kernels (Tjan and Nandy, 2006) 
were computed only for q = 1 and after realigning each noise trace 
to ϕ = 0 (centering the target); their centroid frequency was the 
mean of the corresponding power spectrum (computed via  discrete 

Fourier transform) treated as a probability distribution (Neri, 
2009). Intrinsic uncertainty windows were computed by inverse 
cross-correlation of first-order target-absent kernels with first-
order signal-clamped kernels. Relevant mathematical properties 
of these kernel operators are described in the Appendix.

2.5 consistency estiMates
Model-human consistency was computed as the percentage of tri-
als on which the model response matched the human response; 
we converted it to d ′ (via standard Z-score transformation, Green 
and Swets, 1966) because d ′ units are more natural for evaluating 
this quantity (Neri, 2009). We tested two versions of w: Gaussian 
windows w(x

k
)[M] = N (x

k
, σ[M]) where N is the Gaussian density 

function with mean 0 and SD σ[M] from fit to aggregate estimate 
of intrinsic uncertainty windows (red line in inset to Figure 4E), 
and ideal windows matched to extrinsic uncertainty windows 
(w[M] = u[M]). When the model was parameterized on the data 
(e.g., f from signal-clamping, w from inverse cross-correlation, n 
in Hammerstein’s Φ(x)) we used a 1

2
 split cross-validation tech-

nique (Hong et al., 2008; Claeskens and Hjort, 2008): the data was 
divided into two halves; one half was used for parameterization, 
the other for computing consistency. We repeated the process by 
swapping the two halves, and used the average of the two consist-
ency estimates. No analysis presented here used the same data for 
model parameterization and consistency estimation.

3 results
3.1 coarse perforMance Metrics
Observers were required to detect a bright ‘target’ bar briefly flashed 
on the screen (Figure 1A) by selecting one of two successive stimu-
lus presentations. The bar could appear anywhere within a spatial 
range explicitly indicated by red markers above and below the 
stimulus. This range was varied from block to block (indicated 
by dashed outlines in Figure 1A) to specify different amounts of 
uncertainty about target location for every block. The vertical target 
bar was embedded in vertical bar noise consisting of 27 additional 
bars whose intensity was determined by a Gaussian noise source 
(see Section 2 for additional details). We ran a brief set of prelimi-
nary staircase experiments to identify individual threshold SNR 
for all four different uncertainty levels we used (indicated by blue, 
cyan, magenta and red in Figure 1A). As expected from previous 
theoretical and experimental work on the effect of uncertainty on 
detectability of visual targets (Tanner, 1961; Pelli, 1985; Tyler and 
Chen, 2000), both the threshold point (α) and slope (β) of a Weibull 
fit to the psychometric curve shift to higher values as extrinsic 
uncertainty is increased: curves move to the right and become 
steeper as color coding ranges from blue to red in Figure 2A. To 
demonstrate the statistical reliability of this effect across observers, 
Figure 2B plots slope (solid symbols) and threshold values (open) 
for the smallest uncertainty level on the x axis versus the largest 
uncertainty level on the y axis; points fall clearly above the unity 
line (p < 0.02 for solid, p < 10−5 for open). This increasing trend 
applied across all four uncertainty levels (Cuzick test for trend 
(Cuzick, 1985) p < 0.001 for β, p < 0.02 for α) and is summarized 
for both α and β in the two insets to Figure 2B, showing that it 
is in close agreement with previous theoretical predictions (Pelli, 
1985) (indicated by the red lines).
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smaller uncertainty levels bias was no different from 0 at p > 0.2 
(blue and cyan symbols in Figure 2C fall on horizontal dashed 
line); for the two larger uncertainty levels we measured statistically 
significant bias in favor of the second interval (p < 0.05), but its 
actual value was minuscule (∼0.03 and ∼0.05 on average for the 
two conditions). From Figure 2C we conclude that, at least in terms 
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Best-fit Weibull parameters (threshold α (open) and slope β(solid)) for 
individual observers, from low uncertainty data (M = 1) on x axis versus high 
uncertainty (M = 27) on y axis. Insets plot averages (±SD across observers) as 
a function of uncertainty level (M) on x axis, red lines plot predictions from Pelli 
(1985) (equations 8.2–8.3 at page 1524). For β the prediction has no free 
parameter; for α it has 1 free parameter which we fitted (mean square error 
minimization). (C) Bias (y axis) versus output d ′ (x axis). (D) Threshold SNR 
versus efficiency (square ratio between human and ideal d ′). Bars next to x 
axis (top) show mean ± SD across observers for efficiency. Inset plots 
threshold SNR (which differed slightly from Weibull α, see text) as a function 
of uncertainty level with prediction as in inset to (B). (e) Internal noise (in units 
of external noise; Green and Swets, 1966) versus input d ′ (see Section 2 for 
definition). Bars next to y axis (right) show mean ± SD across observers for 
internal noise (excluding observers for which estimates were >5 because 
deemed unreliable, see Neri, 2010a). (F) Same as (e) but including data for 
SNR values equal to 1

2 × (smaller symbols) or 2× (larger symbols) threshold 
SNR. In all plots, uncertainty level is color-coded as in Figure 1A and each 
observer is indicated by a different symbol. Error bars show ±1 standard error 
of the mean (SEM) except when explicitly detailed above.

Following the preliminary assessment of threshold levels detailed 
above, we proceeded to collect a large number of trials (>110K) at 
or near the determined threshold SNR on 10 naive observers. We 
targeted a threshold performance level of output d′ ∼ 1 to yield 
near-optimal kernel quality for psychophysical reverse correlation 
(Murray et al., 2002), which required slight adjustments of thresh-
old SNR in order to track learning in individual observers (com-
pare threshold SNR determined during staircase (upper inset to 
Figure 2B) with those used during fixed SNR data collection (inset 
to Figure 2D)). We closely achieved this target as demonstrated 
by a scatter (SD) of only 0.2 d′ units around d′ = 1 across observ-
ers (points fall on vertical dashed line in Figure 2C, not different 
from 1 (p > 0.2) for any of the uncertainty levels). We were also 
able to avoid bias effectively (y values in Figure 2C): for the two 
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Neri, 2010a for a more extensive characterization of this topic). 
Of particular interest is the fact that internal noise, similarly to 
efficiency, did not differ for the different uncertainty levels (Cuzick 
test p = 0.48; see bars next to y axis in Figure 2E).

The above-detailed characterization represents a necessary 
preliminary step for placing the data analysis and model simu-
lations that follow within a solid framework. First, Figures 2A,B 
demonstrates that our methodology for manipulating extrinsic 
uncertainty was effective in inducing correlated shifts in intrin-
sic uncertainty (see also Figure 4E and related discussion later in 
the article), and that our experiments are immediately relevant to 
uncertainty as defined and examined by previous literature (Pelli, 
1985; Tyler and Chen, 2000). Second, the observation that internal 
noise is late and independent of uncertainty simplifies modeling 
because it indicates that, for the purpose of a qualitative comparison 
between model and data, the role of internal noise is irrelevant (it 
only reduces the quality of our simulations as we verified directly, 
see Section 2). Third, while kernel estimation using psychophysical 
reverse correlation is reasonably well understood for late additive 
internal noise (Ahumada, 2002; Murray et al., 2002), the potential 
impact of more complex internal noise sources on this methodol-
ogy has never been explored. Because many of the results described 
here rely on this approach, the characterization afforded by Figure 2 
provides a necessary validation of the applicability of this method-
ology in the present context.

3.2 estIMated fIrst-order and second-order kernels
Figure 3A shows linear (first-order) kernels derived using psycho-
physical reverse correlation (Ahumada, 2002) for all four uncer-
tainty levels (different colors). As expected, their overall spatial 
extent reflects the corresponding level of extrinsic spatial uncer-
tainty: the kernel corresponding to no uncertainty (blue) presents 
a sharp peak at target location (0 on x axis) and smaller negative 
side-flanks (Mexican-hat shape), while the kernel corresponding 
to full uncertainty (red) modulates across the whole spatial extent 
of the stimulus (although its amplitude is one order of magnitude 
smaller). We also computed full second-order (non-linear) ker-
nels (Neri, 2004, 2009, in press) (Figures 3B–E). Because modula-
tions within these operators occur primarily along the diagonal 
(variance) region, we inspect only the diagonal in Figure 3G. It 
is clear from a comparison between Figure 3A and Figure 3G 
that, to a coarse approximation, first-order kernels and second-
order diagonals present similar characteristics. This observation 
is further emphasized by Figures 3H–K where each kernel value 
in Figure 3A is plotted (on the x axis) against each corresponding 
value in Figure 3G (on y axis). For the three smaller uncertainty 
levels (Figures 3H–J) first-order and second-order values covary 
positively (r ∼ 0.7–0.9).

