
GlyQ-IQ: Glycomics Quintavariate-Informed Quantification with
High-Performance Computing and GlycoGrid 4D Visualization
Scott R. Kronewitter, Gordon W. Slysz, Ioan Marginean, Clay D. Hagler, Brian L. LaMarche, Rui Zhao,
Myanna Y. Harris, Matthew E. Monroe, Christina A. Polyukh, Kevin L. Crowell, Thomas L. Fillmore,
Timothy S. Carlson, David G. Camp II, Ronald J. Moore, Samuel H. Payne, Gordon A. Anderson,
and Richard D. Smith*

Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States

*S Supporting Information

ABSTRACT: Glycomics quintavariate-informed quantification
(GlyQ-IQ) is a biologically guided glycomics analysis tool for
identifying N-glycans in liquid chromatography−mass spectrometry
(LC−MS) data. Glycomics LC−MS data sets have convoluted
extracted ion chromatograms that are challenging to deconvolve
with existing software tools. LC deconvolution into constituent pieces
is critical in glycomics data sets because chromatographic peaks
correspond to different intact glycan structural isomers. The biological
targeted analysis approach offers several key advantages to traditional
LC−MS data processing. A priori glycan information about the
individual target’s elemental composition allows for improved
sensitivity by utilizing the exact isotope profile information to focus
chromatogram generation and LC peak fitting on the isotopic species having the highest intensity. Glycan target annotation
utilizes glycan family relationships and in source fragmentation in addition to high specificity feature LC−MS detection to
improve the specificity of the analysis. The GlyQ-IQ software was developed in this work and evaluated in the context of profiling
the N-glycan compositions from human serum LC−MS data sets. A case study is presented to demonstrate how GlyQ-IQ
identifies and removes confounding chromatographic peaks from high mannose glycan isomers from human blood serum. In
addition, GlyQ-IQ was used to generate a broad human serum N-glycan profile from a high resolution nanoelectrospray-liquid
chromatography−tandem mass spectrometry (nESI-LC−MS/MS) data set. A total of 156 glycan compositions and 640 glycan
isomers were detected from a single sample. Over 99% of the GlyQ-IQ glycan-feature assignments passed manual validation and
are backed with high-resolution mass spectra.

Glycosylation strongly affects how proteins are folded and
maintain the proper structure required for interacting

with other proteins and their environment. The fusion of
proteomics, glycomics, glycoproteomics, and mass spectrome-
try has the capability of completely characterizing glycoproteins
and determine which glycans are attached to which
glycosylation site on the protein backbone.1 Including glycan
profiling with bottom up glycoproteomics analyses technologies
has been shown to decrease the false positive identification rate
by bounding the relatively large amount of possible glycans to
experimental evidence.2

N-Glycosylation is a widespread posttranslational modifica-
tion of proteins commonly found covalently attached to
asparagine. N-Glycans are complex branched biopolymers of
monosaccharides constructed by glycosidase and glycosyltrans-
ferase enzymatic reactions in the Golgi and endoplasmic
reticulum (ER) cellular organelles. The nontemplate driven
process produces families of glycans that relate to each other by
one enzymatic step and resulting in glycans related to each
other by a difference of one monosaccharide.3,4 As a result, end-
product glycan mixtures contain multiple isomer forms based

on different monosaccharide connectivity. Determining the
monosaccharide composition of glycans and how many isomers
are present is an important step toward in-depth structural
characterization analysis. Characterizing glycan structures
provides a basis for, among other things, insights on
structure−function relationships present in biological systems.
Glycan isomer profiling can be accomplished by coupling

liquid chromatography with mass spectrometry (LC−MS).
Glycomics annotation of LC−MS data involves two critical
aspects of analysis: feature detection and glycan assignment.
LC−MS features are commonly defined by m/z peak intensities
(e.g., for their isotope profile) in the mass spectra dimension
and chromatographic elution profile from their extracted ion
chromatogram (EIC). For simplicity, the isotopic envelope for
a species can be collapsed or “deisotoped” to a single value. In
the case of glycan annotation, exact monoisotopic mass from
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each feature can then be matched to glycan masses calculated
theoretically or via experimentally generated libraries to
develop a composition profile that attempts to describe all of
the monosaccharides present in the glycan mixture. Since many
glycans have isomer structures, the structures can be often
separated chromatographically and retention times for each
isomer assigned.
Several informatics tools have been developed that facilitate

one or multiple aspects of the glycan annotation process and
vary in the analytical features included, type of mass
spectrometry data required, and overall sensitivity and
specificity of the results.5−8 When chromatographic informa-
tion is available as in LC−MS experiments, LC−MS features
are commonly detected by assembling the monoisotopic
masses derived from each mass spectrum and then annotated
with the glycomics tool.6,7,9−11 In general, glycomics data is
challenged with partially resolved chromatographic peaks
(common for glycan isomers) and convoluted isotopic profiles.
Although efforts to deconvoluted overlapping isotope distribu-
tions have been previously explored (NITPICK,12 Glycolyzer,6

