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Abstract: Mitochondrial DNA and nonrecombinant parts of Y-chromosome DNA are a great tool
for looking at a species’ past. They are inherited for generations almost unaffected because they do
not participate in recombination; thus, the time of occurrence of each mutation can be estimated
based on the average mutation rate. Thanks to this, male and female haplogroups guide confirming
events in the distant past (potential centers of domestication, settlement of areas, trade connections)
as well as in modern breeding (crossbreeding, confirmation of paternity). This research focuses
mainly on the development of domestic sheep and its post-domestication expansion, which has
occurred through human trade from one continent to another. So far, five mitochondrial and five
Y-chromosome haplogroups and dozens of their haplotypes have been detected in domestic sheep
through studies worldwide. Mitochondrial DNA variability is more or less correlated with distance
from the domestication center, but variability on the recombinant region of the Y chromosome is
not. According to available data, central China shows the highest variability of male haplogroups
and haplotypes.

Keywords: domestication; mitochondrial haplogroups; matrilineal inheritance; patrilineal inheritance;
Y chromosome haplotypes

1. Introduction

Domestic sheep (Ovis orientalis Linnaeus, 1758), together with domestic goat (Capra
aegagrus hircus Linnaeus, 1758), were among the first livestock to be domesticated through
several domestication events between the eleventh and eighth millennia BP [1–3]. Through-
out almost ten millennia, domestic sheep have spread with the help of man to almost all
continents, different climatic zones, and altitudes. This adaptability and production vari-
ability are naturally rooted in its genome. Indeed, most of this functional genetic diversity
comes from wild ancestors in which they have already been segregated [4,5]. Scientists
are increasingly seeking functional genes that cause this natural adaptability due to their
potential use in marker-assisted selection [6–8].

The urial (Ovis vignei Blyth, 1841) was first considered the main ancestor of domestic
sheep, and only after the number of chromosomes in individual related species of the genus
Ovis was revealed, the scientific public leaned towards the theory of a single ancestor, the
European mouflon (Ovis orientalis musimon Pallas, 1811) [9]. According to the latest findings
supported by several mtDNA haplotype studies [10–13], the direct ancestor of the domestic
sheep appears to be the Asian mouflon (Ovis gmelinii Gmelin, 1774), while a close relative of
the sheep, the European mouflon, appears only to be a feralized remnant of the originally
domesticated sheep. This statement was confirmed when the same retrotypes were found
in the Corsican, Cypriot, and Sardinian mouflons as in primitive Nordic sheep breeds [14].
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Modern breeds are characterized by a high frequency and fixation of the retrotype called
enJSRV-18. In contrast, primitive populations, including the European mouflon, do not
carry this retrotype. Instead, they either have a high frequency of enJSRV-7 or are generally
deficient in insertional polymorphic enJSRVs, including enJSRV-7 [14].

Molecular genetic methods provide information today on the dispersion and genetic
diversity of domestic sheep. Over the last few decades, significant progress has been made
in the genomic sequencing of animals, including sheep [15]. However, many methods
targeting specific sections of the genome are also used to study the genetic diversity of sheep:
the study of haplotypes (mitochondrial and non-recombinant parts of the Y chromosome),
autosomal microsatellite markers, and, most recently, single nucleotide polymorphisms,
SNPs [16]. With the increasing amount of genetic information available, our information on
the origin, development, adaptation mechanisms, and variability of livestock is becoming
more accurate [15]. For the study of development and origin, information from Y or mt
haplotypes of primitive national breeds, or even better directly from archaeological finds, is
particularly valuable [17]. Indigenous breeds are not expected to have a larger proportion
of newly introduced genes, as their development is closely linked to the development of
ethnic groups, which usually still breed them in the traditional pastoral way in certain
areas for many centuries and millennia [18–20].

Some studies even point to the possibility of using recombinant sections of gonosomes.
Diversity on the X chromosome and autosomal chromosomes in wild and domestic sheep
across continents revealed a decrease in the diversity of single nucleotide polymorphisms
(SNPs) on the X chromosome compared to autosomes [21]. On the other hand, a smaller
number of selective SNPs are found on the X chromosome, probably because most target
loci and genes that are long-term are affected by human selection and are located on
autosomes. Chessa et al. [22] focused on these loci and demonstrated that even in the
functional regions of the sheep genome, there is considerable genetic variability, reflecting
years of adaptation, natural or artificial selection, migration, and crossing. They can,
therefore, also be used to study current biodiversity.