The above-noted similarity between first-order and second-
order kernels will be critical for selecting adequate computa-
tional models later in the article, making it necessary to confirm 
that these qualitative observations are quantitatively robust and 
borne out by individual observer analysis, not just by cursory 
evaluation of aggregate data. Because (as is normal; Meese et al., 
2005) we found some variability across observers, it is difficult 
to draw conclusions from simply inspecting individual kernels 
(see Figure A1 in Appendix). We therefore performed additional 

of overall performance and response metrics, our observers were 
placed within optimal range (d′ ∼ 1, Murray et al., 2002, bias∼0, 
Neri, 2004, 2009).

Overall average efficiency (across conditions and observers) was 
33% (±18% SD), matching the range measured by previous inves-
tigators for similar tasks (Barlow, 1978, 1980; van Meeteren and 
Barlow, 1981; Burgess and Barlow, 1983; Burgess and Ghandeharian, 
1984a,b; Burgess, 1985; Myers et al., 1985; Burgess and Colborne, 
1988; Eckstein et al., 1997), and did not differ as a function of uncer-
tainty (Cuzick test not significant at p = 0.2; see bars near x axis 
(top) in Figure 2D). However we observed a significant degree of 
variability in how well different observers could perform the above-
detailed task. Efficiency across observers spanned almost 1 entire 
log-unit for all uncertainty levels (x values in Figure 2D), which 
required the selection of SNR values spanning a fourfold range (y 
values in Figure 2D) in order to bring all observers within the same 
threshold performance range (x values in Figure 2C). This resulted 
in a strong negative correlation (< −0.8 for all uncertainty levels) 
between efficiency and threshold SNR (negative tilt in Figure 2D). 
We wished to pinpoint the exact source of this variability across 
observers, so we performed an additional set of experiments using 
a double-pass technique (see Section 2) that allowed independent 
estimation of late internal noise (y values in Figure 2E) as well as d′ 
in the absence of such noise (x values in Figure 2E), which we refer 
to as input d′ (see Section 2). When internal noise is factored out in 
this way, the resulting d′ values scale with threshold SNR (correla-
tion coefficient >0.85 for all uncertainty levels, not shown) as pre-
dicted by a signal detection process with stable characteristics across 
observers. What is inconsistent with this simple model, however, is 
the result that internal noise scales with signal detectability (strong 
positive correlation in Figure 2E) rather than remaining constant 
across observers, suggesting that variability in internal noise was the 
main source of variability in efficiency across observers (internal 
noise correlates negatively with efficiency, not shown).

It should be emphasized that, although the correlation between 
internal noise and signal detectability demonstrated in Figure 2E 
renders a simple signal detection model with constant internal noise 
(in units of external noise) inapplicable to the entire population 
of observers, this does not mean that it may not apply to each 
observer individually. To confirm that it still applies to each observer 
separately, we repeated the double-pass measurements for different 
SNR’s applied to the same observer. As shown in Figure 2F, the 
strong correlation between internal noise intensity and internal 
signal intensity (input d′) previously measured across observers 
(Figure 2E) is now completely eliminated (we first computed the 
correlation for each observer, then applied a t-test for the resulting 
set of correlations being different from 0 and obtained p > 0.5 for 
all uncertainty levels). Figure 2F thus demonstrates that, for a given 
observer, internal noise intensity is constant in units of external 
noise intensity, in the face of large variations of signal intensity. 
We conclude that (similar to the popular non-linear transducer 
model; Nachmias and Sansbury, 1974) the most prominent source 
of internal noise is late, additive, and roughly equal to the intensity 
of the external noise source (estimates fall around 1 indicated by 
horizontal dashed lines in Figures 2E,F) in agreement with previous 
measurements of this kind (e.g., Green and Swets, 1966; Burgess 
and Colborne, 1988; Levi et al., 2008; Neri, 2009; see in particular 
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negative modulation for the flank regions of  second-order diagonal 
kernels from the two smaller uncertainty levels (full color blue and 
cyan points fall below the horizontal dashed line at p < 0.01 and p < 
0.05 respectively). This effect was not significant for the two larger 
uncertainty levels (magenta and red), but it is not expected for these 
conditions (see Figure 5 and related modeling sections). Because 
the significant negative modulations detailed above are directly 
inconsistent with a MAX uncertainty model, we must conclude 
that this model is not applicable in the context of our experiments. 
Instead, these modulations are fully compatible with a different 
model which we detail below.

We know from well-established results in non-linear systems 
analysis that certain cascade models generate specific modula-
tions within first-order and second-order kernels (Marmarelis, 
2004). More specifically, we are interested here in the two most 
common models used in engineering and neuroscience applica-
tions: the Hammerstein NL model, where a static non-linearity 
precedes the linear filtering stage (Hunter and Korenberg, 1986), 
and the Korenberg LNL (also known as ‘sandwich’) model, where 
an additional front-end linear stage precedes the static non-linearity 
(Spekreijse and Oosting, 1970; Korenberg and Hunter, 1986) (see 
Section 2). The former predicts that the diagonal of the second-
order kernel should have the same shape as the first-order kernel 
(see Theoretical Properties of MAX Kernels in Appendix), the 

analyses that  captured relevant aspects of both first-order and 
second-order kernels, and quantified each aspect using a single 
value for each observer. The data could then be subjected to simple 
population statistics in the form of t-tests and confirm or reject 
specific hypotheses about the overall shape of the kernels. Our 
conclusions are therefore based on individual observer data, not 
on the aggregate observer (which is used solely for visualization 
purposes). This distinction is important because there is no gen-
erally accepted procedure for generating an average kernel from 
individual images for different observers (see Neri and Levi, 2008 
for a detailed discussion of this issue).

Similarly to first-order kernels, second-order diagonals present 
negative modulations alongside the central positive peaks. A result 
of this nature, if statistically robust, would provide direct evidence 
against the MAX uncertainty model: this model predicts that sec-
ond-order diagonals must contain only positive modulations, as 
we demonstrate both analytically (Theoretical Properties of MAX 
Kernels in Appendix) and via Monte Carlo simulations later in the 
article (Figure 5). Figure 3F plots kernel amplitude averaged within 
the peak and flank regions indicated by green and yellow horizontal 
bars respectively in Figure 3A. Flank values are shown in full colors, 
peak values in light colors, for both first-order kernels (x axis) and 
second-order diagonals (y axis). In line with the qualitative inspec-
tion of the aggregate data in Figure 3G, we found a  significant 

−2 0 2

0

0.2

A

Space (deg)1s
t
or

de
r 

am
pl

itu
de

 (
un

its
 o

f σ
N2

)

−2 0 2

0

.01

G

Space (deg)2n
d 

  or
de

r 
am

pl
itu

de
 (

un
its

 o
f 2

σ N4
)

B C

D

Space(deg)

S
pa

ce
(d

eg
) E

−2 0 2

−2

0

2

−10 Z +10

−1 −0.5 0 0.5 1

−0.5

0

0.5
L

R[1st, diag(2nd)]

R
[1

st, m
argin(2

nd )]

H I

J

1st order amplitude

2n
d

or
de

r 
am

pl
itu

de
K

−.2 −.1 0 .1 .2

0

.01

.02 F

1st  order amplitude

2
nd

order am
plitude

Figure 3 | First-order and second-order kernels with associated metrics. 
(A) Aggregate first-order kernels for all 4 uncertainty levels. Inset shows 
first-order kernels for experiments involving detection of a dark target bar (only 
two uncertainty levels were tested for this condition). (B–e) Aggregate 
second-order kernels for the four different uncertainty levels (surface plots 
show Z-scores), color-coded for |Z | > 2 (red for positive, blue for negative). For 
the two smaller uncertainty levels (B,C) the central regions of the kernels are 
magnified for ease of inspection. (F) Average first-order kernel amplitude 
within peak range [indicated by green bar near bottom x axis in (A)] or flank 
range [indicated by orange bars near bottom x axis in (A)] on x axis (full color 
symbols for flank, light color symbols for peak), versus corresponding 
second-order diagonal amplitude on y axis. Solid symbols for bright target 

detection, open symbols for dark target detection. Axes have been warped to 
magnify region of interest around origin (using the map x x x→ sign( ) | |). (g) 
Aggregate second-order diagonals [same as (B–e) but only plotting the 
diagonal region]. Inset shows data for dark target detection. (H–K) plot each 
value of aggregate first-order kernels on the x axis versus the corresponding 
value of aggregate second-order diagonals on the y axis. (L) Correlation 
between first-order kernel and second-order diagonal is plotted on the x axis 
versus correlation between first-order kernel and second-order marginal 
average on the y axis, for each observer separately. Open symbols refer to 
dark target detection. In all plots, uncertainty level is color-coded as in 
Figure 1A and each observer is indicated by a different symbol. Error bars and 
shading show ±1 SEM.



Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 151 | 7

Neri Visual detection under uncertainty

uncertainty window (blue) edge and center are the same), resulting 
in the four black traces shown in Figure 4A (inset). All traces dis-
played similar tuning characteristics; to support this observation we 
estimated the centroid spatial frequency (see Section 2) targeted by 
each filter in each observer, plotted using gray symbols in Figure 4B 
for the smallest (x axis) versus largest (y axis) uncertainty levels. 
Points fall on the unity line (p = 0.2) indicating that, to a reasonable 
approximation, the same front-end filter operated across the entire 
stimulus for all uncertainty levels, a process easily implemented by 
straightforward convolution with one filter function. This conclu-
sion may appear undermined by a related effect which we observed 
using centroid analysis: we found that when the front-end filter was 
estimated only for the central (foveal) location using data from the 
smallest as opposed to largest uncertainty conditions (x versus y 
axes in Figure 4B, black symbols), the latter dataset returned a lower 
bandpass range (black points fall below the unity line, p < 0.001). In 
other words, we found that the bandpass characteristics returned 
by signal-clamping for a given front-end filter depended not on 
its absolute retinal location, as one may expect from the physi-
ologically plausible notion of a consistent bank of front-end filters, 
but on its location relative to the edge of the uncertainty window. 
However a correct interpretation of this result depends on the 
model supporting front-end convolution: the MAX model predicts 
no difference in bandpass characteristics for this analysis (green 
symbol in Figure 4B), inconsistent with the data; the Hammerstein 
model predicts that, due to the distortions introduced by the signal-
clamping methodology (Theoretical Properties of Signal-Clamped 
(Target-Present) Kernels in Appendix), there should be an apparent 
difference in bandpass properties for the estimated front-end filter 
that matches the one observed experimentally (yellow symbol), 
despite no change in the underlying convolution filter itself (see 
Section 2). This result further corroborates the notion supported 
by the rest of this study that the Hammerstein model provides a 
simpler and more accurate account of the experimental data than 
the MAX model.

To estimate the function for the front-end filter as effectively 
as possible, and to avoid committing to a specific set of assump-
tions at this stage, we combined all traces in Figure 4A into one 
trace, plotted in Figure 4C. This trace was reasonably well fitted by 
a difference-of-Gaussians (DOG) function, shown by the yellow 
line (but less well by a Gabor function, shown by the green line). 
The shape of this function is consistent with previous estimates of 
this kind (Neri and Heeger, 2002; Levi and Klein, 2002; Levi et al., 
2008). To cross-check that this estimate is consistent with known 
facts about cortical physiology, we plot in Figure 4D both center 
and surround receptive field (RF) size corresponding to the best-
fit DOG functions across our observers (see caption to Figure 4 
for details) and compare it with the range estimated from single 
units in macaque primary visual cortex (Shushruth et al., 2009) 
indicated by the green shaded region. Overall our data falls within 
the expected range, suggesting that the methodology used here 
for retrieving the characteristics of the front-end filtering stage in 
the face of uncertainty is acceptable. It is worth pointing out that 
the front-end filter in Figure 4C is suboptimal (the optimal filter 
matches the target shape); this mismatch can be treated as a form of 
intrinsic uncertainty (not available for experimental manipulation 
within the context of our experiments).

latter makes the same  prediction for the marginal average of the 
 second-order kernel (Westwick and Kearney, 2003). We have already 
noted that the aggregate data appears consistent with the former 
prediction (Figures 3H–K). To demonstrate this result using indi-
vidual observer analysis, Figure 3L plots correlation values between 
first-order kernels and second-order diagonals for each observer 
on the x axis, while the y axis plots correlations between first-order 
kernels and second-order marginals. Correlations with the diagonal 
are positive for the three smaller uncertainty levels (data points fall to 
the right of the vertical dashed line for blue (p < 10−5), cyan (p < 10−3) 
and magenta (p < 0.01)), but not for the largest uncertainty level 
(p = 0.98). Marginal correlations are no different from 0 for any of 
the four uncertainty levels (p > 0.05), indicating that modulations 
outside the diagonal region contained primarily noise (which elimi-
nated the diagonal correlation; see Neri, in press for a more detailed 
analysis of off-diagonal modulations). We conclude that kernel 
structure in our experiments is consistent with the Hammerstein 
model, with no clear evidence that this model needs further elabo-
ration into a Korenberg model. It is relevant in this context that 
the MAX model can be approximated by a Korenberg cascade (see 
Theoretical Properties of MAX Kernels in Appendix).

3.3 estIMatIon of front-end fIlterIng VIa sIgnal-claMpIng
As a preliminary step toward the design of a physiologically plau-
sible model, we will obtain an estimate of the front-end filter that 
is applied to the input stimulus via convolution (Figure 1C). We 
expect that it will be approximately similar to the first-order ker-
nel obtained in the near-absence of spatial uncertainty (blue trace 
in Figure 3A), but we would like to confirm that the same filter 
was operating under conditions of uncertainty. This is particularly 
relevant here because the larger uncertainty conditions involved 
stimulus information from slightly more peripheral locations (up 
to 2° eccentricity), for which it is possible that front-end filters 
would be characterized by different spatial tuning. Earlier work on 
the application of reverse correlation techniques within regimes of 
uncertainty exploited a signal-clamping methodology to expose the 
filter underlying front-end convolution (Tjan and Nandy, 2006) (see 
Movshon et al., 1978 for a related application in neurophysiology). 
We show in “Theoretical Properties of Signal-Clamped (Target-
Present) Kernels” in Appendix that this approach is only applicable 
within very specific conditions because it returns an estimate closer 
to the autocorrelation function of the front-end filter rather than 
the filter itself (see Figure 9). We adopt it here because the condi-
tions of our experiments can be reasonably included within the 
applicable category, but it must be recognized that the interpre-
tation of signal-clamped kernels (or the more common subclass 
represented by target-present kernels (Ahumada et al., 1975; Abbey 
and Eckstein, 2002; Neri and Heeger, 2002; Solomon, 2002; Thomas 
and Knoblauch, 2005)) is not straightforward.