MultiGlycan9), they generally work solely in the mass spectra
isotope profile space and are limited to averagine13/averagose14

based isotope model approximations. Several advances have
been made in chromatographic processing for LC−MS/MS
proteomics,15 yet the algorithms have not been applied to
glycomic challenges where closely related isomers are common.
In addition to the advanced chromatographic deconvolution
presented here, this algorithm leverages exact chemical formula
based isotopic profiles and insource fragmentation information
to support feature detection and annotation.
We have developed a new targeted software application,

Glycomic Quintavariate Informed Quantification (GlyQ-IQ) to
analyze and annotate enzymatically released N-glycan LC−MS
data sets with high-performance computing. GlyQ-IQ includes
all of the signal processing and spectra averaging, peak
detection, targeted deisotoping, feature finding and glycan
composition annotation required to convert raw data files into
annotated results. The Informed Quantification (IQ) frame-
work includes robust liquid chromatography processing that
includes LC peak modeling and robust correlations between
extracted ion chromatograms to increase annotation con-
fidence. In addition, the robust correlations are used to identify
insource fragmentation and increase the specificity of the
analysis. Insource fragmentation is identified when glycans and
glycan fragments chromatographic elution profiles correlate.
This work describes the methodology behind the GlyQ-IQ

algorithms and the use for N-glycan profiling of N-glycans
enzymatically cleaved from glycoproteins. A case study is also
included involving characterization of high mannose glycans in
human serum and how insource fragmentation can be used to
differentiate intact glycans from insource fragments and
confirm glycan composition assignments. Problems related to
interfering peaks in EICs, correlation coefficients involving
nonideal data, and imparting glycan biology into the annotation
process are discussed. This work is broken into two parts
focusing on data processing in the mass spectra and
chromatography dimensions. The software is available online
at http://omics.pnl.gov/software.

■ METHODS
Materials. All materials were of high purity, and the same

pooled human blood serum (male, blood type AB, not heat
inactivated) was used for all analyses (Sigma-Aldrich, St. Louis,

MO). All other chemicals and procedures used were consistent
with those previously described for 100 μL of serum to produce
reduced, nonderivatized glycans.16 Briefly, N-glycans were
enzymatically cleaved from serum glycoproteins with PNGase
F in acidified reaction conditions (pH 5.5). The enzymatic
cleavage was catalyzed with a microwave reactor (CEM
Discover, Matthews, NC). The released glycans were purified
by 80% ethanol precipitation/centrifugation and reduced with
sodium borohydride before further purification and desalting. A
dual cartridge (C8, GCC) automated solid phase extraction and
desalting was performed using a Gilson GX-274 ASPEC liquid
handler (Middleton, WI) with customized algorithms opti-
mized for this process. The aqueous glycan samples were first
passed through a C8 cartridge to remove any residual peptides
or lipids and the flow-through was directly loaded onto a
graphite cartridge for salt and small molecule removal.

Data Acquisition. Data was acquired using a constant flow
high-performance liquid chromatography (HPLC) system
(Agilent Technologies, Santa Clara, CA) coupled to a Velos
Pro Orbitrap Mass spectrometer with 100K mass resolution.
The LC column was packed with 3 μm diameter Hypercarb
porous graphitized carbon particles (Thermo Scientific) and
had a length of 70 cm long × 360 μm o.d. × 75 μm i.d.
(Polymicro Technologies Inc., Phoenix, AZ) and a 1 cm sol−
gel frit for media retention.17 Human blood serum N-glycans
previously identified with GlyQ-IQ software were used to
populate a mass list for targeted fragmentation. High-resolution
(60k mass resolution) collision induced dissociation (CID,
energy 30 for 10 ms) and higher energy collision dissociation
(HCD, energy 20 for 0.1 ms) were used for fragmentation.
The atomicity of the glycan targets makes the IQ based

algorithms attractive for parallel computing since they do not
depend on each other for the bulk of the analysis. Each target
requires a large amount of processing because of the
multiplicative effect of target charge states, isomers, possible
insource fragments, and insource fragment charge states. For
example, if 4 charge states and 4 fragment ions are considered
for a single target, 512 additional subtargets need to be
discovered and processed. This multiplicative effect on targets
is illustrated in Figure 1. For each target, EICs need to be
determined, theoretical isotope profiles generated and
compared to mass spectra, and LC curves modeled and fit.
When thousands of targets are searched, millions of

subtargets need to be correlated and analyzed. The GlyQ-IQ
software was deployed on a Windows 2012 R2 based HPC
cluster with a head node and 1 504 compute cores. The HPC
acceleration reduced the runtime by 99.92% (550× faster)
when compared to executing the same job on a single core
processor. Additional HPC Compute Cluster and Microsoft
Windows Azure Cloud deployment information was included
in the Supplementary Text S1 and Supplementary Figure 1 in
the Supporting Information.