This review aims to summarize the current knowledge about the colonization disper-
sion of domestic sheep based on the two most used approaches to this issue, the study
of the variability of mitochondrial and nonrecombinant Y DNA. The meta-analysis in the
form of graphical outputs focused on recent local and transboundary breeds. Commercial
or improved breeds (e.g., Texel) were not included in the dataset.

2. Mitochondrial Haplogroups and Haplotypes

MtDNA is inherited through the maternal lineage and, thus, lacks recombination. At
the same time, it mutates five to ten times faster than nuclear DNA [23]. This may be due
to a lack of repair mechanisms or the formation of free radicals during the phosphorylation
process [24]. The hypervariable region of the mtDNA regulatory region is one of the most
available and effective markers for population genetic studies, which allows monitoring of
the maternal lineage of the gene pool and the related phylogenetic relationships, structure,
and diversity of the population [25].

Assuming that humans take only part of the animal population from the original
domestication center when colonizing new areas, mtDNA haplotype studies should logi-
cally reflect the geographical progression of the domestication of sheep. Thus, the greatest
diversity of mitochondrial haplotypes in sheep can be expected in the Eastern Mediter-
ranean [26]. For autosomal diversity or diversity on the X chromosome, no higher values in
the area of domestication were confirmed. Certainly, the recent breeds kept in these areas
no longer represent the genotype of the original thin-tailed sheep, which were one of the
first to spread further around the world [21].

Of the specific regions monitored in sheep mtDNA, researchers most often focus on
the D-loop region and the cytochrome-b-coding region [27]. More than 900 haplotypes
have been found for cytochrome b [28]. It is currently assumed that there are up to six
different haplogroups into which they can be divided, called A, B, C, D, E, and X. However,
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haplogroup X has so far only been described by a single study [29], and no subsequent
studies have confirmed its existence. Based on genetic material from archaeological finds,
it is assumed that there were originally more haplogroups and that some of them became
extinct [30]. A and B are the most common groups in sheep from Europe (B) and Asia
(A) and were also the first to be identified [10,31]. C is more genetically variable than the
previous two groups but has nothing in common with any wild-type sheep. To a small
extent, this type occurs in native Portuguese sheep, as well as in the Caucasus, the Middle
East, and Asia. The D and E haplogroups are two of the rarest and were found in the
North Caucasus region [26]. D also appears to be the haplogroup closest to the common
ancestor of sheep and mouflon [32]. The last haplogroup was found at the Anatolian
mouflon (Ovis gmelini anatolica Valenciennes, 1856), and it is very close to groups E and
C [29]. The period of formation of these haplogroups is assumed to be sometime in the
period of 5–35 thousand years ago, which is more than 150 thousand years later than the
expected separation of the Cypriot mouflon (Ovis gmelini ophion Blyth, 1841) [13,32].

In addition to the study of population dispersion, the mitochondrial genome is also
used for phylogenetic analyses of the genus Ovis. For example, according to a study that
analyzed mitochondrial cytochrome b sequences [13], argali (Ovis ammon (Linnaeus, 1758))
was the first of the genus Ovis to diverge in Europe. The Meadows collective came to a
somewhat different dating based on a study of complete mitogenomes in domestic and
wild sheep [33]. They determined a calibration point based on the sequence of cytochrome
b of an already extinct relative of the genus Myotragus, which separated 5.35 mya (million
years ago) [33]. Based on this, they estimated the cleavage of the two major mitochondrial
haplogroups, A and B, from the unfrequented C and E to 0.92 mya, and the separation of
C from E to 0.26 mya. Sanna’s team reached a different estimate of the diversification of
mitochondrial haplogroups on samples of whole mtDNA sequences (see Figure 1) [32].
The first separation of the two major branches of haplogroups (C, E and A, B, D) happened
0.3 mya, according to Sanna’s team. Haplogroup D (0.24 mya) was the first to be separated,
groups A and B (0.17 mya) were further distinguished, and C and E (0.12 mya) were the
last [32]. Table 1 provides a comparison of the estimates of five different studies of the three
main divergence points preceding the formation of individual mitochondrial haplogroups.

Table 1. Comparison of approximated divergence times in million years ago (mya) of Argali, Urial
and main mitochondrial haplogroup branches (A, B, D) between different studies.