Under signal-clamping, first-order kernels are derived from 
target-present noise fields contingent on target position (Tjan and 
Nandy, 2006) as shown in Figure 4A, where traces with lighter 
colors show first-order kernels for trials on which the target bar was 
located more peripherally. First-order kernels are now sharp-peaked 
for all uncertainty levels, and the peaks occur at the corresponding 
target locations. We used this analysis to derive front-end filters 
for the edge location of each uncertainty window (for the smallest 
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3.4 estIMatIon of IntrInsIc uncertaInty wIndows
In a complementary manner to kernels derived from target-present 
noise fields, kernels derived from target-absent noise fields can be 
exploited to estimate the intrinsic uncertainty window applied by 
the observer to the output of the front-end convolution (Tjan and 
Nandy, 2006) (see Figure 1C). More specifically, the target-absent 
kernel reflects w * f (Theoretical Properties of Signal-Clamped 
(Target-Present) Kernels in Appendix); using the estimate for f 
derived from signal-clamping (see previous section) we can com-
pute w via inverse cross-correlation. Figure 4E shows aggregate 
w estimates for the four different uncertainty levels, along with 
Gaussian fits (which account (overall) for 92% of the variance). 
Further corroborating the analysis in Figures 2A,B, the spatial 
extent of intrinsic uncertainty (SD of the best-fit Gaussian plotted 
on y axis in inset to Figure 4E) tracks the extent of experimentally 
imposed extrinsic uncertainty (x axis). This relationship is well 
fitted (p < 0.005) by a straight line in log-log axes (red line in inset 
to Figure 4E, see caption for details). Although in general individ-
ual observer values were scattered around the aggregate estimates 
(Figure 4F), we found large variability and occasionally poor reli-
ability for Gaussian fits across observers; it is not surprising that the 
resolving power of our data is not robust for individual observers 
in relation to this specific analysis, as it involves an unusual number 
of preprocessing steps (signal-clamping, inverse cross-correlation, 
fitting). For the purpose of modeling, we therefore opted for the 
excellent fit to the aggregate data (red line in inset to Figure 4E) as 
the basis for selecting Gaussian intrinsic uncertainty windows (w). 
Our conclusions do not depend on this particular choice because 
they are either independent of the specific shape of w (for kernel-
based analysis) or more generally related to the non-parametric 
concept of efficiency (Burgess et al., 1981) (for consistency-based 
analysis; see below).

3.5 kernels assocIated wIth dIfferent uncertaInty Models
Figure 5 plots first-order kernels and second-order diagonals 
for a selection of relevant modeling schemes; when attempting 
physiologically plausible models we relied on the characteriza-
tion detailed in the two preceding sections (see Section 2). As 
shown in Figures 5A,B, a straightforward implementation of the 
Hammerstein model returns kernel shapes that are highly consistent 
with those observed for the human observers, at least qualitatively. 
For comparison, the smaller panels show kernels obtained from a 
range of Korenberg/MAX cascades (we treat these two models as 
belonging to the same class in this article (see Theoretical Properties 
of MAX Kernels in Appendix for asymptotic equivalence) but it 
should be noted that there has been extensive effort in the literature 
to distinguish between specific implementations of the two (Cohn 
and Lasley, 1986; Klein and Levi, 2009; Solomon, 2009)). One ver-
sion (panels C, E, G, and I) uses ideal uncertainty windows, the sec-
ond version (panels D, F, H, and J) uses Gaussian windows (closer to 
human data, see Figure 4E). These additional simulations are meant 
to demonstrate the simple result that plausible implementations 
of MAX models (and Korenberg approximations to them) do not 
generate negative modulations within second-order diagonals; this 
is consistent with our theoretical prediction (Theoretical Properties 
of MAX Kernels in Appendix), but inconsistent with the empirical 
results (Figure 3). As anticipated in previous sections, we must 
conclude that the estimated kernels from human data support the 
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Figure 4 | Signal-clamped kernels and intrinsic uncertainty windows. (A) 
First-order kernels (aggregate) as a function of target position for all uncertainty 
levels (from largest, top row, to smallest, bottom row). Lighter colors refer to 
more peripheral locations. Inset shows kernel averages within the four 
rectangular regions. (B) Centroid frequency (Neri, 2009) (in cycles/deg, see 
Section 2) of signal-clamped kernels for individual observers. Gray symbols refer 
to the edge of the extrinsic uncertainty window [same as inset to (A)], for the 
smaller uncertainty window on the x axis versus the largest on the y axis. For the 
x axis the edge is the same as the center (the smallest uncertainty window 
spanned one position only); because all uncertainty conditions contained the 
center, gray estimates on the x axis were computed from data for all four 
uncertainty conditions [as indicated by black rectangle in (A)]. Black symbols refer 
to the center of the uncertainty window, estimated from data for the smallest 
uncertainty condition only on the x axis versus the largest uncertainty condition 
only on the y axis; corresponding aggregate kernels are shown in the inset (black 
for data from small uncertainty condition). Green symbol shows corresponding 
estimate for MAX model, yellow symbol for Hammerstein (realistically 
parameterized in both cases). (C) Grand average of signal-clamped kernels [from 
all traces in (A)], black trace. Yellow trace shows DOG fit, green trace Gabor fit. 
Inset shows equivalent data for dark target detection. (D) Receptive field (RF) 
estimates from DOG fits for individual observers (center on x axis, surround on y 
axis), which we approximated as spanning ±2SD of the corresponding Gaussian 
function. Green shading shows range estimated by Shushruth et al. (2009) for 
0°–2° eccentricity in macaque V1. Open symbol shows average (±SD) across 
observers for dark target detection. (e) Estimated intrinsic uncertainty windows 
(see Section 2) from aggregate data. Thick lines show Gaussian fits (mean was 
constrained to 0 (centered); we varied amplitude and SD). Inset plots best-fit 
Gaussian SD (in units of deg) on y axis as a function of uncertainty level on x axis. 
Line shows linear fit (in log-log axes) σ[M] = e0.6844log(M)−2.6081. (F) Best-fit Gaussian 
SD’s for individual observers (amplitude of fit was constrained to match peak 
value; fit was successful in 8 out of 10 observers), plotted on x axis for smallest 
uncertainty value versus y axis for largest. Shaded regions show corresponding 
aggregate ranges (95% confidence intervals). In all plots, uncertainty level is 
color-coded as in Figure 1A and each observer is indicated by a different symbol. 
Error bars and shading show ±1 SEM unless specified differently above.
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uncertainty is close to zero (blue) the MAX model operates like a 
matched template. Consistent with our results, Manjeshwar and 
Wilson (2001) provided fragmentary evidence that the MAX model 
is able to capture trial-by-trial human responses for this near-zero 
uncertainty condition, but its predictive power collapses as soon as 
the smallest amount of spatial uncertainty is introduced.

Clearly, model-human consistency depends on the exact para-
metrization used for the model. As an example, Figure 6B shows 
how model-human consistency varies as a function of the power 
exponent (n) for the early non-linearity in the Hammerstein model: 
larger values of n (x axis) correspond to a more expansive non-
linearity (n = 1 is linear). Interestingly, we observed a trend whereby 
the n value associated with largest model-human consistency (indi-
cated by symbols for individual observers) was close to squaring 

notion that the human visual system conforms to a Hammerstein 
NL cascade under the conditions of our experiments, and not to 
a MAX model.

