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Abstract
We present a major public resource of mRNA splicing mutations validated o
according to multiple lines of evidence of abnormal gene expression. Likely _ report
mutations present in all tumor types reported in the Cancer Genome Atlas Verls'on 3
(TCGA) and the International Cancer Genome Consortium (ICGC) were S;Z‘i;ﬁw
identified based on the comparative strengths of splice sites in tumor
versus normal genomes, and then validated by respectively comparing W ?
counts of splice junction spanning and abundance of transcript reads in version 2 report report
RNA-Seq data from matched tissues and tumors lacking these mutations. published
The comprehensive resource features 341,486 of these validated 20 Mar 2019
mutations, the majority of which (69.9%) are not present in the Single
Nucleotide Polymorphism Database (dbSNP 150). There are 131,347 version 1 " ?
unique mutations which weaken or abolish natural splice sites, and 222,071 published report report
mutations which strengthen cryptic splice sites (11,932 affect both 07 Dec 2018
simultaneously). 28,812 novel or rare flagged variants (with <1% population
frequency in dbSNP) were observed in multiple tumor tissue types. An { Emanuele Buratti lFtemetteEl Garie o

algorithm was developed to classify variants into splicing molecular
phenotypes that integrates germline heterozygosity, degree of information
change and impact on expression. The classification thresholds were (ICGEB), Trieste, Italy
calibrated against the ClinVar clinical database phenotypic assignments.

Genetic Engineering and Biotechnology

Variants are partitioned into allele-specific alternative splicing, likely A R eh (GOl » Francis Crick
aberrant and aberrant splicing phenotypes. Single variants or chromosome Institute, London, UK

ranges can be queried using a Global Alliance for Genomics and Health King's College London, London, UK
(GA4GH)-compliant, web-based Beacon “Validated Splicing Mutations”

either separately or in aggregate alongside other Beacons through the 3 W.W.M. Pim Pijnappel "=, Erasmus University
public Beacon Network, as well as through our website. The website Medical Center (Erasmus MC), Rotterdam, The
provides additional information, such as a visual representation of Netherlands

supporting RNAseq results, gene expression in the corresponding normal
tissues, and splicing molecular phenotypes.
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(iIZ757"3 Amendments from Version 2

1. ValidSpliceMut now quantifies information analyses,
expression pattern evidence and allele frequencies
for each variant, and uses this information with an
algorithm to classify the splicing molecular phenotype
of each tumour. This was done to make it easier for
the user to understand the information provided by
ValidSpliceMut. The following changes has been
made:

- Methods have been rewritten to describe the logic
and justification for the classification algorithm.

- A categorical analysis of the splicing molecular
phenotype classifications is reported in ‘Dataset
validation and discussion’.

- Added a new figure (Figure 2), which consists of the
workflow diagram of the aforementioned classification
algorithm.

- A new dataset has been added (Dataset 2) which
includes 6 histograms illustrating the consistency of the
splicing molecular phenotype classifier for the same
mutation across increasing numbers of tissues.

- Figure 1 has been updated as there is now new
information provided by ValidSpliceMut to the user:

a) Consensus splicing molecular phenotypes of all
patients with the mutation; b) A classification evidence
bar for each case, constructed using a point-based
system which considers all evidence types relevant to
the site type.

2. Anew analysis evaluates expression in the normal
control population in genomic regions carrying
variants. This involved the analysis of variants that
were not statistically significant with Veridical. This
was performed completely independently from the
previously-described classification. A new table
(Table 3) was added indicating the statistics of
alternative splicing detected in controls.

3. Descriptions of information theory-based terms were
expanded. The website now includes a link to a
glossary of terms consisting of all information theory-
based terms and terms used to describe evidence of
aberrant splicing based on the output of the Veridical
program. ValidSpliceMut now also displays a “Fold
Change" field, to relate R changes to splice binding
site strength.

Any further responses from the reviewers can be found at the
end of the article

Introduction

Next generation sequencing continues to reveal large num-
bers of novel variants whose impact cannot be interpreted from
curated variant databases, or through reviews of peer-reviewed
biomedical literature'. This has created a largely unmet need
for unequivocal sources of information regarding the molecu-
lar phenotypes and potential pathology of variants of unknown
significance (VUS); in cancer genomes, such sources are criti-
cally needed to assist in distinguishing driver mutations from
overwhelming numbers of bystander mutations. VUS classifi-
cation criteria highlight the limitations in genome interpreta-
tion due to ambiguous variant interpretation. Of the 458,899
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variant submissions in NCBI’s ClinVar database with clinical
interpretations, nearly half (n=221,271) are VUS (as of November
5th 2018). Only 10,784 variants in ClinVar have been documented
to affect mRNA splicing at splice donor or acceptor sites, with
1,063 of these being classified as VUS, and cryptic mRNA splic-
ing mutations are not explicitly described. The current ACMG
criteria® for variant pathogenicity prevent clinical classification of
most VUS. Functional evidence that VUS either disrupt or abol-
ish expression of genes has been sought to improve classification
and provide insight into the roles, if any, of individual VUS in
predisposing or causing disease. We present a comprehensive
data repository for a relatively common mutation type (cis-acting
variants that alter mRNA splicing). Mutations are predicted with
information theory-based analyses’, and supported with func-
tional evidence that variants in tumor genomes are specifically
associated with abnormally spliced mRNAs that are infrequent
or absent in transciptomes lacking these variants®.

Information theory (IT) has been proven to accurately pre-
dict impact of mutations on mRNA splicing, and has been
used to interpret coding and non-coding mutations that alter
mRNA splicing in both common and rare diseases™~°. We have
described an IT-based framework for the interpretation and pri-
oritization of non-coding variants of uncertain significance,
which has been validated in multiple studies involving novel vari-
ants in patients with history or predisposition to heritable breast
and/or ovarian cancer'' ">,

The Cancer Genome Atlas (TCGA) Pan-Cancer Atlas (PCA)
is a comprehensive integrated genomic and transcriptomic
resource containing data from >10,000 tumors across 33 differ-
ent tumor types'®. Here, we utilized IT-based tools for assessment
of high quality sequenced variants in TCGA patients, as well as
patients from tumor datasets provided by the International Can-
cer Genome Consortium (chronic lymphocytic leukemia, esopha-
geal adenocarcinoma, malignant lymphoma, pancreatic cancer
endocrine neoplasms, as well as liver, ovarian, and renal cell
cancers), for their potential impact on mRNA splicing. The accu-
racy of predicted mutations was evaluated with the algorithm
we previously developed® that compares transcripts from cases
carrying these variants with others lacking them. The results
of these genome-wide analyses are presented using an online
internet resource, ValidSpliceMut, which can also be queried
through the Beacon Network!"'%.

Methods

TCGA and ICGC data acquisition and processing
Controlled-access data was obtained with permission from the
Data Access Committee at NIH for TCGA and from the Inter-
national Cancer Genomics Consortium. Patient RNA sequenc-
ing BAM files (tumor and normal, when available) and their
associated VCF files (GRCh37) were initially obtained from the
CancerGenomeHub (CGhub). Files were later downloaded
through Genomic Data Commons using the GDC Data Transfer
Tool (version 1.3.0), as CGhub was decommissioned mid-project.
Genomic data from ICGC was downloaded through the Score cli-
ent (version 1.5.0). Variants in VCF files which did not pass quality
control (QC) were not analyzed.
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Information analysis and RNA-Seq validation of splicing
variants

We used the Shannon Pipeline software (SP; which applies IT
to rapidly perform high-throughput, in silico prediction of the
impacts of variants on mRNA splicing)"” to analyze all QC-pass-
ing variants in VCFs from TCGA and ICGC (>168 million
TCGA and >41 million ICGC variants) to evaluate their poten-
tial impact on splice site binding strength (changes in informa-
tion content, R). R, is a measure of binding site strength; it is
related to affinity through the second law of thermodynamics and
is measured in bits (a glossary of IT and Veridical terms can be
found here). According to Shannon information theory, only sites
with R, values exceeding zero bits can be bound. The minimum
fold change in affinity is exponentially related to the differ-
ence in R, values of wild type and mutant binding sites (= 2*%).
For example, a 3 bit change would result in at least an 8-fold
change in binding affinity. Variants which were predicted to
strengthen known natural sites or weaken cryptic splice sites were
excluded from all subsequent analyses. We also required novel
cryptic splice sites to be strengthened by = 2 bits (at least 4 fold),
and with final strengths (R, ) exceeding that of the nearest
natural site of the same polarity.

To validate the potential impact of SP-flagged mutations,
Veridical software analyzed genomic variants (including inser-
tions and deletions) by comparing the RNA-Seq alignment in
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the region surrounding the variant in the index case with the cor-
responding interval in control transcriptomes (normal and tumor
tissue of the same type) lacking the same variant*”’. The Veridi-
cal algorithm: a) counts abnormally spliced reads in RNA-Seq
data (categorized as either cryptic site use, exon skipping, or
intron inclusion [containing or adjacent to the flagged mutation]),
b) applies the Yeo-Johnson transformation to these results, and
c) determines the null hypothesis probability (p-value) that the
transformed read count corresponds to normal splicing. In tumor
types where normal controls were not available, a set of RNA-Seq
datasets from 100 different normal tissues from TCGA were used
(e.g. a combination of 5 tissue types: BRCA, BLCA, LUAD,
KIRC, PRAD). Variants not flagged for any particular evidence
type (p-value > 0.05) were inconsistent with being splicing muta-
tions, and were considered alternatively spliced and most likely,
benign. After this analysis, Veridical validated 341,486 unique
mutations for their direct impact on mRNA splicing (Table 1).
The Shannon pipeline-flagged and Veridical-filtered results were
combined into a single large table (Dataset I*') that contains
the source data for the ValidSpliceMut SQL database and the
associated Beacon application.

Development of the ValidSpliceMut database and Beacon

We created a publicly accessible Application Programming Inter-
face (API) (https://beacon.cytognomix.com) that can be utilized
to programmatically query variants passing filter thresholds

Table 1. Unique Flagged Variants by TCGA and ICGC Tumor Tissue Type*.