Study Data Origin Times of Divergence in Mya

Argali Urial Branch of A, B,
D haplogroups

Rezaei et al. (2010) [13] Cytochrome b sequence 1.72 1.26 -
Meadows et al. (2011) [33] Whole mitogenome 2.13 - 0.92

Lv et al. (2015) [34] Whole mitogenome 2.93 2.60 0.89
Sanna et al. (2015) [32] Whole mitogenome 1.11 0.89 0.30
Deng et al. (2020) [35] Whole mitogenome 2.93 2.60 1.02

In any case, it is not possible to assume a connection between the divergence of
any of the five haplogroups and the post-domestication expansion, which according to
archaeological findings, dates as far back as the eighth millennium BP [3,36]. Based on
molecular genetic data, this may have happened two millennia earlier [14,35]. For lineage B,
a primary haplotype may have already been identified in 2019, when a lineage B haplotype
was found in the Sardinian mouflon and which was estimated to split about 110,000 years
ago, about 30,000 years earlier than the expected division of the European mouflon from
sheep lineage B [37].

The sheep probably got to North America by migrating from Asia across the Bering Strait.
Bighorn sheep (Ovis canadensis (Shaw, 1804)) and Alaskan sheep (Ovis dalli (Nelson, 1884)) are
monophyletic from the Siberian snow sheep (Ovis nivicola (Eschscholtz, 1829)) from which
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they separated about 1.6 million years ago [13]. Similar conclusions were reached in later
studies [32,38].
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Figure 1. Root phylogram obtained by Bayesian inference from 28 haplogroups. The labels below the
nodes indicate bootstrap values for maximum similarity. Above the nodes are the molecular datings
in millions of years. Cluster 1 contains three groups, one with haplogroup E (RE), the other with
haplogroup C (RC), and the third with all Cypriot mouflons (CYM) and some Anatolian mouflons.
The second cluster has a total of four groups. Three haplogroups of domestic sheep were divided
according to haplotypes D, A, B (RD, RA, RB), and European mouflon (EUM). Some Anatolian
mouflons are also included in haplogroup A. BWS, AWS, UWS means Ovis canadensis (bighorn sheep),
Ovis vignei (urial), and Ovis ammon (argali), respectively. Taken from [32].

2.1. Europe

The high diversity of sheep mitochondrial lineages could be due to domestication from
several developmentally related ancestors [32]. For this reason, the complete dominance
of haplogroup B mtDNA in Europe (Figure 2) indicates the expansion of the European
population from only a few individuals. Such a low diversity was already present in herds
in the Black Sea area before the Neolithic expansion [39]. With the Neolithic expansion,
progress through Europe accelerated. Sheep reached central Anatolia about 10,000 years
ago [1]. From there, two main dispersal routes led to Europe, via the Mediterranean Sea
and through the Danubian valley. These two European pathways were also confirmed by
research of small ruminant lentiviruses (SRLVs) [40]. The Mediterranean route led from
Cyprus through the Balkan Peninsula and the Apennine Peninsula to Corsica and Sardinia
from which northern Italy and southern France were further inhabited. Domesticated
sheep reached the Iberian Peninsula around 7500 BP. The Danube road led through river
valleys to Central Europe [1]. Sheep entered the Alps, either way, more than 5000 years
ago [41]. However, there was probably another dispersal route to Europe, which led
through Caucasus, Russia to northern Europe [11]. Lineage B was probably the first to
reach Finland, followed by lineage A in the early Middle Ages [42]. Lineage A has spread
across Europe through wool-refining efforts, but the origin of lineages C and D in Central
Europe remains unclear. They could have come to Europe with a prehistoric man or much
later, for example, during the Ottoman expansion [43]. This is consistent with the current
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findings of these two lineages, mainly in the Balkans and the Iberian Peninsula (Figure 3),
which has been under Arab rule for almost seven centuries.
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ancient sea transport to the Indian subcontinent [46]; 5 = African routes [47–50]. Taken and modified
from [34].
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2.2. Asia

The colonization of Asia was a little more complicated (Figure 2). The study evaluated
the optimal model based on the ABC analysis of mitochondrial lineages, which most likely
occurred during the colonization of Asia, and revealed the next three steps [34]:

1. Lineage A spread first to the Mongolian Plateau and the Indian subcontinent. Later, it
expanded from the Mongolian Plateau to northern and southwestern China. Accord-
ing to [77], lineage A was the most abundant lineage in ancient Bronze Age China
(95.5%). Its abundance increased from west to east.