3.6 trIal-by-trIal replIcabIlIty of huMan responses
We can assess the applicability of different models via a completely 
different approach, in which we do not attempt to gauge the struc-
ture of the system, but rather focus exclusively on how well different 
models are able to predict whether the human observer will respond 
1 or 2 on each specific trial (Neri and Levi, 2006; Neri, 2009). 
Figure 6 plots consistency, i.e., the percentage of trials on which 
two processes (e.g., human and model) give the same response to 
the same set of stimuli (Burgess and Colborne, 1988). This metric is 
closely related to the zero-one loss function used in machine learn-
ing applications (Cristianini and Shawe-Taylor, 2000; Schölkopf 
and Smola, 2002). Figure 6A plots model-human consistency for 
a physiologically plausible implementation of the Hammerstein 
model on the y axis, versus an equivalent implementation of the 
MAX uncertainty model. For these specific implementations, the 
latter outperforms the former when there is little uncertainty (blue 
and cyan symbols fall below unity line at p < 0.005 and p < 10−3 
respectively), but the Hammerstein model is superior to the MAX 
model in the presence of substantial uncertainty (magenta and red 
symbols fall above unity line at p < 10−3 and p < 10−5). When spatial 
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model. (A) Model-human consistency (% of trials on which the human 
observer and the model gave the same response to the same set of stimuli, 
converted to d ′ units; Neri, 2009) for MAX (realistically parameterized) on the x 
axis, versus Hammerstein (realistically parameterized with Φ(r) = er) on the y 
axis. (B) Smooth lines show how model-human consistency for Hammerstein 
model (realistically parameterized, plotted on y axis) varies as a function of n 
(specifying the expansive nature of the early non-linearity Φ(r) = (1 + r/n)n) on x 
axis. Shading shows ±1 SD across observers. Symbols show, for each 
observer, the n value (on x axis) associated with largest consistency (on y 
axis). Bars near x axis (top) show mean ± SD of these n values. Vertical lines 
show the n value associated with highest efficiency (maximizing % correct) 
averaged across observers. (C) Model-human consistency for the ideal 
observer (y axis) versus the Hammerstein model (realistically parameterized) 
with n matched to values indicated by symbols in (B). Inset plots same on y 
axis, versus d ′ on x axis; the latter is the model-human consistency expected 
of a hypothetical model (not realizable for the SNR values used in our 
experiments) that selects the target interval on every trial (Neri, 2009). (D) 
same as (C) on y axis, versus human-human consistency on x axis (human 
self-replicability) estimated from double-pass experiments (Burgess and 
Colborne, 1988) (see Section 2). Gray-shaded region shows range for highest 
consistency theoretically possible (Neri and Levi, 2006). Error bars show ±1 
SEM unless specified differently above. Except for x axis of (B), axes of all 
other panels are in d′ units (not %).
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and the intrinsic uncertainty windows are ideal (i.e., they match the 
spatial range for target position), the Hammerstein model is identi-
cal to the ideal observer and the MAX model is nearly identical to it 
for all uncertainty levels (indicated by symbol size) as demonstrated 
by the blue circles in the upper-right corner (and as theoretically 
expected, see Theoretical Properties of MAX Kernels in Appendix). 
A more realistic implementation involves Mexican-hat shaped front-
end filters that mimic the one derived from human data (Figure 4C). 
Red symbols refer to the empirically estimated best-fit DOG filter. 
It is clear that, under this type of realistic front-end filtering, the 
MAX model is more efficient than the Hammerstein model when 
uncertainty is small (small circles fall above unity line), but worse 
when uncertainty is large (large symbols fall below unity line). As 
the front-end filter is made to depart even more from the ideal 
filter by broadening its tuning characteristics (yellow and green 
symbols), this trend is preserved but it becomes apparent that the 
Hammerstein model is far more robust than the MAX model in 
conditions where the front-end filter is badly matched to the sig-
nal: efficiency values barely change for the Hammerstein model 
(red, yellow and green traces are aligned vertically), while they drop 
significantly for the MAX model (red, yellow and green traces are 
increasingly shifted downwards). As the next step of approximation 
to a realistic implementation is afforded by using Gaussian uncer-
tainty windows (black symbols) rather than ideal boxcar windows, 
the efficiency range spanned by the Hammerstein model falls within 
the range estimated for a noiseless human observer (gray solid and 
dashed boxes) while the MAX model falls outside this range when 
uncertainty is large, and is very inefficient (∼0.2). We conclude from 
Figure 7 that, within the constraints imposed by the characteristics 
of realistic human visual filters and uncertainty weighting functions, 
the MAX model is not sufficiently robust to represent a viable choice 
except when uncertainty is very small. In contrast, the Hammerstein 
model is resilient to these limitations.

in the absence of uncertainty (average x value for blue symbols is 
2.1 ± 0.9 SD across observers), but increased in the presence of 
uncertainty (red symbols are shifted to the right of blue symbols, p < 
0.005), meaning that the best-fit early non-linearity becomes more 
pronounced as uncertainty is increased. When the non-linearity in 
the Hammerstein model is matched to the average best-fit expo-
nent from Figure 6B (via cross-validated procedure), this model 
performs as well as the MAX model for the smaller uncertainty 
conditions (while remaining superior for larger uncertainty) and 
approaches the consistency afforded by the ideal observer model. 
This is shown in Figure 6C, where ideal consistency is plotted on 
the y axis versus consistency for the above-detailed implementation 
of the Hammerstein model: there is no difference for all uncer-
tainty levels (p > 0.05). This result is consistent with the noteworthy 
observation that the n value that maximizes target detection (largest 
d′), indicated by vertical lines for the different uncertainty levels 
in Figure 6B, also increases with uncertainty in a manner similar 
(although not identical) to the trend observed for the n value that 
maximizes model-human consistency (bars near top x axis). In 
other words, it appears that the early non-linearity is adjusted to 
maximize performance under different levels of uncertainty.

Despite the inability of the ideal observer to capture the kernel 
structure observed experimentally (Figures 5C,G), we consistently 
found an improvement in model-human consistency as different 
models were modified to approach the ideal observer model. Indeed, 
model-human consistency for the ideal observer (and for the opti-
mized Hammerstein model detailed earlier) was well within the 
maximum range theoretically possible. Figure 6D plots consistency 
for the ideal observer on the y axis (same as y axis in Figure 6C) 
versus human-human consistency, i.e., the percentage of trials on 
which the human observers gave the same response to two presenta-
tions of the same visual stimulus (this quantity was estimated using 
the double-pass procedure described earlier in the article). Human-
human consistency can be used to determine an expected region for 
the best achievable consistency by any model (Neri and Levi, 2006; 
Neri, 2009), shown by gray shading in Figure 6D. Consistency values 
for the ideal observer are mostly within this region. Surprisingly, they 
are significantly greater than human-human consistency for almost 
all uncertainty levels (blue, magenta and red symbols fall above unity 
line (p < 0.05) but not cyan (p = 0.13)). Such high predictive power 
is rarely observed at threshold (compare with Neri, 2009).

The analysis presented in Figure 6 leads to the conclusion that 
the ability of different models to replicate human trial-by-trial 
responses in the conditions of our experiments may be assessed 
by determining their efficiency, i.e., how closely they approach the 
ideal observer (Green and Swets, 1966; Burgess et al., 1981) (this is 
not always the case, see Neri, 2009 for a counter-example). In this 
sense, model-human consistency falls within the category of coarse 
metrics (e.g., d′) that do not allow a clear distinction between the 
inefficient ideal observer and other models (see Section 1). When 
combined with the kernel-based analysis detailed earlier, however, 
the above conclusion prompts a closer evaluation of how robust 
different models can be under varying degrees of realistic param-
eterization; we examine this issue below.

Figure 7 plots efficiency for the two models of interest in this 
study: the MAX model on the y axis, versus the Hammerstein model 
on the x axis. When the front-end filter is ideal (i.e., a delta function) 
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Figure 7 | efficiency (square ratio to ideal d ′; green and Swets, 1966) of 
MAX (y axis) versus Hammerstein (x axis) models. Symbol size indicates 
uncertainty level (3j−1 for j = 1 to 5). Blue symbols refer to ideal 
parameterization; red symbols to f matching best-fit DOG to aggregate data 
(Figure 4C), yellow symbols to same f but stretched along the x axis 
(broadened) by 2×, green symbols by 3×, black to same f as for red but 
Gaussian w instead of ideal w. Each symbol shows mean of 100 simulations 
(5K trials each). Gray rectangles indicate efficiency range for human input d ′ 
(see Section 2), mean ± SD across observers (dashed for y axis).
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operates: once it is agreed that uncertainty is present, there is wide-
spread consensus that visual detection relies on a late MAX opera-
tion (Pelli, 1985; Klein and Levi, 2009) to the extent that the two 
terms ‘uncertainty model’ and ‘MAX model’ are often treated as 
synonyms and used interchangeably in the vision literature (Klein 
and Levi, 2009; Solomon, 2009). Our study does not speak to the 
debate over the presence/absence of uncertainty: we deliberately 
inject uncertainty into the experiments, control its extent explicitly, 
and confirm that the classic signatures of its presence (Pelli, 1985; 
Tyler and Chen, 2000) apply to our data (Figures 2A,B). Our study 
is concerned with the question of how visual processing operates 
under uncertainty when it is present, and it challenges the notion 
that it is supported by a MAX model, at least for the specific task 
and stimuli adopted here. The main feature of the model we favor, 
known as Hammerstein (Hunter and Korenberg, 1986; Marmarelis, 
2004), is the presence of an early non-linearity. Below we discuss a 
few issues that are directly relevant to this stage in the model.