TCGA-ACC TCGA-BLCA TCGA-BRCA TCGA-CESC TCGA-CHOL

TCGA-COAD TCGA-DLBC

1,717 9,865 24,181 25,822 9,817 7,512 6,036
TCGA-ESCA TCGA-GBM TCGA-HNSC TCGA-KICH TCGA-KIRC TCGA-KIRP TCGA-LAML
19,361 935 2,840 26,519 6,711 4,892 19,503
TCGA-LGG TCGA-LIHC TCGA-LUAD TCGA-LUSC TCGA-MESO TCGA-OV TCGA-PAAD
1,346 12,461 18,262 2,628 303 88,136 1,685
TCGA-PCPG TCGA-PRAD TCGA-READ TCGA-SARC TCGA-SKCM TCGA-STAD TCGA-TGCT
90 944 3,083 20,024 12,515 20,245 467
TCGA-THCA TCGA-THYM TCGA-UCEC TCGA-UCS TCGA-UVM ICGC-CLLE ICGC-ESAD

56,962 16,599 28,524 10,716 2,498 2,041 61
ICGC-LIRI  ICGC-MALY ICGC-0OV ICGC-PACA ICGC-RECA
2,255 2,652 2,818 3,182 4,255

“The number of Veridical-flagged mutations in each TCGA and ICGC cancer data sets. Variants shared between multiple
tissue types were counted for each category. Variant and RNA-Seq data were provided by The Cancer Genome Atlas Pan-
Cancer Analysis Project'®. TCGA: ACC [Adrenocortical carcinoma], BLCA [Bladder Urothelial], BRCA [Breast Cancer],
CESC [Cervical Squamous Cell Carcinoma], CHOL [Cholangiocarcinoma], COAD [Colon Adenocarcinoma], DLBC
[Lymphoid Neoplasm Diffuse Large B-cell Lymphoma], ESCA [Esophageal Cancer], GBM [Brain Glioblastoma Multiforme],
HNSC [Head and Neck Squamous Cell Carcinoma], KICH [Kidney Chromophobe], KIRC [Kidney Renal Clear Cell
Carcinoma], KIRP [Kidney Renal Papillary Cell Carcinoma], LAML [Acute Myeloid Leukemia], LGG [Brain Lower Grade
Glioma], LIHC [Liver Hepatocellular carcinoma], LUAD [Lung Adenocarcinoma], LUSC [Lung Squamous Cell Carcinoma],
MESO [Mesothelioma], OV [Ovarian Serous Cystadenocarcinoma], PAAD [Pancreatic Cancer], PCPG [Pheochromocytoma
and Paraganglioma], PRAD [Prostate Adenocarcinoma], READ [Rectum Adenocarcinoma], SARC [Sarcoma], SKCM [Skin
Cutaneous melanoma], STAD [Gastric Adenocarcinoma], TGCT [Testicular Germ Cell Tumors], THCA [Head and Neck
Thyroid Carcinoma], THYM [Thymoma], UCEC [Uterine Corpus Endometrial Carcinomay], UCS [Uterine Carcinosarcoma],
UVM [Uveal Melanoma]. ICGC: CLLE [Chronic Lymphocytic Leukemia], ESAD [Esophageal Adenocarcinoma], LIRI [Liver
Cancer], MALY [Malignant Lymphoma], OV [Ovarian Cancer], PACA [Pancreatic Cancer Endocrine Neoplasms], RECA

[Renal Cell Cancerl].
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described above (Dataset 1*'). It was built in accordance with the
GA4GH Beacon v1.0.0 specification, which describes a Repre-
sentational State Transfer (REST) API for genetic data sharing™.
A Beacon accepts queries using an HTTP request and returns
JavaScript Object Notation (JSON). Our Beacon implementa-
tion is coded in PHP 7.0 and utilizes a MySQL database (version:
5.7.24) with indexes applied to variant ID, chromosome, and
coordinate fields (GRCh37). The returned JSON object reports
whether the variant was found within our Beacon dataset as well
as metadata including splice site coordinate, splice type, site
type, the IT-based measures R, .. and R, affected individ-
ual IDs, tumor type, Veridical evidence by type annotated with
significance level, and, if known, the corresponding rsID with
its average heterozygosity (dbSNP 150). The metadata for each
variant sent to the Beacon Network is a concise subset of avail-
able results in our database. It includes the first relevant database
entry, meaning that if the variant exists within multiple cases
only the first will contribute fields to the metadata. However,
among this metadata is a hyperlink to our local website containing
results for any remaining tumors.

We developed the website, ValidSpliceMut (example output indi-
cated in Figure 1) to serve as a local interface to our Beacon,
allowing users to manually search for a variant, by gene name or
genome coordinate range. ValidSpliceMut automatically queries
our Beacon, and formats the results of the search, if any. This
website provides a complete view of variants, including Veridical-
based evidence on all data related to every affected individual. If
a variant is associated with multiple splice sites, the user is pre-
sented with a brief overview of all affected sites and must select
a desired site to continue. To obtain the coordinate of the queried
variant in gene-centric notation, a link is provided which queries
the Mutalyzer API and generates coordinates for all available
transcripts. ValidSpliceMut only reports transcripts for the gene
affected by the variant.

A results page presents variant-specific data in tabular format and
an expandable list of panels describing the affected cases. Each
of these panels contains Veridical output in tabular format for
the selected tumor, a link to the tumor metadata at US National
Cancer Institute (by querying the GDC API to obtain a UUID
which is used to construct a link to the GDC data portal), the pre-
dicted molecular phenotype for that case, an Integrative Genome
Viewer (IGV) screenshot containing the variant (IGV screenshots
are available for selected variants, see below), and a histogram
which presents the expression levels of the variant-containing
gene compared to all other gene expression levels across a selected
normal tissue type (created dynamically using gnuplot 5.0). The
tissue expression data is provided by GTEx (downloaded on
10/22/18). However, several tumor types did not have a GTEx
equivalent (TCGA: CHOL, DLBC, MESO, READ, SARC,
THYM and UVM; ICGC: MALY). The GNF Expression Atlas
2% was downloaded from the UCSC Genome Browser and was
used for expression data for both lymph nodes (DLBC; MALY)
and the thymus (THYM). For the remaining tissues, expression
data from the following studies were obtained from the Genome
Expression Omnibus (GEO): GSE76297 (CHOL), GSE2549
(MESO), GSE15781 (READ) GSE44426 (SARC), and GSE44295
(UVM).
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ValidSpliceMut quantifies information analyses, expression pat-
tern evidence and allele frequencies for each variant. We derived
an algorithm to classify the consequences of each case, i.e. a
tumour with a particular mutation, based on these properties.
The molecular phenotypes assigned can be either (1) aberrantly
spliced, (2) likely aberrantly spliced, or (3) result in allele-spe-
cific alternative splicing. The thresholds and parameters of this
classification system (Figure 2) were first calibrated against the
clinically-validated phenotypes of variants in the ClinVar data-
base. ClinVar contains 34,671 variants that are also present in
ValidSpliceMut. In ClinVar, 1,948 of these variants are desig-
nated as pathogenic (1,180 natural; 768 cryptic) and 26,056 vari-
ants as benign (affecting 9,601 natural and 16,455 cryptic splice
sites). We determined if discernible characteristics of these splicing
mutations in ValidSpliceMut corresponded to either pathogenic
or benign designations in ClinVar. Pathogenic variants in Clin-
Var were considered to be equivalent to aberrant splice molecular
phenotypes in ValidSpliceMut. Benign variants in ClinVar were
considered to be equivalent to allele-specific alternative splic-
ing in ValidSpliceMut. From our previous work on information-
theory based analysis of splicing mutations’, the characteristics
evaluated for splice sites associated or altered by each variant
included: 1) natural site AR, value, 2) cryptic site AR, 3) cryp-
tic site R, strength relative to the R, value of the nearest cog-
nate natural site, 4) the number of supporting evidence types
detected by Veridical, as well as their respective p-values, 5) the
heterozygosity of variant in dbSNP150, if present in this database,
6) the overall level of expression in the tissue type from which
the tumor was derived, and 7) the distance of the cryptic site, if
present, from the closest cognate natural splice site. All of the
characteristics were assigned a weight between 0 and 1 for each
variant; natural and cryptic splicing mutations were examined sep-
arately. For characteristics relevant to a particular site type (4 of
these characteristics were relevant for natural splice sites, 6 were
for cryptic sites), all potential combinations of weights divis-
ible by 0.2 were examined. All characteristics were initially
classified as either aberrantly or allele-specific alternatively
spliced; subsequently, the weighted majority of classifications
were computed for each variant in each tumour. The Matthews
correlation coefficient (MCC) was chosen to measure adher-
ence to ClinVar classifications for each weighting scheme as it
can account for the imbalance in ClinVar between number of
variants classified as benign versus those indicated as patho-
genic in assessing the performance of each characteristic. Exam-
ination of natural splice site variants alone demonstrated that
characteristics 1 and 5 together were consistently the best pre-
dictors of ClinVar phenotypes (MCC: 0.777) with AR, < -2.7
bits [aberrant characteristic] and average heterozygosity < 0.002
[aberrant characteristic]) as the optimal thresholds. Other vari-
ant characteristics, either individually or in combination with
characteristics 1 and 5, had significantly lower concordance with
ClinVar designations (for example, inclusion of tissue specific
expression levels reduced MCC to 0.424, and inclusion of aber-
rant expression patterns based on Veridical results decreased
this to 0.446).

Variants known to be frequent in dbSNP150 (>0.01 average
heterozygosity) are initially partitioned by the algorithm into

allele-specific alternative splicing phenotype, since they are
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A. [ GRCh37 ‘ 11:108214098 G>T m

Or instead: Query by gene or range of coordinates (click to expand) »

Consensus molecular phenotype: LIKELY ABERRANT (1 of 1 case)

view explanation
VARIANT POSITION
Genomic position (g. notation) Gene-centric HGVS notation (c. notation)
chr11:9.108214098G>T LRG_135t1:c.8418G>T; NM_000051.3:¢.8418G>T; NM_138292.3:¢.4374G>T, XM_005271561.1:c.8418G>T;
XM_005271562.1:c.8418G>T; XM_005271563.1:c.8418G>T; XM_005271564.1:¢.7374G>T
SPLICE SITE INFORMATION
Splice Site Coordinate R; Before Mutation @ R; After Mutation @ Fold Change @ Splice Type Site Type
108214099 8.67 ¥ 5.08 -12.07 DONOR NATURAL

VARIANT DATA

Gene rsID (dbSNP150) Average Heterozygosity (dbSNP150)
ATM rs762744146 0.0000
CASES

= TCGA-BH-A1ET (BRCA)

allele-specific alternative likely aberrant aberrant
splicing
view explanation

View TCGA-BH-A1ET metadata (NCI Genomic Data Commons)
Veridical validated this mutation based on 49 reads, each of which contain segments of two exons, skipping the affected exon.
Veridical validated this mutation based on 112 reads each of which either overlap the splice boundary or are wholly contained within an intron.