Mass Spectrometric Data Processing. Targeted De-
isotoping. Isotopic profiles were evaluated by comparing a
theoretically generated isotopic profile for exact targeted
elemental compositions with the experimental data. The
experimental isotopic envelope (or profile) abundances are
populated by extracting all the masses contained in the
theoretical isotopic envelope from the spectra. A user
determined number of spectra (e.g., 9 spectra in this study,
see below) surrounding the EIC peak apex are averaged
together to increase the ion statistics of the isotopic envelope
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and signal-to-noise ratio (e.g., noise decrease by a factor of ∼3,
square root of N = 9).
A detectable area filter is applied to the experimental isotopic

envelope so that experimental profiles which are missing critical
abundant ions are removed. A key feature of this filter is it
improves detection of high quality features independent of
mass range as shown in Supplementary Figure 2 in the
Supporting Information which contains examples ranging from
1000 to 5500 Da. Removing mass dependency bias from the
algorithm improves the quality of the result and allows for an
even response when an isotope fit score cutoff is applied. The
total isotopic profile area is calculated from the theoretical
isotopic profile through integration by summing the
abundances of the individual isotopic peaks. The critical
required ions are determined by including the most abundant
ions contributing to 75% of the total isotope area. Experimental
profiles missing the critical ions are rejected. Additional ions
beyond the critical ions are included if present in the
experimental data.
Isotope Profile Fit Scoring. All charge states that produce

ions within the m/z range covered by the spectra are
considered independently. For the ions of one charge state,
the intensities are extracted and the fit scores are based on a
modified chi squared test. Modifications to the fit score
calculations used in Decon2LS18 and THRASH19 were
incorporated here to account for the number of ions detected
in the isotope profile. The fit score used in GlyQ-IQ is divided
by the number of ions detected in the profile to decrease the
score biases against high masses with several isotopes. The
equation is included as eq 1 below where E is the experimental
data, T is the theoretical data, and n and N are the number of
observed isotopes.

=
∑ −

∑
=

=

E T

N T
fit score

100( )i
n

i i

i
n

i

0
2

0
2

(1)

Additional details explaining the effect of the modified
equation are included in the Supplementary Text S2 and
Supplementary Figures 3 and 4 in the Supporting Information.
A strict 0.10 fit score cutoff was chosen to increase the

specificity of feature detection and resulted in fewer features
that need to be removed by manual inspection; 99% of the

glycans assigned with GlyQ-IQ passed the manual inspection
process and include ions with a mass that fall in the range from
912 up to 4500 Da. A total of 689 glycan isomer peaks from
this data set were detected by GlyQ-IQ (including 45 insource
fragmentation fragments see below) and 685 passed manual
validation. The sensitivity was also increased as well since large
masses with formerly relatively high (i.e., poor) fit scores were
rescored to lower (i.e., good) values that fall in the acceptable
range (see Supplementary Figure 4 in the Supporting
Information). The additional larger masses detected pass
manual inspection and are included in the 99% success rate
calculation. However, masses greater than 4500 Da are still
detectable but the sucesss rate is decreased because the
monoisotopic mass is often no longer present and the 1 Da
penalty peaks have less discriminiation (as noted below).

Increased Mass Spectra Data Quality. Mass spectra
averaging provided by the C# MSFileReader DLL (Thermo
Scientific, San Jose, CA) was used to increase sensitivity and
improve the ion statistics in the glycan isotopic profiles.
Provided the noise level is relatively constant and randomly
distributed within a few mass spectra scans during a LC−MS
run (corresponding to a fraction of a second up to a few
seconds of time depending on detector acquisition rate and
amount of MS/MS scans collected), signal averaging can
decrease the effective noise level of the measurement by the
square of the number of spectra and improve isotope fit scores.
In addition, spectral averaging incorporates isotopic profile
information from several spectra into the observed profile
which improves the accuracy of intensity distribution in the
profile. This is especially important for ions with low
abundance that have insufficient ion statistics to produce a
well-defined profile.
Implementing raw spectra averaging shows a striking

advantage in sensitivity (at constant specificity) when applied
to our human serum data as shown in Supplementary Figure 5
in the Supporting Information. For this data set, the optimal
number of spectra averaged is 9 and was selected by the
number that produced the lowest average fit score and highest
number of manually verified glycan annotations. Implementing
optimal signal averagine, the number of glycan features
detected increased by 56%, the average fit scores decreased
by 15%, and the GlyQ-IQ analysis runtime increased by 38%.