4.1 characterIzatIon and InterpretatIon of the early 
non-lInearIty
Throughout this report we have drawn a distinction between the 
NL Hammerstein model and the LNL Korenberg model. However 
it is evident that in general the former represents a subclass of 
the latter (Marmarelis and Marmarelis, 1978; Marmarelis, 2004): 
insertion of an early convolution with a delta function before the 
static non-linearity leaves the output unchanged, but turns the NL 
model into an LNL model. How can our data reject LNL models, 
and at the same time accept NL models which are also LNL mod-
els? This result is a consequence of the specific way in which the 
models are formulated to encompass sensible implementations of 
uncertainty models (Figure 1). In the L

1
NL

2
 implementation of a 

MAX uncertainty model, the linear stage L
2
 immediately preceding 

the psychophysical decision is necessarily a simple sum (this stage 
(indicated by Σ in Figure 1C) does not even exist in the MAX model 
as the max operation already returns a single decision variable 
(Pelli, 1991)). Both front-end filtering and weighting by the intrin-
sic uncertainty window (indicated by large circle and large square 
boxes respectively in Figure 1C) are lumped into the early linear 
stage L

1
 (see Section 2). As discussed in detail earlier (and demon-

strated in Theoretical Properties of MAX Kernels in Appendix) this 
formulation is incompatible with the modulations we observed in 
the second-order kernels (Figure 3). In the Hammerstein model, 
the linear stage immediately preceding the psychophysical decision 
corresponds to L

1
 (front-end convolution followed by weighting), 

not L
2
; formally adding an early (ineffective) linear stage does not 

therefore reduce it to the LNL implementation of a MAX model. 
The prediction for the Hammerstein model is consistent with the 
data (Figure 5). To summarize, our conclusions can only be under-
stood in relation to the specific formulation of cascade models 
that is necessary to accommodate uncertainty, not in general with 
relation to any Hammerstein/Korenberg cascades.

The issue of formulating the front-end stage in the Hammerstein 
model draws attention to a further question: what is a plausible 
physiological substrate for this stage? As mentioned in the preceding 
paragraph, there is an implicit assumption in this model that the 
earliest stage involves a high-fidelity linear transducer (a delta func-
tion); a compatible physiological interpretation would presumably 

3.7 exclusIon of potentIal role for stIMulus artIfacts
The early non-linearity we characterized in the previous sections is 
suspiciously reminiscent of the expansive non-linearity that is com-
monly observed for uncalibrated monitors: when pixel intensity is 
controlled linearly at the palette level, the actual output from the 
monitor is typically supralinear (Brainard et al., 2002). Is it possible 
that our experiments exposed this non-linearity in the stimulus 
hardware, rather than in the observer’s visual system? We took 
great care in gamma-correcting our monitor to eliminate this non-
linearity altogether, but we wished to further exclude a potential 
role for such an artifact by collecting more data based on the fol-
lowing logic. As detailed earlier, the Hammerstein model predicts 
a correlation between the first-order kernel and the  second-order 
diagonal (see Theoretical Properties of MAX Kernels in Appendix); 
the sign of the correlation is determined by the first-order and 
second-order coefficients in the Taylor expansion of the early non-
linearity (Westwick and Kearney, 2003; Neri, 2009). If the target bar 
is made dark, the appropriate Hammerstein model would apply a 
non-linearity where the sign of the first-order coefficient is oppo-
site to that used for a bright target bar. We therefore expect that, 
in conditions where observers are asked to detect a dark bar, the 
resulting kernels would show a negative correlation between first-
order kernels and second-order diagonals. More specifically, we 
expect that first-order kernels would be a sign-inverted version of 
those obtained for detecting a bright bar, while second-order ker-
nels would remain unchanged (see Theoretical Properties of MAX 
Kernels in Appendix). If, on the other hand, the early non-linearity 
derives from monitor miscalibration, the characteristics of this non-
linearity will not change, leaving the sign of the correlation between 
first-order kernels and second-order diagonals unchanged.

We tested these predictions by performing additional meas-
urements for the two smaller uncertainty levels on a subset of 
the observers (see Section 2), who were presented and asked to 
detect a dark rather than a bright bar. The results were unequivo-
cal: first-order kernels inverted their sign (inset to Figure 3A), but 
not  second-order kernels (inset to Figure 3G). Individual observer 
analysis confirmed these trends: peak amplitude was significantly 
negative for first-order kernels but positive for second-order diago-
nals (open symbols fall within second quadrant in Figure 3F, p < 
0.05), and the correlation between first-order kernel and second-
order diagonal was significantly negative for the smallest uncer-
tainty level (open blue symbols in Figure 3L are shifted to the left 
of the horizontal dashed line at <10−3; we were not able to measure 
a statistically significant effect for the other uncertainty level tested). 
We also estimated the front-end filter for these experiments, which 
looked very similar to the filter for detecting a bright target (inset to 
Figure 4C) and fell within the expected physiological range (open 
symbol in Figure 4D shows average across observers). We conclude 
from this analysis that the early non-linearity we described previ-
ously exists in the brain of the observers, not in the monitor.

4 dIscussIon
Uncertainty has been a subject of controversy on a number of occa-
sions in the vision literature (Cohn and Lasley, 1986; Klein and Levi, 
2009). The debate has focused primarily on whether uncertainty is 
involved in specific phenomena such as dipper effects (Solomon, 
2009) or stochastic resonance (Perez et al., 2007), not on how it 
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while the latter is unable to retain a viable level of efficiency when 
uncertainty is large. The constraints imposed by neural hardware 
are likely more pronounced in natural vision. In the conditions of 
our experiments, observers were presented with a visual stimulus 
and task they knew close to everything about: its appearance, exact 
target characteristics, explicit uncertainty range, timing. For exam-
ple, because they knew the spatial scale of the stimulus and the 

place this stage at retinal or geniculate level. The subsequent early 
non-linearity may then reflect the rectifying properties of ON and 
OFF channels (Shapley, 2009) in line with previous psychophysi-
cal work claiming a role for these non-linearities in pattern vision 
(Bowen, 1995), and more specifically in relation to effects often 
attributed to uncertainty (Bowen, 1997). However these considera-
tions are highly speculative at this stage, and arguably incompatible 
with a number of details reported here, for example the indication 
in Figure 6B that the properties of the non-linearity may be task-
 dependent, a characteristic that would not be generally associated 
with pre-cortical processing. Our model is therefore best interpreted 
as an abstract formulation of the underlying mechanisms, which 
also makes it potentially applicable to a wider range of problems (see 
Section 4 below) and to existing literature. For example, a similar 
model has been considered by Kontsevich and Tyler (2002), Abbey 
and Eckstein (2006); more specifically, Abbey and Eckstein (2006) 
found that it was able to explain aspects of their data unaccounted 
for by a MAX uncertainty model. It is also interesting that a critical 
feature of the MIRAGE model (Morgan and Watt, 1997) is an early, 
highly non-linear channeling of stimulus information into ON and 
OFF pathways; the non-linearity is applied to each spatial scale after 
linear filtering, but it interacts with the linear stage in a more funda-
mental way than in other general models of spatial vision.

If we are not positioned to relate these models to specific physi-
ological constructs, can we at least sketch an intuitive description in 
terms of the associated phenomenological experience? We attempt 
this in Figure 8 where MAX (left) and Hammerstein (right) models 
are reduced to minimal cartoon-like descriptions, for the specific 
purpose of offering an intuitive understanding of what these mod-
els actually mean in relation to the perceptual process. The input 
stimulus presented in the first interval is shown alongside (separated 
by ‘vs’) the stimulus presented in the second interval (bottom of 
figure); for the example shown here the target interval is second. In 
the MAX model (left) each stimulus is converted to an image where 
only the brightest bar within that stimulus is preserved (lefthand 
pair of stimuli); the two brightest bars from the two stimuli are 
then compared and the brighter is chosen (this decisional process 
is indicated using the ≶ notation borrowed from Pelli, 1985). In 
the Hammerstein model (right) each stimulus is warped to empha-
size its ‘bright-bar’ content, i.e., relatively bright regions are made 
brighter while relatively dark regions are made less dark (righthand 
pair of stimuli); evidence from all regions within each stimulus is 
then combined (Σ) to contribute a figure of merit for that stimulus, 
and the final decision is generated by comparing outputs from the 
two stimuli. It is clear that, although the two models share some 
similarities, they differ in important respects and imply distinct 
perceptual strategies.