2. Lineage B headed first on the Mongolian Plateau and colonized northern and south-
western China and India from there.

3. Lineage C also first colonized the Mongolian Plateau. From there it headed to northern
China and then to the Indian subcontinent.

The fourth lineage, D, was also found in Central Asia, specifically in the south of the
Tibetan Plateau in one of the local breeds, Linzhou [44]. However, currently there are no
relevant estimates of the time or route of its arrival at this location.

The mainland route to Asia, however, may not have been the only one. Another
possibility of importing the maternal lineages A and B to India seems to be the sea route
from the ancient port of Lóthal at the mouth of the Indus river [46]. At the time of
Harappan culture (~2.4 thousand BP), this place had trade links with Africa and West
Asia. The Mongolian Plateau was identified as the area with the highest variability [34].
Even several cases of heteroplasmy were found there, which must have existed in this
area for several millennia [51]. The Mongolian Plateau acted as a migratory hub from
which the lineages spread from the Middle East to Asia [34,52]. Specifically for lineages
A and B, high nucleotide diversity is found in India [19,34] and for lineage C in northern
China [34]. According to some authors, this diversity is so significant that it cannot come
from the same domesticated animals that gave rise to these lineages in the more eastern
areas. Therefore, independent domestication events could also have occurred on the Indian
subcontinent [46] or in China [53,78].

So far, no study has confirmed that the Indonesian region has any original breed of
sheep. The current breeds are, therefore, mainly descendants of European breeds imported
by the Dutch in the second half of the 19th century [54] or fat-tailed sheep brought by Arab
traders in the early 18th century [79]. However, these imported breeds were often crossed
with local thin-tailed sheep of unknown origin, which were imported even earlier, probably
by traders from Asia. [54]. This is probably the source of haplogroup A in Indonesia.

2.3. Africa

Evidence of the presence of sheep in Africa dates back to a much earlier time than in
Southeast Asia [47]. Sheep probably penetrated North Africa through two routes about
7000 years ago. The first is the same colonization dispersion that crossed the Mediterranean
Basin, the second led across Sinai, then down to and over the Red Sea [1]. There were
several scattering routes on the African continent itself, south to the Middle Nile Valley,
west to central Sahara, and north to Libya. Another possibility remains the spread of sheep
from the Mediterranean along the northern shores of Africa. The last route discussed in
Africa is the direct trade link between East Africa and the Arabian Peninsula [47]. As in
Europe, mitochondrial haplogroup B is dominant in Africa (Figure 3), as confirmed in
different locations—South Africa [80], Sudan [48], Kenya [49], West Africa, and the Canary
Islands [50].

2.4. America and Australia

The settlement of the other two continents of America and Australia is already a matter
of modern history. The first sheep brought to Central America by the Spaniards were either
hair type (West African furry sheep) or coarse wool type (Churro breed from Iberia), which
were later crossed with merino and gave rise to the Creole type of sheep [9]. However, it is
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highly probable that other breeds from the area of the Iberian Peninsula, such as Manchega,
Latxa, Castellana, or Rasa Aragonesa, also contributed to the creation of Creole sheep [81].

The first hairy sheep were brought to America from the Canary Islands by Columbus
and the first colonists and later along with slaves from other parts of West Africa [82]. West
African sheep arrived in America in the early seventeenth century, and their contribution
to the gene pool of contemporary hairy American sheep is the most significant [83]. A
strong European influence was revealed in the gene pool of Creole fur sheep, which is,
however, most likely caused by a later cross with merino sheep [84]. Whole-genome
structural analysis of Spangler et al. showed the main influence of European breeds,
especially Creole wool breeds [83]. Based on the mitochondrial maternal lineage, the
origin cannot be specified because in the West African, European, and Canary sheep,
maternal lineage B, which is also present in America, predominates [50]. However, another
mitochondrial analysis found in Mexican Creole sheep several mitochondrial haplotypes
common to both Creole sheep and two strains of Spanish sheep—Churro (Churra, Laxta,
Churra Galega Mirandesa, Braganana) and Entrefino (Aragonesa, Manchega, Castellana,
Castellana Stela) [81]. H2 haplotype was identified as the main ancestral mitochondrial
haplotype in Mexican Creole sheep and haplotypes H21 and H32, present in both Cuba
and Mexico as the possible original ones derived from hairy sheep [85].