1-Dalton Errors. One common problem with deisotoping
mass spectra is false annotations caused by 1 Da (Da) mass
errors in monoisotopic mass assignments. The framework
implemented here attempts to mitigate this effect by searching
for an ion 1 Da lower than the monoisotopic mass, populating
its abundance, and use it as a penalty value in the fit score
calculation. Since the fit score equation used here is based on
the sum of the squared errors, any ion present will contribute a
significant difference (as compared to zero abundance in the
model) and increase the fit score. If the intensity of the
precluding peak is large, the increase in fit score caused by the
penalty ion error is typically sufficient to increase the score
beyond the 0.10 cutoff used here. An example is shown in
Figure 2A,B where two ions partially coelute (compound A,
monoisotopic m/z 881.996, fifth isotope at 883.334 and
Compound B (target), monoisotopic m/z 883.663) and
produce a multiplexed isotope pattern. Ions that have higher
than the fit score cutoff due to the penalty ion contribution are
triaged for advanced chromatographic analysis. This is
particularly beneficial for the relatively low mass range (500−
4500 Da) and less helpful as the mass increases due to the

Figure 1. Glycan compositions detected in LC−MS experiments can
be in multiple forms that need to be identified in the data sets
(isomers, charge states). The multiple forms need to be cross
correlated and searched for consistency. The multipliers used in this
example represent 1 glycan target containing 4 charge states, 4
isomers, searching for fragments in both directions (2, greater or
smaller by one monosaccharide), 4 monosaccharide differences to
search for, and 4 charge states possible for the fragment ions.
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decreasing contribution of the monoisotopic mass intensity to
the overall distribution.
Triaged isotopic profiles provide at least two possible

solutions to dealing with this problem and finding the correct
answer for the experimental data: (1) the simplest answer (with
the least amount of assumptions) is the raw data fits a single
compound (compound A, 1 or more Da lower in mass) with a
different elemental composition, or (2) the distribution is a
convolution of two near perfectly overlapping isotope profiles,
but offset in mass, containing 2 or more multiplexed ions of
target compound B and lower mass compound A. Implement-
ing chromatographic information can unambiguously separate
the problem cases by using EIC profiles and correlations. If the
extracted ion chromatogram of compounds A and B have peaks
within the point range of the most abundant isotope and
correlate greater than our 0.95 cutoff (see below), case 1 is
deemed correct and the desired target (compound B) is
considered not present. If the EIC do not coelute (R < 0.95) as

in case 2, the target ion is discrete and rescored and tested for
acceptance.

Chromatogram Processing. EIC Generation. GlyQ-IQ is
a chromatography centric data analysis tool which involves
significant EIC processing. Since each target has an empirical
formula and subsequent theoretical isotopic distribution, the
most abundant isotope can be chosen as a target for
chromatogram generation. EIC widths are calculated based
on the data using the following method. The largest peak
(consistent with a target isotopic profile) in the default EIC
window is chosen and its full-width at half-maximum (fwhm) is
calculated in the mass domain. This width is then divided in
half (or a user defined divisor) and the data driven ppm mass
tolerance is used to center the EIC extraction mass window for
subsequent target processing.

Smoothing. EICs often contain significant amounts of
variation, particularly for lower intensity species due to the
stochastic limitations, microinstabilities in the electrospray
process, and other sources of measurement noise. To eliminate
artifact peaks and focus the algorithms on chromatographic
peaks of interest, a digital Savitzky-Golay (SG) smoothing filter
(degree 2) is applied. Windowed extracted ion peak chromato-
grams are typically used in these algorithms and are bounded
by a scan range of interest. However, since the SG filter is a
moving average based filter, edge effects are accounted for by
buffering all EICs with extra points (2 times the number of
smoothing window points) from the full range peak chromato-
gram. A 9 point SG smoothing filter window is applied to Man8
from human blood serum and plotted in Supplementary Figure
6 in the Supporting Information that shows that the smoothed
data sufficiently represents the experimental chromatograms
and does not introduce new artifact peaks. SG smoothing was
chosen to better distinguish the peak centroid, peak width, and
peak concavity required for robust correlations, and such
buffered EICs preserve the data quality and have faster
execution time than full range EICs.

Peak Detection. Chromatographic peaks are detected and
filtered from the smoothed extracted peak chromatograms to
reduce chromatographic noise. Nevertheless noise and artifact
peaks still need to be identified and filtered out of the
smoothed data, including peaks and shoulders with too few
data points.
A set of candidate peaks is established via three point

differential peak detection and then the centroids were
determined to find the apex. The minima of each peak is also
calculated and used to determine how many points constitute
half the peak shape (center point−minima point, etc.). The half
peak shape is used instead of a full peak shape because it allows
the better detection of partially resolved species. If the peak has
less than a minimum amount of points (2 in this case) on either
side, it is removed.