Evidence Type Cryptic €@ Anti-Cryptic € Exon Skipping € Intron Inclusion @ Intron Inclusion with Mutation €
Junction spanning 0 0 49 (p=0) 4 (p=0.1708) 0
Read Abundance 0 0 0 112 (p=0.0002) 0
Associated IGV Screenshot Tissue-specific Expression Histogram
s
B [ OApIs PIT el PIT  PILITALD | qua mT e enTesd aa C Breast - Mammary Tissue (GTEX) v
108,214,000 bp 108,214,200 bp
e = 100000
SRS I onains gene of inferest
] 10000
E 1000
UNCIO_1128458 b038 <
26.0793.4084.bc¢34 8 | | | | | | | | | | |
“c2ec08931 sorted g g ‘ ‘ | ‘ ‘ ‘ ‘ ‘
ome_signments berr =
| | | | ‘ ‘ ‘ |
10
: 1
= THNYTeenN00e U IR 2RANRTRRRNRARS
. B i e e e eRERARRRNRR
Sequence -
RefSeq Genes o Expression Range - Breast - Mammary Tissue (GTEx) (Transcripts Per Kilcbase Millions)

ATM

Figure 1. Screenshot of ATM:g.108214098G>T Results Provided By ValidSpliceMut Website. (A) At the top of the page, the predicted
molecular phenotype of the mutation for all cases is presented (prediction algorithm is shown in Figure 2). Then, the ‘Variant Position’ heading
displays the variant of interest in g. notation, and provides a link which queries the Mutalyzer API to obtain the variant coordinate in a gene-
centric c. mutation format. Variant-specific and splice site-specific tabular results are presented under the headings “Splice Site Information”
and “Variant Data”. Results are then organized by TCGA and ICGC sample IDs (‘cases’) harboring the mutation within a series of expandable
panels. A link is provided to patient tumor metadata on the GDC data portal. Each panel consists of the molecular phenotype classification
for that particular sample, and the read counts and p-values for each Veridical evidence type. Significant p-values (< 0.05) are highlighted in
bold. Evidence types deemed “strongly corroborating” (Viner et al. 2014) are color coded and correspond to the dynamically generated text
appearing above the table. (B) An integrative genome viewer (IGV) image showing alignment of expressed sequence reads. IGV screenshots
are provided only for mutations present <1% of population (in doSNP 150), with > 5 junction-spanning reads, and are highly significant
(p < 0.01) for cryptic splicing, exon skipping, and/or intron inclusion with mutation. A specific IGV screenshot for this sample captures the
region surrounding the mutation. Here, several RNA-Seq reads show skipping of the affected exon. (C) A dynamically generated histogram
presents expression levels of all genes for a selected normal tissue type. Genes are grouped into bins based on expression level, denoted on
the x-axis. The number of genes present in each bin is shown on the y-axis (log,, scale). The histogram key indicates the expression range
which contains the variant-containing gene (purple). Tissue type can be changed via a drop-down list.
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Avg. heterozygosity

present in
dbSNP150 and >
0.01?

No

A natural splice
No site? Yes

At least 1 strongly
corroborating Veridical
p-value (min. 2 reads) <

0.05?

Rifinal > NEQrest
natural site R;?

Aberrant

At least 2 Veridical p-
values (no min. read
count) < 0.05?

Rifinat > Nearest
natural site R;?

WCme Allele-specific alternative splicing

Ri,final< 0.0? Yes

AR; < -4.0? Yes Aberrant

At least 1 strongly
corroborating Veridical
p-value (min. 2 reads) <

0.005?

At least 1 strongly
corroborating Veridical
p-value (min. 2 reads) <

0.05?

Another Veridical
p-value (no min.
read count) £0.05?

No

NO NO
Allele-specific alternative splicing

Figure 2. Evidence-Based Case Classification Flowchart. Flowchart depicting steps taken to classify the molecular phenotype of each
case. Cryptic site (left) and natural site changes (right) have differing categorization criteria, which involve the combination of information
theory-based predictions and Veridical evidence. SNPs common in dbSNP150 (>0.01 average heterozygosity) are immediately considered

allele-specific alternative splicing.

indistinguishable from germline polymorphisms. Indeed, the
ClinVar database indicates that such variants also present in
ValidSpliceMut were 182-fold more likely to be benign than
pathogenic, in contrast with 3-fold for mutations with <0.01
average heterozygosity. Since variants with benign phenotypes
may also be infrequent (heterozygosity < 0.01), a threshold
AR, value that optimally distinguished benign from pathogenic
natural splice site variants was determined among those also
present in ValidSpliceMut. Variants that decrease natural splice
site strength (AR) by > 4 bits (or 216 fold) nearly completely
exclude all benign variants in ClinVar (< 4.7%). The threshold
is robust, as the percentage of benign variants steeply decreases
from AR, < -1 (44.9%) to AR, < -4 bits (4.7%), then level out with
larger reductions in AR, This criterion prevented many benign

variants from being classified as causing either aberrant or
likely aberrant molecular phenotypes (Figure 2).

Inferred molecular phenotypes in ValidSpliceMut are corrobo-
rated by previously published information theory-based analyses.
Natural splice sites containing variants with modestly decreased
R, values (of < 2 bits) do not detectably alter mRNA splicing™.
Such small changes in R, values have been consistently associ-
ated with benign genetic polymorphisms®’. Conversely, splic-
ing mutations with AR, < -7 bits result in severe phenotypes in
inherited disorders®”°. Activated cryptic splice sites that result in
novel mRNA isoforms exhibit R, values competitive with adja-
cent natural splice sites of the same polarity®’. Exonic cryptic
splice sites are more likely to be classified as either aberrant or
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likely aberrant than intronic cryptic sites. Exon recognition by
spliceosomes is directional and processive from the natural accep-
tor splice site to the first downstream donor site with suitable
strength to form an exon, and would therefore favor exonic cryp-
tic site use’. Acceptor cryptic sites that overlap with these cog-
nate natural sites can also impair exon recognition’”’, inducing
exon skipping’*’ and/or intron inclusion™*’.

After partitioning variants based on heterozygosity and AR,
values, the algorithm applies supporting Veridical evidence types
to molecular phenotype assignments. Evidence for aberrant splic-
ing deemed “strongly corroborating” (for example, junction
read types) is weighted more heavily than other evidence types’,
thus, an “aberrant” or “likely aberrant” classification is more
likely in the presence of a strongly corroborating evidence type
with p -value < 0.05. Multiple Veridical evidence types (at least
one of which is required to be strongly corroborating) with
p-values < 0.05, or the presence of a strongly corroborating
evidence type with < 0.005, reinforces a Veridical prediction
of aberrant splicing.

When displaying the predicted molecular phenotype classi-
fication for each case, the classifications of other splice sites
affected by the same variant in the same tumour type are also
examined. If any of these other sites cause a case to be classi-
fied as aberrant, all sites affected by this variant are uniformly
classified as aberrant. Reclassification affected a minor fraction
of variants in ValidSpliceMut. Slightly over 10-fold more of the
reclassified variants were upgraded from likely aberrant to aber-
rant compared to variants reclassified allele-specific to aberrant,
where n=30,733 [11% of all aberrant cases] were reclassified as
aberrant from likely aberrant, while n=3,026 [1% of aberrant
cases] were reclassified from allele-specific alternative splicing.
The majority of reclassified mutations affect cryptic sites, relative
to natural site-altering mutations (11.3% and 0.7% of all aberrant
cases, respectively). In the event reclassification has occurred,
this is denoted below the classification evidence bar associated
with the case.

Although individual cases are assigned according to their dis-
tinct molecular phenotypes, there are many combinations of
evidence types which can lead to the same phenotypic assignment.
During classification, all evidence types are calculated first, then
the algorithm applies a series of rules are applied to arrive at an
unambiguous classification of each case. This is depicted with
a contiguous evidence bar (shown in Figure 1), which linearly
arranges the classifications of each variant according to phenotypic
severity of the effect on mRNA splicing. The evidence bar is con-
structed using a point-based system which considers all sources
of evidence pertaining to the type of splice site affected by the
variant. The position of the bar within a phenotypic classification
reflects the balance between evidence supporting and contrast-
ing the assigned classification. Supporting evidence moves the
bar to the right, while contrasting evidence moves the bar to the
left within a classification category. Equal levels of supporting
and contrasting evidence types will cause the evidence bar to
appear in the middle of the classification category.

F1000Research 2019, 7:1908 Last updated: 28 OCT 2019

After classifying all cases containing the specified variant
(regardless of tumour type), the most frequent classification
among all cases, termed the consensus molecular phenotype,
is summarized and displayed at the top of the Results page
(example in Figure 1). Adjacent to the consensus molecular phe-
notype, the number of cases assigned the most common classifi-
cation is indicated alongside the total number of cases. Multiple
consensus phenotypes are presented if there is an identical
number of cases in each of the classification categories.

To generate IGV images presented on the webpage, a bash
script was written to automatically load the RNA-Seq BAM file
of a patient with a mutation of interest into IGV, set the viewing
window within the region of interest (300nt window, centered
on the variant), sorted to bring reads containing the variant of
interest to the top of the screen (to increase chance of visualiz-
ing mutant splice form), followed by a screen capture. The gen-
eration and storage of IGV images for all patient-mutation pairs
would be prohibitive due to limitations in time and server space
requirements. Therefore IGV images showing evidence of splic-
ing abnormalities were generated only for patient-mutation
pairs which met the most stringent criteria: the mutation was
required to be flagged for junction-spanning cryptic site use, exon
skipping, or intron inclusion (with mutation); the flagged category
must include 5 or more reads in this category; if the variant is
present in the dbSNP database (release 150), the frequency was
required to be < 1% of the population; and the Veridical results,
in which the mutations flagged were required to exhibit p < 0.01
for at least one form of evidence of a splicing abnormality. In
some cases, the splicing event observed by Veridical may not be
present (or displayed in its entirety) within the image window as
the automated procedure used to create these images does
not present all evidential sequence reads due to limitations on
the number of reads that can be shown. Additionally, reads
appearing as exon skipping may instead indicate a pre-existing
cryptic site outside of the viewing window (for examples, see
Table 2; FATI:g.187521515C>A [c.11641-1G>T] and SMAD3:
2.67482748C>G [c.1155-3C>G]).