However, it is already very difficult to study the evolution of “native” Creole sheep
through genetics. The main reason is a strong disruption of the original gene pool by
importing and crossing commercial breeds in the 19th and 20th centuries to Mexico [85–87]
and other Central and South American countries [88,89].

The first sheep were brought to Australia from India, South Africa (thick-tailed), and
Spain (merino) after 1788 and from the British Isles (Saxony Merino, Southdown, Romney)
after 1840 [9]. It was, therefore, possible to assume the existence of the same lineages and
most of the haplotypes (mt and Y) as in the populations from which Australian breeds
originated. This expectation was confirmed by a study carried out on 18 breeds kept in
Australia, which revealed 55% abundance of lineage B and 45% abundance of lineage A [69].

3. Haplogroups and Haplotypes of Male Y Chromosomes

The mutation rate of the male-specific region of the Y chromosome (MSY) is about
fifty times lower than that of mtDNA, i.e., about 0.93 × 10−10 mutations per generation per
site [35]. However, as with mitochondrial haplotypes, their use to study the phylogeny of a
species is complicated by the fact that all members of the genus Ovis can interbreed and
form fertile hybrids. Such insertion of a distant paternal or maternal lineage into a gene pool
of another species often occurs in areas of overlap of distribution areas [13,18,29,64,90,91].
Estimates of urial and argali cleavage time have been performed in sheep based on male
haplotypes so far only by [35]. In this case, the urial haplotype grouped with Asian mouflon
haplotypes, in contrast to the mitochondrial genome where it formed a separate branch.

A key finding for the use of male haplotypes to study the population expansion of
sheep populations was the discovery of eight SNP sites (oY1–oY8) in the sex-determining
gene (SRY) on MSY [92]. And only one of them (oY1) showed variability even within the
species and not only between them [93]. Subsequently, the microsatellite marker SRYM18
was discovered and thanks to it, the first 18 Y chromosomal haplotypes H1–H18 were
defined [93].

In general, not as many studies have been performed in the field of research on male
sheep haplotypes as in the mitochondrial genome (Figure 4). The first large worldwide
study revealed, with the help of two markers (SRY SNP oY1 and microsatellite SRYM18) in
domestic sheep, seven male haplotypes (H4–H10) that form two haplogroups [92]. Further
research has taken over this methodological approach, including the nomenclature of
the identified haplotypes. Follow-up studies revealed another H12 haplotype-specific for
the Turkish Sakiz breed [93,94]. Other new haplotypes were subsequently discovered in
Croatia—H18 [58] and northern China—H19, Ha, Hb [95,96]. Paternal genetic diversity
of sheep has also been studied in Estonia and Finland on samples from the Bronze and
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Iron Ages [17]. However, only one SNP marker on the SRY gene (G-oY1) was monitored;
thus, it does not provide any further information on the variability of the male genome in
Europe [17].
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The last breakthrough in this area was made in 2020 when whole-genome sequences
were used to create a new set of MSY 495 SNPs in sheep [35]. Based on 179 samples of
rams sequenced in the whole genome, they identified 49 different Y haplotypes. Based on a
selection of 79 SNPs and two others published in previous studies (oY1; oY2), the study
identified 58 other different haplotypes for domestic sheep belonging to four haplogroups:
y-HA, y-HB, y-HC, and y- HD [35]. A total of 614 sheep from populations all over the world
performed this genotyping. However, only native breeds were selected for our review
(Figure 5).

Based on the genome-wide study of breeds from all over the world, a certain weak
relationship was found between the degree of genetic variability and the distance from
the domestication center [8]. For haplotypes inherited solely by paternal or maternal
lineage, this phenomenon should be more pronounced because they are not affected by
the recombination process and are transmitted from generation to generation in practically
unchanged form. So far, however, current research does not suggest anything like this
(Figures 4 and 5).