Chromatographic Artifact Peak Removal. A layer of
complexity is observed on postsmoothed data because single
point peaks (a peak consisting of 3 points, e.g., 2 baseline points
surrounding 1 nonzero point) can resemble broader peaks once
smoothed. Five points are often considered the minimum
needed for defining a peak apex and width reliably.20 However,
this criterion does not directly map to SG smoothed data
because the number of points defining a peak increases as the
smoothing window point number increases. Examples of the
smoothing effect broadening simple peaks are presented in
Supplementary Figure 7 in the Supporting Information where
peaks defined with one or five points are smoothed with

Figure 2. Example depicting the penalization of the isotope fit score
calculations when an unrelated peak lower in mass (1 Da, 0.33 m/z at
3+ charge) is observed in the mass spectra. (A) Fit score calculated
when modeled data is fit to the observed data with 1 Da penalty
assigned. The high fit score greater than 0.1 cutoff triages further
chromatographic analysis. (B) EICs from the most abundant isotope
m/z and the penalty peak m/z are modeled, fit, and correlated. Failed
EIC correlations trigger a rescoring of the isotope profile while
excluding the penalty peak because it was deemed not part of the
targeted distribution. The large score decrease from 1.07 to 0.011 leads
to a correct assignment of the target. The mass differences between the
3+ charge state isotopes are shown in blue at the bottom.
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different SG windows (the five points peak series is inverted).
The relationship between an acceptable number of points and
the SG windows can be calculated by plotting the number of
points across a raw peak versus the number of points across a
smoothed peak (at various smoothing levels). This is shown to
be linear in Supplementary Figure 8 in the Supporting
Infiormation. A minimum of 4 points per side (>8 points for
full peak) is set for a 9 point SG smooth. This is sufficient to
remove three point peak equivalent peaks from the raw data
and improve confidence in peak assignments by removing
artifacts caused by single point peaks. Using this equation
presented in Supplementary Figure 8 in the Supporting
Information, the peak detection parameters are automatically
set based on the smoothing parameter supplied by the user.
Partially Resolved Chromatographic Peaks. An asymmetric

peak shifting parameter is included for better shoulder
detection of partially overlapping peaks. This allows up to
two points to be shifted from one side to the other for the case
where shoulder peaks are well-defined on the nonconvolved
side (min number of points + 2) and have less than the number
of points on the convolved side (min number of points − 2).
Two points were chosen to maintain the 8 points across the
peaks at the smoothed level (9 point SG window).
EIC Peak Shape Fitting. After peaks with insufficient data

points are removed, each peak is modeled with a Gaussian
function and the models were compared to the data. This helps
determine the characteristic curve associated with the peak and
allows integration to estimate relative abundance. A Gaussian
peak shape is fit to each peak using a Levenberg−Marquardt
algorithm (ALGLIB21) using a 0.85 R2 coefficient of
determination cutoff. As shown in Supplementary Figure 9 in
the Supporting Information, the coefficient of determination
cutoff value was chosen by fitting a Pareto distribution to the
distribution of coefficients of determination and setting the
cutoff to the 99th percentile (0.85).
For peaks with noisy or tailing bottoms that do not fit

Gaussian line shapes, points are removed from the bottom until
the optimization algorithm converges. This helps remove low
signal-to-noise peaks and peak tailing from the fit while
maintaining the peak centroid which is the most determinate
factor in the correlation value calculation and ultimately
improving correlation score robustness. Although other peak
shapes have been used in the past to model chromatographic
peak shapes,22 defining the peak tops and apex is the most
important parameter for correlations and insource fragmenta-
tion. If chromatographic peak tailing is present in the elution
profiles, other functions could be implemented such as
expanded Gaussian models.23 For this study, each peak in the
EIC is deconvoluted into its constituents by Gaussian model
fitting. A sample deconvolution of the Man8 EIC from human
blood serum is shown in Figure 3.
When a sufficient fit is achieved for a single peak, the

coefficients for the corresponding Gaussian model are obtained
and used for integrating the area under the curve. The
quantification area is calculated numerically using the
trapezoidal rule over 100 points. The fit coefficients are also
used for calculating a new interpolated peak shape model
optimal for peak interchromatogram correlations.
Chromatogram Correlations. Pierson Product-Moment

Correlation (R). The robustness of correlation analysis was
increased by mapping correlation values to the same scale so
that a constant cutoff could be used regardless of peak height,
resolution, and offsets. Addressing for different sampling point

densities across the LC peaks was addressed by modeling the
peak shapes and interpolating a constant number of points.
Additional information is included in the Supplementary Text
S3 and Supplementary Figure 11 in the Supporting
Information.

Insource Fragmentation Determination and Future
Target Detection. Insource fragmentation occurs due to labile
covalent glycosidic bonds between monosaccharides that are
broken during ion formation or transport through the interface
prior to the m/z analysis. Generally optimizing electrospray
ionization source conditions for decreased fragmentation is
achieved by decreasing the energy imparted to the ions during
ionization and transport into lower pressure regions of the
instrument.24 However, decreasing the energy imparted to the
ion−solvent clusters decreases desolvation and results in lower
signal intensity. Although nonderivatized glycans are detected
in the native form (with the exclusions of the reducing-end
modifications) they are generally more susceptible to insource
fragmentation than their derivatized counterparts (e.g.,
permethylated).25