Dataset validation and discussion

We have derived a GA4GH-standardized searchable resource
for a large set of validated mRNA splicing mutations present in
diverse tumor types. All variants passing QC in TCGA and ICGC
cancer patients were analyzed with the Shannon pipeline'’. This
revealed that 1,094,749 variants were predicted to have sig-
nificant impacts on normal mRNA splicing (380,852 natural
and 752,472 cryptic splice sites; 38,575 affecting both types).
Subsequent RNA-Seq analysis with Veridical* provided evidence
of abnormal gene expression specifically associated with a subset
of these variant(s), identifying 341,486 unique mutations.

The molecular phenotype of each case containing a variant is
classified in the ValidSpliceMut database and these results are
collated for multiple tumors as the consensus phenotype. The
molecular phenotype algorithm for Veridical-flagged natural
splice site mutations finds 34.7% (87,382) of cases are classified
as ‘aberrant’ mRNA isoforms, while 35.3% (88,993) and 30.0%
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Table 2. Representative Validated Splicing Mutations in COSMIC Cancer Gene Census genes.

Gene

CASCS

DNMT3A

STAG2

STAG2

ATM

BARD1

GATA3

TP53

POLD1

SMAD3

PIK3R1

FATH

TGFBR2

PBRM1

PBRM1

SETD2

RB1

RBM10

Splice Mutation
15:40942786G>A
(c.6212+5G>A)

2:25467022A>G
(c.1851+2T>C)

X:123176495G>A
(c.462G>A)
X:123200024G>A
(c.2097-1G>A)

11:108214098G>T
(c.8418G>T)

2:215645882A>T
(c.716T>A)

10:8115701G>C
(c.1048-1G>C)

17:7577609C>T
(c.673-1G>A)

19:50920353A>G
(c.3119A>G)

15:67482748C>G
(c.1155-3C>Q)

5:67591246A>G
(c.936-2A>G)

4:187521515C>A
(c.11641-1G>T)

3:30729875G>A
(c.1397-1G>A)

3:52682355C>G
(c.813+5G>C)

3:52685756A>G
(c.714+2T>C)

3:47079269T>A
(c.7239-2A>T)

13:49027249T>A
(c.1814+2T>A)

X:47006900G>T
(c.17+3G>T)

R(bits)

48 >17
(Natural Site)

3.6 >-3.5
(Natural Site)

6.5>35
(Natural Site)

19.5>8.6
(Natural Site)

8.7>5.1
(Natural Site)

0.9> 3.1
(Cryptic Site)

09>-10.7
(Natural Site)

6.0 >-4.9
(Natural Site)

8.6>6.1
(Natural Site)

119 >3.1|¢1,0 >7.7
(Natural
Cryptic)

75>-7.3
(Natural Site)

53>-24
(Natural Site)

8.4>-25
(Natural Site)

6.8>29
(Natural Site)

7.7>07
(Natural Site)

9.8>21/6.4>90
(Natural
Cryptic)

4.9 >-13.7
(Natural Site)

7.8>4.1
(Natural Site)

Tumor

AML

AML

BLCA

BLCA

BRCA

BRCA

BRCA

BRCA

COAD

COAD

GBM

HNSC

HNSC

KIRC

KIRC

KIRC

LUAD

LUAD

Observed Splicing Event

The natural donor site of CASC5 exon 19 (NM_144508.4) is weakened,
leading to a significant increase in intron inclusion.

The natural donor site of DNMT3A exon 15 (NM_022552.4) is abolished,
resulting in a significant increase in total exon skipping and intron
inclusion.

The natural donor of STAG2 exon 6 (NM_006603.4) is weakened, and a
significant amount of exon 6 skipping is observed.

The natural acceptor of STAG2 exon 21 (NM_006603.4) is weakened,
resulting in a significant increase in exon 21 skipping.

A natural donor site is weakened, leading to a significant increase in
ATM exon 57 (NM_000051.3) skipping events. Some reads with mutation
depict wildtype, leaky splicing.

The mutation strengthens a cryptic site within BARD1 exon 4
(NM_000465.2). Reads which use this activated cryptic site contain the
mutation (one exception). Some reads with mutation depict wildtype,
leaky splicing.

The mutation abolishes the natural acceptor of GATA3 exon 6
(NM_002051.2). This both increases the use of a pre-existing exonic
cryptic splice site (4.2 > 5.6 bits; leads to an 8nt deletion) and
significantly increases overall intron inclusion.

A natural acceptor site is abolished, activating a cryptic site 49nt
upstream (R=5.2 bits) of TP53 exon 7 (NM_000546.5).

The natural donor of POLD1 exon 25 (NM_002691.3) is weakened,
leading to a significant increase in overall exon skipping.

This mutation weakens the natural acceptor of SMAD3 exon 9
(NM_005902.3) and predicts a cryptic site that does not appear to
be used. A significant number of intron inclusion reads are observed.
A distant pre-existing cryptic acceptor (9.6 bits; 3,598nt from natural
acceptor) was used in multiple reads.

The natural acceptor of PIK3R1 exon 8 (NM_181504.3) is abolished,
which promotes a significant increase in exon 8 skipping.

The natural acceptor of FATT exon 22 (NM_005245.3) is abolished,
resulting in both intron inclusion (overall intron inclusion and the use of
a 2.3 bit cryptic site 82nt upstream of natural acceptor) and use of two

exonic cryptic sites (237nt and 234nt from the natural acceptor;
R,=1.0 bits and -0.2 bits, respectively).

TGFBR2 exon 6 natural acceptor (NM_003242.5) is abolished, leading
to multiple splicing events: intron inclusion, use of three cryptic sites
(85nt exonic [R=3.7 bits], 30nt and 972nt intronic [R=0.4 bits and
11.2 bits, respectively]), and exon 6 and 7 skipping (activates a novel
pseudo exon ~55kb downstream of exon 7).

The natural donor of PBRM1 exon 8 (NM_0183183.4) is weakened, which
leads to a significant increase in exon 8 skipping.

The natural donor of PBRM1 exon 7 (NM_018313.4) is abolished,
resulting in a significant increase in exon skipping.

This mutation both significantly weakens the natural acceptor of SETD2
exon 18 (NM_014159.6) while strengthening a 4nt exonic cryptic site,
which is used.

The natural donor of RB7 exon 18 (NM_000321.2) is abolished, leading
to a significant increase in both exon skipping and intron inclusion. All
intron inclusion reads contain the mutation of interest.

The natural donor of RBM10 exon 2 (NM_005676.4) is weakened,
leading to a significant increase in exon 2 skipping.
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https://validsplicemut.cytognomix.com/view.php?targets=179242
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https://validsplicemut.cytognomix.com/view.php?targets=57714&referenceName=13&alternateBases=A&start=49027249&referenceBases=T&assemblyId=GRCh37&includeDatasetResponses=HIT
https://validsplicemut.cytognomix.com/view.php?targets=55844&referenceName=X&alternateBases=T&start=47006900&referenceBases=G&assemblyId=GRCh37&includeDatasetResponses=HIT
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Gene Splice Mutation R(bits) Tumor Observed Splicing Event
RBM10 exon 3 (NM_005676.4) natural donor is abolished. Reads

RBM10 X:47028898G>T 8.7>-99 LUAD which overlap the exon-intron junction are observed (all reads contain
(c.201+1G>T) (Natural Site) mutation). Use of cryptic donor (61nt upstream of donor; R=1.7 bits) is
observed as well.
; _ The mutation creates a 5.4 bit cryptic donor within DDX5 exon 4
DDX5 ‘7('52‘15[1%02‘9&&8?8)” (CJ '3ti>o%§e) PRAD  (NM_004396.3), which would lead to a 4nt deletion of exon 4. Note that
: yp wildtype splicing is still the dominant isoform observed.
PTEN 10:89690802G>A 85>-23 PRAD The natural acceptor of PTEN exon 5 (NM_000314.4) is abolished,
(c.210-1G>A) (Natural Site) leading to an increased amount of exon 5 skipping.
NRAS 1:115258669A>G 8.1>1.1 SKCM The mutation abolishes the natural donor of NRAS exon 2
(c.111+2T>C) (Natural Site) (NM_002524.4), which promotes a significant increase in exon 2 skipping.
The mutation weakens PPP6C exon 2 (NM_002721.4) natural donor,
PPPEC 9:127933364C>T 6.7 >3.7 SKCM leading to increased intron inclusion. All reads which cross the splice
(c.171G>A) (Natural Site) junction contain the mutation. An intronic cryptic site is also activated
(110nt downstream; R=6.4 bits).
PPPEC 9:127923119C>G 6.8>-11.8 SKCM This mutation abolishes the natural donor of PPP6C exon 3
(c.237+1G>C) (Natural Site) (NM_002721.4), resulting in a significant increase in exon 3 skipping.
) A pre-existing cryptic donor within BAP7 exon 4 (NM_004656.3) is
3:52442512T>C 1.9>5.1 ! o . . ) -
BAP1 (c.233A>G) (Cryptic Site) UVM strengthened, leading to a significant increase in its use. This mutation

leads to a 27 nt deletion in the mutated exon 4 mRNA.