Overall, the highest variability of male haplotypes is in sheep populations from areas
close to the original center of domestication in the Middle East [95]. However, more data
will be needed to support this assumption. Current findings so far point to the greatest
variability in central China; see Figure 4. In contrast, the diversity of mitochondrial lines
so far supports this assumption, as all known lines have been found in Turkey and Israel
(Figure 3)—in the supposed original place of domestication.
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4. Historical Background

It can be concluded that the highest diversity of the genome can be found as close as
possible to the place of origin, as has been shown, for example, in humans [97]. For sheep,
research in this area is a bit more complicated. Due to the controlled reproduction and trade
of animals over long distances practically from the beginning of breeding, it is possible
to infer a faster and more rapid spread of genetic material than was the case in humans.
Initially, sheep farming focused mainly on meat, and specialization in secondary production
elements, such as wool and milk, probably did not occur until many millennia later in Asia
(7–6 thousand years BP) and millennia later in Europe [14,35,98]. Specialization in wool
production probably originated in Southwest Asia and only then spread to Europe, which is
confirmed by the study of retroviruses [14] and by the analysis of DNA of European sheep
from the Bronze Age [99]. The introduction of a new breed into Central Europe in the late
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Stone Age is also indicated by archaeological findings. A comparison with older findings
confirmed the increase in the body frame of sheep breeds bred in the area of Bohemia and
Moravia [100] and since the beginning of the Bronze age as well in Hungary [101]. Another
example is the spread of merino sheep from the Iberian Peninsula since the second half of
the 15th century throughout Europe [102]. Most primitive breeds today have withstood the
second wave of migration to Europe in a semi-wild or wild state in isolated areas without
predators or outside areas economically prone to introgression [14].

The first expansion of sheep went along with man mainly overland to Europe, Africa,
and then deeper into Asia during the Mesolithic and Neolithic periods. Sheep reached
other continents (America and Australia) much later with the first European colonists. The
use of haplotypes to study the distribution of domestic sheep and its breeds in modern
history is almost impossible by modern modes of transport. Particularly, commercially used
breeds create something like a “global population” in which it is not possible to exclude the
genetic proximity of individuals on different continents. Mitochondrial and Y haplotypes
do not generate sufficiently genetically unique markers to study genetic diversity at this
level. However, their potential for studying the phylogeny of the species, and especially its
population dispersion, remains untapped.

5. Conclusions

The aim of this study was to capture the process of monitoring the dispersion and
development of domestic sheep populations in different parts of the world through the
study of male and female non-recombinant sections of DNA. The current review supports
the existence of one domestication center in the Middle East. Nevertheless, crossbreeding
with wild sheep species has probably often happened and occasionally continues to occur
even now. This could be the reason why central China shows such high variability in male
haplotypes. However, it can also be caused by the extinction of these variants in the Middle
East, with Central Asia being a kind of reservoir of variability originating from the ancient
sheep brought in from the fertile crescent.

The main challenge for the future is to involve more countries and regions while
increasing the number of animals used for sequencing. Only based on a larger amount
of these data combined with the genetic material from excavations, it will be possible to
identify other domestication centers or refute their existence. It would also be necessary
to unify the methodology and nomenclature of haplotypes for better comparability of the
results of different research. But perhaps we may never know the truth because a vast
amount of information is already lost forever.

Author Contributions: Conceptualization, investigation, visualization, writing—original draft prepa-
ration, K.M.; writing—review and editing, A.M.; supervision, L.V. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the Ministry of Agriculture, Czech Republic No. QK1910156
and by the Czech University of Life Sciences, Czech Republic, SGS grant No. SV21-5-21360.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zeder, M.A. Out of the Fertile Crescent: The Dispersal of Domestic Livestock through Europe and Africa. In Human Dispersal and

Species Movement; Boivin, N., Petraglia, M., Crassard, R., Eds.; Cambridge University Press: Cambridge, UK, 2017; pp. 261–303.
2. Zeder, M.A. Animal Domestication in the Zagros: A Review of Past and Current Research. Paléorient 1999, 25, 11–25. [CrossRef]
3. Baird, D.; Fairbairn, A.; Jenkins, E.; Martin, L.; Middleton, C.; Pearson, J.; Asouti, E.; Edwards, Y.; Kabukcu, C.; Mustafaoğlu, G.;
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Karagül, Karacabey Merinosu ve Anadolu Yaban Koyununda (Ovis gmelinii anatolica) Y-Kromozom Polimorfizmleri. Kafkas Univ.
Vet. Fak. Derg. 2018, 24, 821–828. [CrossRef]