One type of insource fragments considered here consists of
the loss of one monosaccharide unit from the parent. The loss
of a monosaccharide indicates the peak target compound is a
glycan. This is detectable by correlating EICs for the parent and
the fragment since both will exhibit the same chromatographic
elution profile. Comparisons are made between the parent and
fragment across all allowable detectable charge states for all
allowable monosaccharides. For example, this allows for a 3+

charged parent to be correlated with a 2+ charged fragment.
The correlation coefficients were calculated for the human
blood serum glycan targets (including isomers) and their
insource fragments (including larger compositions) and the
counts are presented as a histogram in Supplementary Figure
12 in the Supporting Information. Correlation coefficients with
values greater than 0.95 are used to distinguish insource
fragmentation. The 0.95 cutoff was determined based on the
fitting a Pareto distribution to the correlation coefficient trace
in Supplementary Figure 12 in the Supporting Information and
establishing the cutoff at the 99th percentile.

Figure 3. Deconvolution of Man8 EIC into Gaussian peak shapes.
Summing the individual deconvoluted features provides the model
dotted line that is consistent with the smoothed EIC. Observing
multiple isobaric chromatographically separated compositions with
different elution times correspond to different chemical isomeric
structures.
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In addition to the parent-fragment relationships, parent-to-
larger-composition relationships are also considered which
indicate that the target compound is a glycan fragment. In this
case, glycans with an extra monosaccharide beyond the target’s
composition are searched for and correlated. Correlating hits
become future targets in subsequent analysis and are added to
the glycan library. Discrete glycan isomers are identified in the
case when no other larger compositions are detected.
When insource fragmentation is detected, it confirms that the

compositional assignment assigned by accurate mass is correct
and the peak is glycan related. All 86 glycans features detected
with insource fragmentation were consistent with its assigned
monosaccharide composition. Insource fragmentation detection
helps confirm feature detection and largely eliminates the need
for manual inspection of the data. The quintavariate glycans
(insource fragmentation detection + the other 4 pieces of
information) provided a 100% acceptance rate for manual
feature inspection. In addition, the insource fragmentation
removes the identified glycan fragments from the accepted list
thus decreasing the false positive glycan hits reported.
Charge State Correlation. Chromatographic centric algo-

rithms process EIC for each charge state separately and
common chromatographic peaks apexes can shift slightly.
Modeled chromatographic peaks from neighboring charge
states are correlated to determine consistency. A histogram of R
correlation values from charge state correlations (a mono-
isotopic mass at different charge states) is presented in
Supplementary Figure 13 in the Supporting Information. A
cutoff value (R > 0.95) was determined based on Pareto curve
fitting and a 99th percentile cutoff. Once correlated, coeluting
charge states are combined by averaging the monoisotopic
masses detected and summing the abundances. Summing the
abundance values from each charge state provides an
aggregative abundance value for each glycan species.
Incorporating Glycan Characteristics. Glycan Family

Relationships. Glycans are created enzymatically in the Golgi
and endoplasmic reticulum by a complex process involving the
addition and subtraction of monosaccharides. Consequently
glycans are often detected in families that differ by one or more
monosaccharides and can serve as a glycan signature. Thus, we
set a key requirement that for all glycans reported, at least one
other glycan was also detected that differed by one
monosaccharide and that used a single linkage clustering
algorithm to identify glycans families.
Tandem Mass Spectrometry. Targeted high resolution

tandem mass spectrometry was performed to add an additional
level of verification beyond the GlyQ-IQ paradigm. GlyQ-IQ
results from an initial precursor MS only run were used to
populate a targeted fragmentation list for the Velos Pro
Orbitrap mass spectrometer. The 60k resolution MS/MS scans
were used to provide accurate diagnostic masses (preferential in
HCD) and monosaccharide differences (preferential in CID).
Ions detected from the list were fragmented with CID and
HCD and annotated with glycan diagnostic ions and
monosaccharide differences. The characteristic diagnostic
oxonium ions and monosaccharide differences used to confirm
glycan compositions are presented in Supplementary Table 1 in
the Supporting Information.26 At least one diagnostic ion or
monosaccharide mass difference is required for acceptance at
this additional validation level.
Data Visualization. GlyQ-IQ Viewer. The GlyQ-IQ feature

viewer is based on the SIPPER viewer engine27 facilitates the
rapid visualization and review of LC−MS features. The GlyQ-

IQ viewer uses the IQ base results files and works well with
GlyQ-IQ output files. The GlyQ-IQ viewer was used to drill
down into the raw data and display a smoothed EIC and
averaged mass spectrum corresponding to the chromatographic
peak and isotopic envelope of the result. Each result was viewed
in one screen and accepted or denied by a user before being
exported to from the final result list. Glycan family relationships
are calculated after false hits have been removed. A screen shot
of the GlyQ-IQ viewer is included in as Supplemental Figure 14
in the Supporting Information.