4.2 robustness of the haMMersteIn Model
If we accept the notion that human observers were striving to maxi-
mize efficiency within the constraints imposed by early filtering in 
the visual system and suboptimal encoding of the specified target 
uncertainty ranges (as indicated by the high model-human con-
sistency achieved by the ideal observer in Figures 6C,D), then the 
Hammerstein model represents a more robust choice than the MAX 
model. Figure 7 demonstrates that the former is highly resilient 
to suboptimal processing by physiologically plausible hardware, 
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Figure 9 | Simulated signal-clamped kernels for MAX model. Uncertainty 
range u extended to entire x axis (w = u, M = 27). Red traces show true 
front-end filter f ((A) even Gabor, (B,C) odd Gabor, (D) pulse sequence, (e) 
Gaussian noise sample, (F) wide boxcar function), black traces show 
signal-clamped estimates (shading ±1 SD over 100 simulations of 100K trials 
each), green trace shows f * f + f * f2 except for panel C where it only shows 
f * f (this term is expected to play a more prominent role at low SNR, see 
Theoretical Properties of Signal-Clamped (Target-Present) Kernels in 
Appendix). All traces have been rescaled so that their minimum value equals 0 
and their maximum value equals 1. SNR used for the simulation (with 
corresponding model d ′) is indicated in each panel separately.

HammersteinMAX

>
‘1’

<
‘2’

ΣΣ >
‘1’

<
‘2’

vs

vs vs

Figure 8 | Cartoon-like descriptions of MAX (left) and Hammerstein 
(right) models. The two input stimuli are shown at the bottom (separated by 
‘vs’); the target increment was added to the second stimulus. The MAX model 
selects the brightest bar within each stimulus (lefthand pair of stimuli) and 
compares the two outcomes from the two stimuli to reach a final decision, 
which is ‘1’ if the brightest bar in the first stimulus is brighter than the 
brightest bar in the second stimulus, ‘2’ if the other way around (this process 
is indicated by the ≶ symbol). The Hammerstein model operates differently: 
the two input stimuli are subjected to a static non-linearity (ex) whereby the 
‘bright-bar’ content of each stimulus is emphasized (righthand pair of stimuli) 
before summing the evidence across the entire stimulus (Σ) to obtain a final 
figure of merit for comparison/decision (≶).
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tive of a larger class of problems in visual detection, it is clearly 
inadequate as a proxy for more complex tasks. Suppose for example 
the task involves selecting, of two crowds, the crowd containing a 
specific target face. If we adopt a template-matching strategy, all 
faces in the stimulus must be matched against a template (or set 
of templates) for the target face. The MAX model applies seam-
lessly to this scenario, whereas the Hammerstein model is possibly 
undefined in this case: the static non-linearity must be applied 
before template matching, but what does it mean to apply a point-
non-linearity to a whole face? Applying this kind of transforma-
tion to individual pixels in the image would make no sense for 
the task at hand.

This problem may be alleviated by recasting it in terms of 
feature space (a common strategy in kernel methods; Schölkopf 
and Smola, 2002): the input space, consisting of face pictures, is 
transformed into a ‘face’ space, where each face maps to a low-
dimensional vector (Lee et al., 2000). It may then make sense to 
apply the early static non-linearity within feature space (an opera-
tion for which there is some experimental evidence, see Dakin and 
Omigie, 2009). In the case of the task described earlier, each face 
would map to a space whose axes represent for example eye-shape, 
mouth-width, beard-density, and mustache-size. To detect Karl 
Marx’s face, an expansive non-linearity would be applied to the 
beard-density and mustache-size axes in order to emphasize their 
impact on the final sum across all features and faces within each 
crowd (an operation not too dissimilar from automated caricature 
generation; Lee et al., 2000). A relevant consequence of this for-
mulation is that, in order to test different models using the tools 
described in this article, it would be necessary to apply noise in 
feature space and reverse correlate that space. Whichever approach 
is taken, many more experiments than those presented here are 
necessary to determine whether the Hammerstein model, which 
we have shown to outperform a number of other models in the 
specific case of a simple visual detection task, also represents a 
valid alternative to the highly successful MAX model in relation 
to visual processing in general.
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bars within it, their visual system could rely on the subset of spatial 
channels with tuning characteristics roughly matched to the bars. 
This is unlikely in natural vision, where the front-end filter may be 
significantly mismatched to the target. Our simulations indicate 
that the MAX model is not robust against this type of subopti-
mality, while the Hammerstein model is (compare red, yellow and 
green traces in Figure 7). It is interesting that recent studies of SNR 
response properties in single neurons have demonstrated how early 
non-linearities (as early as the rod-rod bipolar synapse (Field and 
Rieke, 2002)) can play a critical role in sensory processing of noise-
corrupted signals (Field et al., 2005), as well as serve functional roles 
previously attributed to non-linear operations happening much 
later in the processing hierarchy (Carandini et al., 2002; Read et al., 
2002; Rosenberg et al., 2010).

There are other features of the Hammerstein model that make it 
potentially more attractive than the MAX model. It is conceivable that 
it can be implemented more easily in neural hardware: static non-
linearities are ubiquitous in neural structures and arise naturally from 
well-known properties of neuronal physiology (Priebe and Ferster, 
2008). Furthermore, they are instantaneous. MAX operations are 
commonly implemented via winner-take-all algorithms (Pelli, 1991), 
but these take time to converge when applied to realistic network 
settings (Wilson, 1999). Finally, the structure and analysis of the 
Hammerstein model merge naturally with current theory and knowl-
edge. For example, it is known that under ideal conditions the MAX 
model approximates the ideal observer; but under ideal conditions 
(and for the class of target signals used here) the Hammerstein model 
is formally identical to the ideal observer (Theoretical Properties of 
MAX Kernels in Appendix; see also Figure 7). Ideal observer analysis 
is a fundamental branch of signal detection theory and psychophysics 
(Green and Swets, 1966), making the Hammerstein model theo-
retically attractive. More importantly, its properties are well-known 
(Marmarelis and Marmarelis, 1978) particularly in relation to reverse 
correlation techniques and predicted kernel structure (Westwick and 
Kearney, 2003; Marmarelis, 2004).

4.3 Max or haMMersteIn?
The experiments described in this paper are restricted to a spe-
cific task, that of detecting a luminance bar embedded in noise. 
Although pertinent to visual processing and perhaps representa-
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Using equation 1 we can easily state the approximate equivalence 
between MAX and the following Korenberg model (Neri, 2009):

〈 ∗( ) 〉Φ w f s( ) ,1  
(3)

where Φ is a highly expansive static non-linearity Φ(r) = rp (large p) 
and r r p⇔ 1/  (from equation 1) because of the monotonic relation-
ship between the two variables (sometimes referred to as Birdsall’s 
theorem; Tanner, 1961; Lasley and Cohn, 1981). This result is usu-
ally stated in relation to Minkowski summation in the vision lit-
erature (Yu et al., 2002; Watson and Ahumada, 2005).

Using an adapted Volterra expansion (Neri, 2009, in press) 
we can express the response of the system as (Marmarelis and 
Marmarelis, 1978; Schetzen, 1980):

r q
d d

q

d

[ ] [ ], ( )= 〈 〉∑ H sΘ
 

(4)

where Θk d d jdj j x( , , , ) ( )1  s s= ∏  is the dth degree monomial 
matrix of s (same feature mapping used by polynomial classifi-
ers in machine learning; Schölkopf and Smola, 2002; Franz and 
Schölkopf, 2006) and 〈,〉 is Frobenius inner product (for matrices 
A and B this is 〈A, B〉 = tr(ABT)), e.g., Θ

1
 = s and Θ

2
 = s ⊗ s. The 

end binary psychophysical response is characterized by the prob-
ability of a correct response:

p z r r( ) ( )[ ] [ ]= = −1 1 0Ψ

where Ψ is a non-linear decisional transducer function (Neri, 2009) 
(typically a cumulative Gaussian distribution; Green and Swets, 
1966; Neri, 2004). For a first-order approximation of Ψ we know 
from previous work (Neri, 2004, 2009) that H H2 2

∧
∝  under stand-

ard 2AFC conditions (this result is not guaranteed for yes-no due 
to response bias), meaning that the psychophysical estimate of H

2
 

(computed as detailed in Methods) is approximately correct (see 
also Neri, in press). By combining equations 3 and 4, and using a 
standard procedure for cascade systems (Westwick and Kearney, 
2003), we can show that for the Korenberg system detailed above

H w f f2
2 2( , ) ( ) ( ) ( )( )x x x x xk k k

k
ν ξ ν ξ= − −∑Φ

 

(5)

where Φ(j) is the jth-order factor in the Taylor expansion of Φ. 
Equation 5 is similar to the expression usually derived for Korenberg 
cascades (Westwick and Kearney, 2003), except w is squared because 
it is applied before Φ in equation 3. Using the asymptotic equiva-
lence between MAX and Korenberg detailed earlier, and the fact 
that Φ(2) ≥ 0 for highly expansive Φ, we can state the following 
result (central to this article):

diag( )H
∧

≥2 0

for the MAX model (rewrite equation 5 for ν = ξ; see Figure 5 for 
related simulations).