Example mutations which alter splicing in tumor-associated genes found in patients with these tumor types. Mutations are hyperlinked to their ValidSpliceMut
Beacon page, which provides additional material such as IGV images of the RNASeq evidence for the regions of interest. GRCh37 coordinates are indicated

(75,588) are deemed ‘likely aberrant’ and ‘allele-specific alterna- splicing mutations (n=32). The 3,311 novel or rare variants from
tive splicing’, respectively. For cryptic site activating mutations, TCGA patients that we report specifically activate abnormal
28.7% (158,011) of cases were designated ‘aberrantly spliced’, cryptic splicing (significant ‘junction-spanning cryptic site use’

26.6% (146,520) as ‘likely aberrant’, and 44.7% (246,207) as reads found by Veridical). This exceeds the number reported in
‘allele-specific alternative splicing’. Cases associated with natural cited study that analyzed all available TCGA tumor transcrip-
site mutations are more likely to be classified as ‘aberrant” when tomes (n=1,914)". When ICGC datasets were included, a total
compared with cryptic splice site changes, due to the number of  of 3,650 variants were found to activate cryptic splicing. Com-
potential isoforms that could be generated by cryptic splicing paring the validated cryptic splicing mutations we found with

mutations. Activation of cryptic sites or exon skipping is con- this previous report™, 1,176 variants fulfilled our IT-based filter-
strained by the relative strengths and locations of the cryptic ing criteria for constitutive splicing mutations. Veridical validated
versus their cognate natural sites®’. mRNA splicing effects for 824 of these variants (70.1%). The

remaining 738 variants were reanalyzed for changes within the
The vast majority of variant classifications of cases, when  binding sites of regulatory splicing factors (SRF) that might
present in multiple tumors, are highly consistent across the same affect normal mRNA processing. Together, including the effects
and distinct cancer types (Dataset 2)**. Nearly 75% of all muta- ~ on constitutive splicing, IT analysis of SRFs (SRSF1, SRSF2,
tions found in two or more tissues had a consistent molecular ~ SRSF5, SRSF6, hnRNPAI, ELAVLI, PTB and TIAI) cumu-
phenotype between >92% of samples with said mutation. The latively identified changes in binding strength in 1746 (91.2%)
high proportion of samples with consistent molecular pheno- sites affected by these variants.
types across samples remains true when considering muta-
tions that occur more frequently in ValidSpliceMut. For  Veridical validated splicing variants, which we define as muta-
example, 77% of the variants present in >10 distinct tumor types tions, were also tallied by tumor tissue type (Table 1). 38.5% of
have the same molecular phenotype across 94% of patients unique mutations in TCGA (n=131,347) significantly weaken
with said mutation. The consistency of molecular phenotypes natural splice sites, while 65.0% (n=222,071) strengthen novel
of natural and cryptic splicing mutations suggest pleiotropy for or pre-existing cryptic sites. 238,570 of these mutations (69.9%)

this mutation category across multiple neoplastic tissues. Thus, are absent from dbSNP 150. 72,615 mutations (21.3%) are rare
the effects of splicing mutations on mRNA detected in one can- (found in <1% of the population), of which 28,812 (and those
cer diagnosis will likely be similar to those found in other not present in dbSNP) were detected in multiple tumor types
tumour types. and cases. Valid mutations lacking rsIDs, by definition, repre-

sent either novel or recently observed variants. This low level of
Our results contrast with an earlier TCGA study that investigated =~ dbSNP saturation in TCGA is consistent with the possibility that
alternative mRNA splicing” and demonstrated a limited set of ~ many currently unknown mRNA splicing mutations may yet
non-constitutive exon-exon junctions attributable to cis-acting be discovered through additional sequencing studies.
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The ValidSpliceMut database consists of variants from both
TCGA and ICGC, however the vast majority of variants were
sourced from TCGA (329,758 of 341,597 flagged, unique vari-
ants were found only in TCGA patients; 96.5%). This had been
expected, as the ICGC datasets were smaller (492 patients with
available RNAseq data analyzed across 7 tumor types). There
were 7,380 Veridical-flagged ICGC variants that were absent
from TCGA patients; 4,459 variants were flagged in both TCGA
and ICGC datasets (of which, 287 were not found in dbSNP
150). To evaluate the frequency of flagged TCGA and ICGC vari-
ants, we compared those shared between the two datasets that
met SP criteria (n=9,485). We computed that for, a meaningful
comparison (with 95% confidence interval [CI]), at least 9 ICGC
and 24 TCGA patients should possess the shared mutation (typi-
cally, these correspond to common SNPs) and 1,379 shared
variants met this criteria. We determined that on average, a
higher average proportion of ICGC patients with shared muta-
tions were flagged by Veridical compared to the TCGA cohort
(Figure 3). We observed that a higher fraction of SP-flagged vari-
ants are natural splice site alterations in the ICGC dataset com-
pared to TCGA (49.7% to 38.3% of total SP-flagged variants,
respectively), with fewer affecting cryptic sites (50.7% to 65.3%,
respectively). A similar fraction of these sites were predicted to
abolish natural splicing (16.8% ICGC and 14.4% TCGA of total
SP-flagged variants). A higher percentage of ICGC variants
compared to TCGA were confirmed with Veridical (49.1% to
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Figure 3. Census of Recurrent Splicing Mutations Present in
Multiple ICGC and TCGA Patients. Predicted splicing mutations
present in multiple tumors from the same dataset that cause splicing
abnormalities were analyzed to determine validation rates, since such
variants were less subject to technical artifacts, such as sequencing
errors. Violin plots indicate the distributions of the fraction of predicted
and validated splicing mutations present in multiple patients relative
to the total number of tumours carrying those mutations in the TCGA
and ICGA datasets. To achieve statistical significance (95% C.1.),
distributions of 1,379 validated variants shared by both datasets and
present in at least 9 ICGC (left) and 24 TCGA (right) patients were
compared. A higher overall proportion of mutations are validated in
the ICGC dataset (average of 38.6% for ICGC and 27.8% for TCGA).
The dashed lines in each plot indicate the median (middle line), the
upper and lower quartiles of the mutation fractions.
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30.9%, respectively), which may possibly be due to higher
overall coverage in these regions in the RNAseq results for ICGC
relative to TCGA. Interestingly, the fractions of novel vari-
ants i.e. not recorded in dbSNP, between TCGA and ICGC are
inconsistent (70.0% vs. 42.4%, respectively). We speculate that
this may be related to differences in sequence coverage, since
TCGA variants were identified from a mixture of whole genome
(WGS) and exomes'®, while ICGC variants were exclusively
derived by WGS.

To assess the predictive accuracy of SP, we also analyzed an inde-
pendent set of experimentally-validated splicing mutations that
altered exon definition (1,050 variants), originally sourced from
the Genome Aggregation Database; gnomAD? and validated
with a high throughput, multiplexed splicing minigene reporter
assay”. Significant changes in constitutive splice site and/or
(= 3 bit) SRF binding site strengths were found with SP for 1017
of these 1050 mutations (96.9%). Based on changes at constitu-
tive splice sites alone, 447 variants were flagged (435 weaken
natural sites, and 14 strengthen cryptic sites exceeding that of
the most proximate natural splice site of the same polarity).

In Table 2, we highlight a representative subset of validated
splicing mutations which were identified in known driver genes
implicated in the COSMIC (Catalogue Of Somatic Mutations
In Cancer) Cancer Gene Census catalog (CGC)*. In total, 543
‘Tier 17 CGC genes exhibited at least one Veridical-flagged vari-
ant present in the ValidSpliceMut database. These mutations were
associated with either increased exon skipping, intron inclusion,
and/or cryptic site use. Mutations in Table 2 are hyperlinked to
their corresponding ValidSpliceMut webpage, which provides
additional information, including specific expression evidence
for each of the tumors in the database that support predictions
made by SP.

Many mutations generated multiple types of abnormal read evi-
dence present in mis-spliced transcripts. Interestingly, a subset
of TCGA mutations (n=33) produced evidence for every type of
abnormal splicing reported by Veridical. Dataset 3** (see Data
Availability) describes 11 representative mutations that simul-
taneously increase exon skipping, intron inclusion, and acti-
vate (or significantly increase use of) a strengthened cryptic site.
In all but one instance, the mutation weakens the natural site,
while simultaneously strengthening an adjacent cryptic site.
The only exception involves the gene SAP30BP, where simul-
taneously occurring mutations in the same read (in linkage
disequilibrium; separated by 4 nucleotides) independently cause
two separate splicing changes: g.73702087G>A (c.661-1G>A;
abolishes the natural acceptor of exon 10) and g.73702091G>A
(c.664G>A; creates a weak cryptic acceptor site). The com-
bined splicing impact of these variants is significant exon
skipping, intron inclusion, and use of the activated cryptic site.

While ValidSpliceMut was designed to find evidence of vari-
ant-directed aberrant splicing, some variants with significant
IT changes in splice sites are also associated with naturally-
occurring, alternative splicing in controls. These are indicated
by Veridical as non-wildtype splice junction reads in the index
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case that are not flagged as significantly different from controls
(p-value = 0.05). The relatively higher frequencies of these read
in control samples is consistent with alternative mRNA splic-
ing. The presence of the splicing mutation could theoretically
alter the abundance of alternatively spliced isoforms. However,
without evidence that disruption of the balance between
constitutive and alternative forms would be deleterious, such
variants are considered to exhibit a benign or likely benign
molecular phenotype. The pre-filtered Veridical output was ana-
lyzed to identify variants that did not meet our p-value threshold
to support validation of splicing mutation. We applied increasingly
stringent thresholds to the average levels of alternative splicing in
controls to identify alternatively spliced exons masquerading as
predicted splicing mutations (Table 3). A higher average number
of reads in controls indicates that the alternative splicing events
are more common in the control samples. Variants within the
dinucleotides of intronic sequences at exon-intron boundaries
have frequently been assumed to be pathogenic, and this analysis
identifies those variants where this assumption may be incorrect.
As expected, the most common alternative splicing events mas-
querading as splicing mutations were associated with exons that
are commonly skipped or have reads which cross the exon-intron
boundary (Table 3). The ‘junction-spanning cryptic splice site
use’ evidence type can only be computed as insignificant when
the cryptic site is active in control samples. In all cases where this
occurred (N=688), the cryptic site was functional in the wildtype
sequence (RLMGI > 1.6 bits [R[,/n[117])' These variants represent
another type of alternately spliced mRNA via junction-spanning
cryptic and exon skipping reads (average of >1 read per con-
trol), distinct from those in ValidSpliceMut, which have a simi-
lar classification, but does not explicitly determine read counts in
control samples.