GlycoGrid 4D Visualization. A GlycoGrid is a fast and
efficient method for viewing and comparing N-glycan
composition profiles on a single plot.16 The GlycoGrid 4D
visualization software presented here plots the four composi-
tions (hexose, HexNAc, fucose, and sialic acid) in a four-
dimensional grid and denotes detection of a composition by
coloring a grid square and populating the grid square with a
number denoting the quantity of isomers detected (font too
small to be displayed here). Distinct peaks in the EIC that are
not related to other compositions via insource fragmentation
are considered glycan isomers. Because of the increased size of
the retrosynthetic glycan library from our previous publica-
tions,4,16 the GlycoGrid dimensions have increased in size,
respectively. Zoom functionality has been incorporated to focus
on individual glycan compositions or families and compare
across multiple data sets. When zoomed in, the number of
isomers (chromatographic separated features) is displayed. The
software is a Windows Model View ViewModel application
written in C# and is available online at http://omics.pnl.gov/
software along with a description of the features incorporated.

■ RESULTS AND DISCUSSION
Results. Human Serum High Mannose Glycans. The high

mannose glycans in human serum provide a good case study
because there are a relatively fewer compositions relative to
complex or hybrid glycans. In this work, separable chromato-
graphic peaks of isobaric masses consistent with glycan
compositions are considered isomers. Further structural
analysis of isomeric peaks is still required for detailed linkage
analysis. Chromatographic features were either annotated as
glycan isomers with all 5 GlyQ-IQ variables including
supporting insource fragmentation (5-Var), confirmed glycan
fragments by insource fragmentation (Fragment) or detected
with the other 4 GlyQ-IQ variables (exact mass, Isotope fit
score, LC profile coefficient of determination, and glycan family
relationships). Glycans with discrete chromatographic peaks
without coeluting larger glycan masses are considered glycan
isomers. A table of the high mannose glycan isomers is
presented in Supplementary Table 3 in the Supporting
Information. An example of the insource fragmentation
detection for convoluted isomers of Man6 has been selected
and presented in Supplementary Figure 15 in the Supporting
Information. EIC from Man5 and Man7 are depicted to show
inter EIC relationships of family glycans. Both 1+ and 2+
charge starts are shown and the 2+ is inverted for clarity. Tie
lines show how many glycans have mapped elution peaks
indicating insource fragmentation and do not represent specific
isomers present in the solution.

Human Blood Serum N-Glycan Profile. A total of 156 N-
glycan compositions and 685 isomers were detected with the
GlyQ-IQ software within −0.6 ± 2 ppm mass error. In total, 46
of those compositions had confirmation with insource
fragmentation, and targeted MS/MS confirmed an additional
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60 (32 were confirmed with both). The glycan profile results
are presented in a GlycoGrid 4D image (Figure 4) and a

detailed GlyQ-IQ output table (Supplementary Table 4 in the
Supporting Information). The GlycoGrid clearly depicts which
glycans were detected (green) and which were confirmed with
tandem MS/MS (yellow). Glycans detected and identified as
insource fragments are depicted in red. Although the entire
prospective ion list was used for targeted fragmentation, 96
compositions were not selected for fragmentation during the
run due to low abundance or limited instrument duty cycle.
Insufficient fragmentation information derived from low

abundance glycans restricts the overall glycan profile achievable
with MS/MS confirmation and also highlights the added
information obtained with an MS-based approach. Of the 156
compositions, 29% were confirmed at the 5-variate level via
insource fragmentation and 38% with tandem MS/MS.
For comparison, 96 glycan compositions were detected in

our previous work from a different aliquot of the same human
blood serum sample and comparable sample processing and
HPLC (45 cm vs the present 70 cm long).16 Note that different
column lengths will have a larger effect on the total number of
discrete isomers separated and detected but the compositions
are roughly comparable because we are not limited to only
tandem mass spectrometry for annotations and subsequently
instrument duty cycle limited. Previously, the data was acquired
on an Agilent 6538 Q-TOF MS in contrast to the Velos Pro
Orbitrap MS used here.16 Although the number of glycan
compositions is consistent, GlyQ-IQ was able to confidently
determine how many isomer peaks are present for each
composition and remove false positives assignments caused by
insource fragmentation.

■ DISCUSSION
Targeted Approach. The Glycomic Quintavariate In-

formed Quantification (GlyQ-IQ) software has been developed

to more effectively reveal N-glycan compositions in high
resolution LC−MS data sets. Informed quantification (IQ)
based algorithms are targeted chromatograph centric algorithms
and subscribe to the paradigm that compounds are known or
predicted before the analysis takes place; i.e., an array of
assumed possible target compounds inform the analysis. This
helps restrict the search space and improves success because the
compound can be accurately modeled a priori before searching
for its fingerprint in the data and quantifying its amount. GlyQ-
IQ is an extension of this design applied to N-glycan profiling.
Since glycan synthesis is not a template driven process (as