95. Zhang, M.; Peng, W.-F.; Yang, G.-L.; Lv, F.-H.; Liu, M.-J.; Li, W.-R.; Liu, Y.-G.; Li, J.-Q.; Wang, F.; Shen, Z.-Q.; et al. Y Chromosome
Haplotype Diversity of Domestic Sheep (Ovis aries) in Northern Eurasia. Anim. Genet. 2014, 45, 903–907. [CrossRef]

96. Wang, Y.; Xu, L.; Yan, W.; Li, S.; Wang, J.; Liu, X.; Hu, J.; Luo, Y. Y Chromosomal Haplotype Characteristics of Domestic Sheep
(Ovis aries) in China. Gene 2015, 565, 242–245. [CrossRef] [PubMed]

97. Li, J.Z.; Absher, D.M.; Tang, H.; Southwick, A.M.; Casto, A.M.; Ramachandran, S.; Cann, H.M.; Barsh, G.S.; Feldman, M.;
Cavalli-Sforza, L.L.; et al. Worldwide Human Relationships Inferred from Genome-Wide Patterns of Variation. Science 2008, 319,
1100–1104. [CrossRef] [PubMed]

98. Becker, C.; Benecke, N.; Grabundžija, A.; Küchelmann, H.-C.; Pollock, S.; Schier, W.; Schoch, C.; Schrakamp, I.; Schütt, B.;
Schumacher, M. The Textile Revolution. Research into the Origin and Spread of Wool Production between the Near East and
Central Europe. eTopoi J. Anc. Stud. 2016, 6, 102–151.

99. Sabatini, S.; Bergerbrant, S.; Brandt, L.Ø.; Margaryan, A.; Allentoft, M.E. Approaching Sheep Herds Origins and the Emergence
of the Wool Economy in Continental Europe during the Bronze Age. Archaeol. Anthropol. Sci. 2019, 11, 4909–4925. [CrossRef]

100. Kyselý, R. The Size of Domestic Cattle, Sheep, Goats and Pigs in the Czech Neolithic and Eneolithic Periods: Temporal Variations
and Their Causes. Archaeofauna 2016, 25, 33–78.

101. Bokonyi, S. The Development and History of Domestic Animals in Hungary: The Neolithic Through the Middle Ages. Am.
Anthropol. 1971, 73, 640–674. [CrossRef]

102. Landi, V.; Lasagna, E.; Ceccobelli, S.; Martinez, A.; Santos-Silva, F.; Vega-Pla, J.L.; Panella, F.; Allain, D.; Palhiere, I.; Murawski, M.;
et al. An Historical and Biogeographical Assessment of European Merino Sheep Breeds by Microsatellite Markers. Small Rumin.
Res. 2019, 177, 76–81. [CrossRef]

http://doi.org/10.1007/s11250-011-9872-7
http://doi.org/10.1016/j.jas.2010.06.035
http://doi.org/10.1080/24701394.2016.1192613
http://doi.org/10.1017/S1014233900001334
http://doi.org/10.1371/journal.pone.0179021
http://www.ncbi.nlm.nih.gov/pubmed/28662044
http://doi.org/10.1016/j.smallrumres.2020.106109
http://doi.org/10.1080/23311932.2017.1313360
http://doi.org/10.1080/09712119.2009.9707071
http://doi.org/10.3390/ani10091594
http://www.ncbi.nlm.nih.gov/pubmed/32911657
http://doi.org/10.1016/j.smallrumres.2019.01.007
http://doi.org/10.1093/molbev/msy208
http://doi.org/10.1038/s41598-017-07382-7
http://doi.org/10.1111/j.1365-2052.2006.01496.x
http://doi.org/10.1111/j.1365-2052.2008.01799.x
http://doi.org/10.9775/kvfd.2018.19962
http://doi.org/10.1111/age.12214
http://doi.org/10.1016/j.gene.2015.04.015
http://www.ncbi.nlm.nih.gov/pubmed/25865303
http://doi.org/10.1126/science.1153717
http://www.ncbi.nlm.nih.gov/pubmed/18292342
http://doi.org/10.1007/s12520-019-00856-x
http://doi.org/10.1525/aa.1971.73.3.02a00080
http://doi.org/10.1016/j.smallrumres.2019.06.018

	Introduction 
	Mitochondrial Haplogroups and Haplotypes 
	Europe 
	Asia 
	Africa 
	America and Australia 

	Haplogroups and Haplotypes of Male Y Chromosomes 
	Historical Background 
	Conclusions 
	References