This resource presents a set of splicing abnormalities in which
we have the highest confidence because expression validation
is required. We anticipate that some correct predictions of the
Shannon pipeline may have not been validated by Veridical due
to the limitations of mRNA detection; for example, either low
expression of the gene harboring the mutation or nonsense-
mediated decay of the corresponding transcript could be
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consistent with the effects of a valid splicing mutation, but in the
absence of a sufficient number of abnormal reads, the mutation
could not be confirmed. Indeed, expression of genes in tumours
with validated splicing mutations exhibited greater overall gene
expression than in other variants that were not validated in the same
gene. The overall difference in gene expression between these
two variant groups was statistically significant for 69.3% of
genes based on the Student’s t-test (90% C.1.). Furthermore, over-
all gene expression in the group with Veridical-flagged variants
exceeded the non-flagged group for nearly all other genes (99.7%).
Differences between expression levels of Veridical-validated
splicing mutations and other predicted mutations suggests the
possibility that unverified SP predictions may arise from lack of or
low levels of gene expression of the genes containing this subset
of variants.

The original SP version that processed most of the TCGA data
did not report regulatory splicing variants which influence exon
definition. The Automated Splice Site and Exon Definition Analy-
sis (ASSEDA) server” analyzes individual variants for regulatory
and constitutive IT changes. Due to time constraints, it was
not feasible to perform a reanalysis with the upgraded SP of the
entire set of ~209 million unique variants present in the TCGA
and ICGC datasets. However, the SP upgrade did verify improve-
ments in detection of both constitutive and regulatory splic-
ing mutations using the set of validated mutations reported
in a recent study”. This version of SP (available through our
MutationForecaster system) is capable of predicting muta-
tions in splicing regulatory sequences at higher throughput than
ASSEDA and, like ASSEDA, accounts for relative abundance of
mRNA isoforms by exon definition.

The Validated Splicing Mutation resource should significantly
contribute to reducing the number of outstanding VUS in tumor
(and possibly some germline) genomes, and substantially increases
the number of functional variants with previously unappreci-
ated consequences to mRNA splicing, in particular, those which
activate cryptic splice sites. In our earlier study”’, a subset of
the TCGA breast cancer patient data was evaluated with
IT-based tools, identifying 988 mutations as significantly altering

Table 3. Number of Unique Variants with Significant R, Changes in Index Samples that also

Exhibit Alternative Splicing in Controls*.

Average Number of Reads per Set of
Control Samples’:

Type of Junction-Spanning mRNA Read Evidence >5 >3 >1 >0

Cryptic Splice Site Use”
Exon Skipping Reads”
Intron Inclusion”

Intron Inclusion with Variant Present”

313 392 563 688
14,937 19,296 29,605 39,658
232,276 303,256 433,881 507,609
5,150 7,831 14,528 22,913

! Standard deviation of control sample read average vary significantly between each variant. In some cases, a
significant proportion of control samples will not have the read-type of interest despite a high average.

2 Includes variants that were not flagged by Veridical
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normal splicing by Veridical (19% of total mutations flagged by
IT). This database greatly expands the size of the repository. Here,
a higher ratio of rare or novel mutations have been validated
by Veridical (31% of total mutations were flagged by IT). The
higher yields seen here could be related to mutations present
in multiple samples from the same tumor type and other tumor
tissues, which would be expected to increase the probability
of observing abnormally expressed splice forms for the same
mutation.

bioRxiv
An earlier version this article is available from bioRxiv: https://doi.
org/10.1101/474452%

Software availability
Archived code and scripts used as part of this study are available:

Zenodo: Validated Splicing Mutations Beacon API https://doi.
org/10.5281/zenodo.1579898*

Zenodo: Validated Splicing Mutations Website
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the fraction of molecular phenotype classifications which are
consistent among all cases for variants found in at least 2, 3, 5,
10, 15, and 20 different tissue types. DOI: https://doi.org/10.5281/
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Zenodo: Dataset 3. Mutations which lead to multiple types of
aberrant splicing. Representative set of mutations which sig-
nificantly alter splicing in all evidence types analyzed by Veridi-
cal (i.e. cryptic splice site use, exon skipping, intron inclusion).
Mutations are linked to their page on https://validsplicemut.
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I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 30 May 2019

https://doi.org/10.5256/f1000research.20308.r47751

© 2019 Pijnappel W. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

?  W.W.M. Pim Pijnappel

Department of Pediatrics, Erasmus University Medical Center (Erasmus MC), Rotterdam, The
Netherlands
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The manuscript by the Rogan group potentially provides an interesting resource. | would like to suggest to
make it more accessible for the user, because in its current form it is very difficult to judge how reliable
and strong the splicing predictions and RNAseq data in reality are. Our lab has checked some variants
that are know to affect splicing, and it is very difficult to judge how this resource rates these. For example,
Ri before and after mutation are difficult to interpret, it is unclear from this manuscript what these values in
practice mean. The text in figure 1 that describes the reads under individuals (bottom of A) does not
always correspond to the IGV screenhot in B. It is also unclear what figure C actually shows. The term
anti-cryptic has not been defined. It is also not clear to me to what extent the predictions were confirmed
for the entire set and whether certain types of predictions were more accurate than others. The resource
may be very valuable, | would recommend to make it more accessible and understandable for the
biological and diagnostic researcher, who could greatly benefit from it.

Is the rationale for creating the dataset(s) clearly described?
Partly

Are the protocols appropriate and is the work technically sound?
Partly

Are sufficient details of methods and materials provided to allow replication by others?
Partly

Are the datasets clearly presented in a useable and accessible format?
Partly

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Splicing

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however | have significant
reservations, as outlined above.

Peter Rogan, University of Western Ontario, London, Canada

Authors: We are grateful to the reviewer for these insightful comments, which we addressed below,
in the manuscript and the ValidSpliceMut database.

Reviewer: The manuscript by the Rogan group potentially provides an interesting resource. | would
like to suggest to make it more accessible for the user, because in its current form it is very difficult
to judge how reliable and strong the splicing predictions and RNAseq data in reality are.

Response: To make this information more accessible to the user, we have made the following
changes to the main text and to the ValidSpliceMut resource:
® Added a sentence which defines R; (see the next point)
® Added a “fold change” field to ValidSpliceMut, so users can understand how an information
(R;) change is related to splice site binding strength (originally defined in reference #9).
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® Added a Glossary of terms to ValidSpliceMut containing all information theory-based terms
(R;, natural splicing) and Veridical terms (i.e. junction spanning, read abundance, etc) on the
website, which were originally defined in the primary publication describing this algorithm
and software (Viner et al., 2014).
The publication of the ACMG/AMP guidelines for interpretation of gene variants has accustomed
users to simplified categorical characterizations, which has simplified clinical reporting. It should be
recognized that a surprising number of variants in these databases have been reclassified recently,
due to discordant interpretations and depositing of additional cases in ClinVar and other
databases.
We have developed an algorithm which classifies the molecular phenotypes of the variants
reported in our database. Note that we do not attempt to perform clinical classification, since the
variants we analyzed cannot be definitively causatively linked to the cancer phenotypes of the
tumours from which they were derived. Our algorithm performs evidence-based case classification
(view additional Methods and the Figure 2 flowchart for details), with thresholds/cutoffs calibrated
to the phenotypes reported in ClinVar database shared by ValidSpliceMut. There are three
categories: ‘aberrant’, ‘likely aberrant’, or ‘allele-specific alternative splicing’. This system is
described in the manuscript in the ‘Methods’ section, and a categorical analysis of these
classifications (i.e. proportion of natural site changes categorized as “aberrant”) are reported in the
‘Dataset validation and discussion’ section. We’ve updated Figure 1 to display the classification
results using the same variant example in ValidSpliceMut that was shown in previous versions of
this article.

In this version of the manuscript, we also have added an additional analysis of the control
population gene expression in which alternate splicing was evident at the site of the mutation
(however, these exomes lacked the variant itself). This involved the analysis of variants that did not
pass Veridical-based filtering steps (i.e. were not statistically significant). This analysis (presented
in the ‘Dataset validation and discussion’ section) was performed completely independently of the
previously described, splicing molecular phenotype classification algorithm.

Reviewer: Our lab has checked some variants that are know to affect splicing, and it is very
difficult to judge how this resource rates these. For example, Ri before and after mutation are
difficult to interpret, it is unclear from this manuscript what these values in practice mean.

Response: We had not defined R; here, as it had been described in our prior publications which are
cited. However, for completeness, we have added the following statement in the main manuscript:
“R; is a measure of binding site strength; it is related to affinity through the second law of
thermodynamics and is measured in bits (a glossary of IT and Veridical terms can be found here).
According to Shannon information theory, only sites with R; values exceeding zero bits can be
bound. The minimum fold change in affinity is exponentially related to the difference in R; values of
wild type and mutant binding sites (= 22A/). For example, a 3 bit change would result in at least an
8-fold change in binding affinity.”

A glossary of terms to ValidSpliceMut has been included in the current version of the database to
assist users in better understand the results of their queries. We also hyperlink to this glossary in
the manuscript, where it is first mentioned.

Reviewer: The text in figure 1 that describes the reads under individuals (bottom of A) does not

Page 17 of 29


https://validsplicemut.cytognomix.com/glossary.php

FIOOOResearch F1000Research 2019, 7:1908 Last updated: 28 OCT 2019

always correspond to the IGV screenshot in B.

Response: This discrepancy is due to a limitation on the number of reads which IGV can display at
one time. This issue is most prevalent in regions of high coverage. While this is described in the
main text, this explanation is given in the context of explaining why some IGV images may not
display the splicing event at all.

“In some cases, the splicing event observed by Veridical may not be present within the image
window as the automated procedure used to create these images does not present all evidential
sequence reads due to limitations on the number of reads that are shown.”

This text has been edited to handle both instances where the IGV images is incomplete or absent:

“In some cases, the splicing event observed by Veridical may not be present (or displayed in its
entirety) within the image window as the automated procedure used to create these images does
not present all evidential sequence reads due to limitations on the number of reads that are
shown.”

There are also cases where the user may observe more skipping reads than stated by Veridical.
As mentioned in the manuscript, IGV images may include reads that appear to be exon skipping
but are, in fact, activating cryptic splice site outside of the window range displayed. Although not
explicitly mentioned, these false skipping reads could instead arise either from an alternate splice
form that skips multiple exons or could be reads for a completely different gene overlapping the
region. In these cases, Veridical will properly count only the reads skipping the exon of interest.