Using the same procedure adopted to derive equation 5, we have 
for the Hammerstein model that

H w f H w f1
1

2
2= =Φ Φ( ) ( )( ), ( , ) ( )( )∗ ∗x x xν ξ νξ νδ

which (for a first-order expansion of Ψ) leads to

diag( )H H
∧ ∧

∝2 1

appendIx 1
A: Theoretical properties of MAX kernels

List of symbols

α,β Threshold and slope of Weibull psychometric curve

q 0 for target, 1 for non-target

z 0 for incorrect, 1 for correct response

t Target shape

n Noise sample

s Stimulus sample
[q, z] Associated with specific q and z values

f System front-end filter

u Extrinsic uncertainty window

w Intrinsic uncertainty window

〈,〉 Inner product

 Hadamard (element-by-element) product

⊗ Outer product

* Convolution

* Cross-correlation

r System output

Φ Generic (typically expansive) static non-linearity

Ψ Decisional transducer

max (w  (f * s)) MAX model

〈w f * Φ(s)〉 Hammerstein model

〈Φ(w  (f * s)), 1〉 Korenberg model

As a preliminary step we show that the MAX model (with output 
max (w  (f * s)), see above list of symbols and model outputs) 
approximates the ideal observer in Gaussian noise. We exploit two 
well-known expressions from metric theory (Kolmogorov and 
Fomin, 1957):
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We can write
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where we use x ⇔ y to mean that x and y lead to the same psycho-
physical decision (i.e., they preserve ordinal relationships) and  
to indicate the different convergence of expressions 1 and 2. For 
w = u, f(x

k
) = t(x−k

) and n Gaussian noise (substitute for r
k
 = 〈w, 

f * s〉) the above expression is known to be an ideal metric (Pelli, 
1985) (i.e., any decisional rule monotonic with it is ideal; Green 
and Swets, 1966). The same result trivially applies (only for delta 
signals like those used in this study) to the Hammerstein model 
with response 〈w,f * Φ(s)〉 and Φ(r) = er.
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topic (Tjan and Nandy, 2006) assumed orthogonal templates; in 
the formulation adopted here this would essentially correspond to 
f being a delta function (other choices such as a bank of sinusoids 
seem implausible and/or unlikely to operate in the experimental 
conditions we studied) and therefore ˆ [ ]H f1

1 ∼  as correctly stated 
by these authors.

We can derive similar expressions for the target-absent kernel 
ˆ [ ]H1

0 . For a first-order expansion of Ψ (and ignoring kernels of order 
≥3 for brevity)

ˆ [ ]H H1
0

1∝

which, for the MAX model, can be rewritten as

 w f*  (8)

This result confirms the notion proposed by Tjan and Nandy 
(2006) that target-absent noise classes return an estimate of 
the uncertainty window w (the above equation involves cross-
 correlation (*) rather than convolution as in Tjan and Nandy 
(2006) because we formulated the front-end filtering stage using 
convolution where Tjan and Nandy (2006) used cross-correlation). 
In passing we notice that equation 8 should not be interpreted to 
indicate that ˆ [ ]H1

0  can be used to retrieve a clean estimate of H
1
. 

It is trivially affected by odd-order non-linear kernels (Schetzen, 
1980); even if a correction is applied (which is straightforward for 
odd-order kernels because they multiply the same factor in the 
expansion of Ψ), or the system is assumed non-linear only up to 
second-order as is commonly done (Neri, 2004) (H

k
 = 0 for k > 2), 

ˆ [ ]H1
0  is nonetheless affected by even-order kernels for expansions 

of Ψ to second-order:

ˆ ( ) ( ) ( ,:),[ ]H H H H1
0

1 2 1x b x xν ν ν∝ + 〈 〉

where b depends on Ψ(1)/Ψ(2), making it practically prohibitive to 
correct for the second term (Ψ is in general not known).

If instead of assuming a MAX model we adopt a Hammerstein 
model, we have

ˆ ( ) ( * )( )[ ]H w f1
1

0x bν νδ∝ +

where b depends on Φ and ρ. The above expression shows that ˆ [ ]H1
1  

approximates a signal-distorted (by the term b + δν0
) image of ˆ [ ]H1

0  
(which follows equation 8).

When ϕ = 0 by design (i.e., the target is presented at a fixed 
position), these results are directly applicable to the widely reported 
empirical observation that first-order kernels often present differ-
ent characteristics when computed from target-present as opposed 
to target-absent noise fields (Ahumada et al., 1975; Abbey and 
Eckstein, 2002; Neri and Heeger, 2002; Solomon, 2002; Thomas 
and Knoblauch, 2005; Neri, 2009).

in line with well-established results (Westwick and Kearney, 2003; 
Marmarelis, 2004; Neri, 2009). Because we observed a sign inversion 
only for H

∧
1 and not for diag( )H

∧
2  in the experiments using a dark as 

opposed to bright target (Figure 3), observers applied a new Φ with 
opposite-sign first-derivative but same-sign second-derivative. For 
an expansive non-linearity this is easily achieved by using Φ(−x) 
rather than Φ(x).

b: theoretIcal propertIes of sIgnal-claMped (target-present) 
kernels
In the signal-clamping methodology the target-present first-order 
estimated kernel ˆ [ ]H1

1  is derived by realigning different estimates 
corresponding to different values of ϕ. We can set ϕ = 0; for the 
target shape used in the experiments described here this means 
t(x

k
) = ρδ

k0
. Using a procedure analagous to Neri (2004) we can 

show that, for system approximations to third-order (H
d
 = 0 for 

d > 3), this operator takes the form (Neri, in press):

ˆ ( ) ( ,:), ( ,:,:),

( ,:,:

[ ]H H H t H I

H
1
1

1 2
2

3

3

2 3

3

x x x

x
Nν ν ν

ν

σ∝ + 〈 〉 + 〈 〉
+ 〈 )),t t⊗ 〉  

(6)

where we index using : to take the entire corresponding vector 
dimension, e.g., H

2
(:, x

k
) is a 1-D vector consisting of the m elements 

H
2
(x

j
, x

k
) for j from 1 to m for a fixed k and I is the identity matrix. 

Under the Korenberg model (which we use as proxy for the MAX 
model) we have (Westwick and Kearney, 2003; Neri, in press):

Hd
d

k
k

d
k kx x x x x

d d
( , , ) ( ) ( ) ( )( )

ν ν ν ν1 1
 = ∑ − −Φ w f f

By substituting this expression into equation 6 (and for w = u, 
t as detailed above), the latter can be written compactly as

∝ + +1 2

ρ
( * ) ( * )f f f f b

 
(7)

where the term b ∝ w * f only adds a uniform baseline for w = u. 
Equation 7 shows that, even to a first approximation, the signal-
clamping methodology does not return f but an indirect (and 
non-invertible) estimate of f involving its autocorrelation. Figure 9 
confirms this result via simulations. For the specific case of an even 
Gabor filter (Figure 9A) ˆ [ ]H f1

1 ∼ , but this relationship is not valid 
for a variety of other front-end filters. Of particular interest is a 
largely non-selective integrator (Figure 9F): the estimate returned 
by signal-clamping (black trace) may be erroneously interpreted 
as indication of tuning, when tuning was almost absent in the 
system (red trace). Finally, because of the dependence on target 
intensity ρ, the first term in equation 7 is expected to play a more 
prominent role at lower SNR’s, as confirmed by simulations (see 
Figures 9B,C). We note in passing that previous treatments of this 
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Figure A1 | Kernel data for individual observers (S1–S10). First column is 
plotted to conventions used in Figure 3A, second column to Figures 3B–e, 
third column to Figure 3g, fourth column to Figure 4C.