compared to peptides and proteins which can leverage the
genome), target libraries need to be experimentally determined
or predicted in silico. The retrosynthetic glycan library
approach28 has been expanded into an informed targeted
approach where each composition in the glycan libraries is
considered a distinct target. Briefly, the retrosynthetic glycan
approach is to constrain the library to the largest glycan
structure from each glycan class postulated by the glycosyl-
transferases present in the system (or experimentally detected).
Then it is assumed that if there is sufficient glycan machinery to
create the largest structure, any glycan containing fewer
monosaccharides may be present. This helps bound the size
of the glycome and imparts biological rules for glycan
compositions.28 The glycan library approach allows for
searching for adducted glycan by incorporating adducts into
the target list and researching the data set. The high speed of
the HPC deployment of GlyQ-IQ makes multiple searches with
large numbers of targets a pedestrian task. The library
implemented here is bounded by the glycan rules presented
previously28 and modified to allow for increased sialylation. The
2 195 target compositions searched are bounded in mono-
saccharide count as follows (hexose 3−12, N-acetylhexosamine
2−8, fucose 0−7, Neu5Ac 0−9).
Knowing the monoisotopic mass of the glycan and elemental

composition upfront, we are able to search the LC−MS data
space for its mass and exact isotopic envelope. Better isotopic
envelope models improve the fit scores, increasing discrim-
ination between correct and false fits. The targets are readily
parallelized because each target is processed atomically and
does not rely on other targets until the finalization step. The
first step is to create a set of charged targets that correspond to
each charge state of interest (determined from the data) and
process them independently. The general flow of a charged
target is to discover associated candidate LC peaks in an EIC
(at that charge state) in the time domain and validate each LC
peak’s isotope profile in the mass domain to remove false hits
such as within-tolerance isobaric isotopes and noise peaks. For
each acceptable target LC peak, candidate insource fragments
are searched for and their EIC generated. The chromatographic
peaks of the target and the fragment are subsequently modeled
and the modeled peaks are robustly correlated. During the
finalization steps, a triage of results analyses is performed to
differentiate which LC peaks are intact glycans or glycan
fragments.

Confidence via Quintavariate Metrics. Orthogonal pieces
of information can be orchestrated at the feature detection level
and glycan assignment level to annotate glycans with a
confidence greater than each level independently. The mass
dimension is characterized by modeling isotopic distributions,
fitting it to the data, and scoring how well the experimental data
fits the model (Fit Score). Observed isotope profiles that fit
well provide the monoisotopic mass useful for exact mass

Figure 4. GlycoGrid 4D of 156 human blood serum glycan
compositions annotated with GlyQ-IQ (green) and confirmed with
CID or HCD (yellow). Glycans identified as insource fragments are
depicted in red. The major Y axis corresponds to the number of hexose
and the minor Y corresponds to the number of fucose. The major X
corresponds to the number of N-acetylhexosamine and the minor X
corresponds to the number of sialic acid.
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measurements and determining the mass measurement
accuracy (typically measured in parts-per-million, PPM). The
LC dimension is often divided up into EICs in which a single
mass (±a few ppm mass tolerance) is traced out over time.
Elution profiles can be characterized by smoothing the data to
remove noise, fitting a model peak shape and then scoring how
well the model fits the data. Since many glycans have
sequential, positional, and linkage isomers (multiple structures
with the same mass and elemental composition), the EIC can
have multiple peaks, one corresponding to each glycan isomer
structure. In the absence of structural information, isobaric
glycan features with multiple LC elution peaks are considered
glycan isomers.
Glycan discovery is based on multivariate detection, and each

additional orthogonal variable improves confidence of assign-
ment. Up to five orthogonal measurements are implemented:
mass measurement error, isotopic envelope fit score, LC peak
shape, monosaccharide family relationships, and monosacchar-
ide insource fragmentation. A table consisting of the different
confidence levels of annotation is included in Table 1.
Acceptable metrics in all five measurements are required for
glycan compositional confirmation and the four variables
(excluding insource fragmentation) required for annotation
(see the Methods section). Since most glycans did not have
detectable insource fragmentation, much of the annotation was
determined by the remaining four variables. In combination
with glycan family relationships, this indicates all annotated
glycan reported have at least 8 variables within tolerance
supporting the assignment.

■ CONCLUSION

GlyQ-IQ is a software application for glycan MS based upon an
algorithm centric nontargeted analyses approach. Combining
spectral averaging, mass-independent fit score calculations, tight
fit score tolerances, and a 1 Da interfering peak deconvolution
result in over 99% of all glycans identified passed manual
inspection and juxtaposition to high-resolution mass spectra. In
addition to high specificity LC−MS feature detection, key
integration of glycan relationships and insource fragmentation
detection further increased the annotation confidence and
decreased the false positive rate. Hig- performance computation
allowed for 550-fold speed up which translates hours of runtime
into a few minutes for large glycome searches (2 156 candidate
glycan targets). A total of 156 N-glycan compositions were
detected and with 640 intact glycan isomer peaks provide an
improved perspective on the glycans present on human blood
serum glycoproteins.
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