Reviewer It is also unclear what figure C actually shows.

Response: The Tissue-specific Expression Histogram (Figure 1C) was included on ValidSpliceMut
to allow the user to quickly determine the relative expression of variant-containing gene relative to
the overall gene expression corresponding to the normal tissue from which the tumour was
derived. Expression levels are binned relative to all genes in the original dataset, and the bin
containing the variant-containing gene is highlighted. This figure is relevant because the natural
level of expressed at very low levels in a particular tumor type (or control tissue) may limit the
number of reads observed, even if no mutation were present. A low basal level of expression
impacts the confidence interval of the p-value reported by Veridical. The diagram in Figure 1C, for
example, shows that ATM has a TPM (transcripts per kilobase millions) between 8-9 in mammary
tissue (marked in purple; data from GTeX), and that this particular range of expression is low to
moderate compared to the rest of the breast transcriptome.

We have made slight adjustments to the Figure Legend:

“C) A dynamically generated histogram presents expression levels of all genes for a selected
normal tissue type. Genes are grouped into bins based on expression level, denoted on the x-axis.
The number of genes present in each bin is shown on the y-axis (log ¢, scale). The histogram key
indicates the expression range which contains the variant-containing gene_(purple). Tissue
type can be changed via a drop-down list.”

Reviewer: The term anti-cryptic has not been defined.
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Response: As this is a Data Note, we did not want to overexplain aspects of the Veridical software
that had already been described elsewhere. As mentioned above, the manuscript cites the original
Veridical paper (Viner et al., 2014), which defines this term:
®  Cryptic site use/anti cryptic site use: “Equivalent to: cryptic corroborating / non-cryptic
corroborating reads”
®  Cryptic corroborating reads: "Reads occurring within the expected region for cryptic splicing
to occurring (i.e. spliced-in regions). This region is between the variant splice site location
and the adjacent (direction dependent) splice junction."
® Non-cryptic corroborating reads: "Also termed "anti-cryptic" reads. Not within the
expected region, but still within the portion that would be expected to be spliced
out, had cryptic splicing occurred."
We also note that the Information icons (i) found next to each Veridical evidence-type in
ValidSpliceMut direct the user to Viner et al. which define these terms. Finally, these terms are
indicated in the aforementioned glossary on the ValidSpliceMut website.

Reviewer: It is also not clear to me to what extent the predictions were confirmed for the entire set
and whether certain types of predictions were more accurate than others.

Response: In general, lower p-values indicate a high likelihood that the frequency of aberrant
splicing reads is caused by the variant. A lower p-value means higher confidence, as would a
higher total number of aberrant splicing reads used to compute said p-value. While we provide
p-values for all evidence types examined by Veridical, Viner et al. (2014) suggests that
junction-spanning cryptic site use, exon skipping, intron inclusion (with mutation) and
read-abundance intron inclusion are the most powerful evidence of variant-directed, aberrant
splicing:

“Not surprisingly, we have found that junction-spanning reads have the greatest value for
corroborating cryptic splicing and exon skipping. Even a single such read is almost always
sufficient to merit the validation of a variant, provided that sufficient control samples are used. For
intron inclusion, both junction-spanning and read-abundance-based reads are useful, and a variant
can readily be validated with either, provided that the variant-containing experimental sample(s)
show a statistically significant increase in the presence of either form of intron inclusion
corroborating reads.”

Reviewer: The resource may be very valuable, | would recommend to make it more accessible and
understandable for the biological and diagnostic researcher, who could greatly benefit from it.

Response: Thank you. We hope the improvements that we have incorporated in the article and the
website have made the resource easier to understand and use.

Competing Interests: PKR cofounded and BCS is an employee of CytoGnomix Inc., which hosts
the interactive webpage described in this study. CytoGnomix markets subscriptions to and
services based on the software that generated the ValidSpliceMut database. EJM has no conflict
of interest.
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Reviewer Report 21 March 2019

https://doi.org/10.5256/f1000research.20308.r45974

© 2019 Buratti E. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

v

Emanuele Buratti
International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy

| approve the amendments from Version 1.

Is the rationale for creating the dataset(s) clearly described?
Partly

Are the protocols appropriate and is the work technically sound?
Partly

Are sufficient details of methods and materials provided to allow replication by others?
Partly

Are the datasets clearly presented in a useable and accessible format?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: | have more than twenty years experience in the investigation of pre-mRNA splicing
processes and especially their potential connection with a variety of human diseases, both monogenic
(Cystic Fibrosis, Pompe Disease, Neurofibromatosis) and polygenic (Amyotrophic Lateral Sclerosis,
Frontotemporal Dementia). | am the author of more than 160 research papers in peer-reviewed
publications and of several articles in scientific books on these subjects (orcid.org/0000-0002-1356-9074)

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 07 January 2019

https://doi.org/10.5256/f1000research.18813.r41665

© 2019 Ciccarelli F. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

2
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Francesca D. Ciccarelli
1 Cancer Systems Biology Laboratory, Francis Crick Institute, London, UK
2 School of Cancer and Pharmaceutical Sciences, King's College London, London, UK

The paper entitled "Pan-cancer repository of validated natural and cryptic mRNA splicing mutations”

by Shirley, Mucaki and Rogan describes an extensive analysis of pancancer somatic variants in samples
of the TCGA dataset to identify mutations that affect splicing. To this aim, the authors combine the
methods that they previously developed to predict mutations affecting splicing, with a validation of their
effect on matched mRNA data from TCGA.

The study is technically sound and follows a line of investigation that has been a long standing interest of
the authors. Despite this, | have a number of comments that hopefully will help strengthen the study:

1. The authors write that their IT-based framework to predict slicing variants "has been validated in
multiple studies" and they refer to numerous papers. However, in all of them they act as
co-authors, showing that their method is mostly used by themselves and their collaborators. This is
not necessarily a problem, but it would certainly strengthen the study if the authors would perform a
comparative assessment of their performance with other available methods to predict splicing
mutations, for example those in dbNSFP. This will provide a less biased interpretation of the final
results.

2. Somehow related to the previous point, the authors mention that their results "contrast with another
TCGA study that investigated alternative mRNA splicing". In my opinion this point should be further
explored: what are the main differences and what is the extent of overlap in concordant
predictions? What are the possible reasons for these differences? This is important because the
cited paper in Cancer Cell analysed the same dataset of mutations.

3. The authors notice that the number of variants which activate cryptic splicing exceed the number
reported in a recently published study in Cell Reports. Similarly to before: what is the extent of
overlap between the two datasets? Stating that a dataset is bigger than another one is not
necessarily an indication that it is better.

4. The authors validate ~27% of predicted splicing variants using the mRNA data (351k validated of
the 1.2M predicted). This is a surprisingly low fraction. Later in the manuscript, the authors briefly
discuss about the possible reasons of such a discrepancy. One of them is the possible occurrence
of nonsense mediate decay which will not confirm the mutations because no or very few reads will
be detected. However, as the authors acknowledge, the absence of supporting reads only in
mutated individuals as compared to the presence of reads in WT sample would be a strong
indication of the effective role of these mutations on splicing. This can be quantified from the same
RNAseq data and in my opinion should be done.

5. In general, the authors seem to exclude that their prediction method could lead to false positives.
Rather they justify the poor overlap with limitations of mMRNA detection. If this is the case, this
should be quantified and probably a comparison with other prediction methods could help.

6. Of the >351k mutations with an effect on splicing supported by RNA data, only 35 affect CGC
genes. Is this only a subset of mutations affecting driver genes or is it the complete list? In the
former case, | would suggest that the authors provide the full list as supplementary data. In the
latter case, the authors should discuss the implication of such a low number. Considering that
there are >700 CGC genes, does it mean that aberrant slicing is very rarely a driver event? Is the
overwhelming majority of splicing variants passenger?

Is the rationale for creating the dataset(s) clearly described?
Yes
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Are the protocols appropriate and is the work technically sound?
Partly

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Computational cancer genomics

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however | have significant
reservations, as outlined above.

Peter Rogan, University of Western Ontario, London, Canada

We thank the reviewer for their valuable comments. Our responses follow:

1. The authors write that their IT-based framework to predict slicing variants "has been validated in
multiple studies" and they refer to numerous papers. However, in all of them they act as
co-authors, showing that their method is mostly used by themselves and their collaborators. This is
not necessarily a problem, but it would certainly strengthen the study if the authors would perform a
comparative assessment of their performance with other available methods to predict splicing
mutations, for example those in dbNSFP. This will provide a less biased interpretation of the final
results.

Response: We have previously compared our mutation prediction methods with others. Mucaki et
al. Hum. Mut. 34:556-65 (2013) showed that IT-based single mutation and exon definition methods
performed as well or better than MaxEntScan and Human Splice Finder websites. MaxEntScan
computes relative entropy which is similar to IT, except it applies a correction for local base
composition (which does not measure free energy, in contrast with IT: J. Theor. Biol. 201:87-92,
1989). Human Splice Finder does not measure changes in binding affinity and its basis is ad hoc.
We also reviewed all articles (300+) which have used IT-based tools to predict changes in splicing
(Caminsky et al., F1000Research 3:282, 2014). This reference covers the vast majority of studies
that used IT-based bioinformatic tools for mutation analysis and, compared results obtained using
these tools with other available software. The cited studies included a large proportion of mutations
that we, ourselves, did not coauthor, or were analyzed by others, removing an obvious source of
bias.

Regarding potential bias in our results, the IT-based position weight matrices (iPWMs) of splice
recognition sites that we derived and use are based on a comprehensive set of splice sites
spanning all known coding genes (see appendix of Rogan et al. Pharmacogenetics & Genomics
13(4):207-18, 2003). Other bioinformatic methods for splice site detection are based on many
fewer splice sites for PWMs and are much more likely to be subject to bias based on how those
sites were chosen. Also, the determination of information content in natural and mutated splice
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sites obeys the second law of thermodynamics (Schneider, J. Theor. Biol. 189:427-41, 1997);
information contents have been formally proven to be related to binding affinities of splice site to
splicesomes and splicing factors. MaxEntScan differs from IT because it applies a correction for
local base composition, which is energetically and biochemically irrelevant to binding site affinity,
and is therefore, biased.

As comparisons of IT with other methods have been covered previously, and the F1000Research
Data Note article format is intended to specifically present results using the new resource we
describe, in our opinion, reevaluation of other algorithms would not add anything of value to this
manuscript.

2. Somehow related to the previous point, the authors mention that their results "contrast with
another TCGA study that investigated alternative mRNA splicing". In my opinion this point should
be further explored: what are the main differences and what is the extent of overlap in concordant
predictions? What are the possible reasons for these differences? This is important because the
cited paper in Cancer Cell analysed the same dataset of mutations.

Response: The paper being referred to in the reviewer's comment is Kahles et al., Cancer Cell.,
34(2):211-224.e62018. This paper reports: “In a joint analysis of cis and trans associations with
50% prior on each type, we identified 32 cis- and seven trans-sQTL (Bonferroni corrected p <
0.05).” Information regarding these cis- sQTLs can be found here:
https://api.gdc.cancer.gov/data/3920a044-6874-4049-8010-55f0922243b7.

However, the document that provided does not indicate that these are actual splicing mutations.
The document contains SNP coordinates, but not sequence changes. An assessment of known
rsIDs at these coordinates only accounted for only 7 of the variants in our database. In fact, none of
the substitutions (nor the rsiIDs) in the article could be related back to changes in mRNA splice
strength. It is not possible to comparison the results presented in this paper to those in Kahles et al.
(2018).

3. The authors notice that the number of variants which activate cryptic splicing exceed the number
reported in a recently published study in Cell Reports. Similarly to before: what is the extent of
overlap between the two datasets? Stating that a dataset is bigger than another one is not
necessarily an indication that it is better.

Response: Jayasinghe et al. Cell Rep.;23(1):270-281.e3 (2018) identified 2056 variants in TCGA
patients which activated cryptic splice sites, of which 1964 were confirmed by manual review of
RNAseq data using the Integrated Genome Viewer (IGV). The data provided (Supplementary
Table S1; “Passed Manual Review” tab) was sufficient to perform a comparison with our results.
We scanned their manually reviewed variants using the Shannon Pipeline (SP). Despite reporting
1964 manually reviewed mutations, 50 mutations are shared between multiple patients (there are
1914 unique mutations total). 1510 of these mutations were found to alter at least one mRNA
splice site (natural or cryptic), of which 1176 met our SP filtering criteria (either decreased natural
site strength or cryptic splice sites strengthened by =2 bits and exceeding the strength of the
nearest natural site of the same polarity).

We considered the possibility that splicing mutations in Jayasinghe et al. that were not flagged by
SP could have instead altered the strength of splicing regulatory factor binding sites (SRFs). The
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high-throughput IT-based variant analysis tools needed to address this question were not available
at the time the TCGA genomic data were processed. We recently introduced a new version of SP
which is capable of analyzing variants impacting both constitutive splice sites and SRFs (including
SRSF1, SRSF2, SRSF5, SRSF6, hnRNPA1, ELAVL1, PTB and TIA1). Upon analysis of the
variants in Jayasinghe et al. for IT-derived changes in natural, cryptic and SRF binding site
strengths, 1746 of the 1914 (91.2%) were found to be significant. It is conceivable that remaining
unclassified variants may affect binding by splicing factors for which we have not yet derived
iPWMs (i.e. SRSF7).

Of the 1176 variants meeting our filtering criteria, 824 were flagged by Veridical (70.1%).
Interestingly, 27 Veridical-flagged mutations alter the same genomic coordinate in different
tumours and another 64 affect the adjacent genomic coordinate within the same splice site in other
individuals. We further investigated the remaining mutations (those evaluated, but not flagged) to
better understand the discrepancy. In approximately 10% of cases, Veridical did not find any
alternative validating cryptic splicing events in the region that contrasted with the read distribution
in the set of control transcriptomes. For example, chr9:35389842G>C in TCGA-CN-5370 was
expected to abolish the natural acceptor site of UNC13B exon 24, however the read counts for
intron inclusion in the RNAseq data were too sparse to be deemed significant (p=0.33).

Jayasinghe et al. also found mutations in TCGA patients that were not evaluated in our study. This
could occur for either because the RNASeq BAM file for a particular TCGA patient failed to
download, or the “key” file that associates the BAM file to its TCGA name was incomplete in some
tumors (i.e. TCGA-CG-4436; TCGA-STAD), due to both the BAM file name and header lacking this
information. This would not impact the accuracy of the data that is present in our database or that
we report, only the level of concordance between our results and those of Jayasinghe et al.

When comparing this dataset with our own, we discovered an instance where discrepant RNAseq
data for the same tumour in the same TCGA patient led to different IT results. Originally, Veridical
did not find a significant splicing change in POLR1B exon 14 at the +1 position, a G>A mutation
g.113331138G>A, present in patient TCGA-Z6-AAPN in the ESCA dataset. When we manually
reviewed the RNAseq BAM file used in this analysis, alternate or exon skipped splice forms were
not observed, confirming the results reported from Veridical. In fact, TCGA deposited two separate
BAM files containing RNAseq data for this same patient:
“TCGA-Z6-AAPN-01A-11R-A406-31_rnaseq.bam” and
“UNCID_2681450.b17c4505-8a84-4cdd-8782-fbc456deb2a6.sorted_genome_alignments.bam”.
The latter BAM file shows evidence of both predicted exon skipping and activation of a cryptic
acceptor site 12 nt downstream of exon 14 of POLR1B. Comparison of SNPs between these BAM
files in other genes did not show any evidence of sample switching or contamination. Although this
issue does not appear to be widespread in the TCGA dataset, such discrepancies exceed the
scope of our study, and rightfully should be addressed by TCGA.

Nevertheless, this discovery did prompt us to re-analyze the TCGA-ESCA variants through
Veridical using the second set of BAM files, and we have now included those results to
ValidSpliceMut. In this new set, the previously mentioned POLR1B mutation is deemed significant
due to increased exon skipping (86 reads showing exon skipping; p=0.0000).

4. The authors validate ~27% of predicted splicing variants using the mRNA data (351k validated
of the 1.2M predicted). This is a surprisingly low fraction. Later in the manuscript, the authors
briefly discuss about the possible reasons of such a discrepancy. One of them is the possible
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occurrence of nonsense mediate decay which will not confirm the mutations because no or very
few reads will be detected. However, as the authors acknowledge, the absence of supporting
reads only in mutated individuals as compared to the presence of reads in WT sample would be a
strong indication of the effective role of these mutations on splicing. This can be quantified from the
same RNAseq data and in my opinion should be done.

In the revision of this paper, the fraction of validated predicted splicing variants in the
ValidSpliceMut database increased from 27% to 31%, as a result of a series of improvements in
the software used for processing. SP was significantly upgraded over the course of this project,.
The previous iteration would incorrectly report information changes at pre-existing splice sites
adjacent to certain mutations. These sites were characterized by genomic coordinates that were
altered by insertions or deletions (indel), regardless of whether the site overlapped or included the
sequence change. In such instances, some altered natural splice sites could be designated as
cryptic sites. SP also reported changes at cryptic acceptor and donor sites in the first and last
exons of a gene, respectively, which were not likely to have a meaningful impact on splicing.
Therefore, all datasets processed prior to this upgrade were reanalyzed for indel variants. The
TCGA ESCA dataset was reprocessed with a second set of RNAseq BAM files (see above
response to point 3), which increased the fraction of flagged mutations for that tumor type. Finally,
we processed an additional 7 tumor datasets from ICGC and included the validated mutations in
our primary beacon database. The statistics of mutations, their distributions and support have been
updated in the present version of the manuscript.

From our perspective, the proportion of variants validated is not “a surprisingly low fraction". The
results reported here are consistent with our previous published studies (Dorman et al., Sci. Rep.
4: 7063, 2014). Aside from NMD, as demonstrated below, some mutations that significantly alter
splice site strength may not have been flagged by Veridical as a consequence of low levels of
expression of the gene in the tumor (or controls) itself. Furthermore, Veridical cannot make an
accurate assessment of the region of interest in control samples if these lack sufficient read
abundance levels to determine the probability (p-value) of observing expression in the
mutation-containing vs control samples. Also, our analysis did not take into account other impacts
of the variant on sequences that influence exon definition, such as binding to splicing regulatory
factors or mMRNA secondary structure. In our response to point 3, we described a discrepancy in
BAM file sources, which could also lead to a lower fraction of confirmed variants. Finally, miscalled
variants (despite the stringent quality control criteria applied to select variants) could contribute to
the fraction of variants not supported by Veridical analysis. Such technical artifacts have been
shown to be quite common in exome sequencing in areas of the genome characterized by low
mappability (from Shi et al., Cell Rep. 2018 Nov 6;25(6):1446-1457, 2018): “Examination of the
genomic locations of mutations revealed that 41.1% of the artifactual somatic mutations occurred
in regions of low mappability compared with only 6.4% for the validated somatic heterogeneous
mutations.”

As indicated in our response to point 3, the previous version of this paper only evaluated variants
for their impact on constitutional mMRNA splice sites and cryptic sites, and excluded impacts of
mutations at splicing regulatory factor binding sites (SRFs). The scope and time required to assess
SRFs precluded the reanalysis of all datasets for such changes. However, to address the issue
raised by the reviewer, we evaluated the degree to which ignoring SRFs would affect the overall
discovery of splicing-related variants. The updated version of the Shannon Pipeline (SP) with this
capability was used to examine 1050 mRNA splicing variants that have been demonstrated to
affect exon recognition (Cheung et al., Mol Cell. 2019 Jan 3;73(1):183-194.e8). These splicing
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variants were experimentally validated using a high throughput, multiplexed splicing minigene
reporter assay in that study. SP reported a change in splicing and/or SRF binding strength for 1017
of these 1050 mutations (96.9%; where change in SRF strength was > 3 bits). After accounting for
SRF location (e.g. exonic TIA1 sites were eliminated, since these have not been proven to have
splicing effects; see Table 1 of Caminsky et al., F1000Res.;3:282, 2014, for a full description of
each SRF), the number of flagged variants was reduced to 940 (89.5%). Based on changes in
constitutive splice site strength alone, 447 variants were flagged (435 weaken natural sites, 14
strengthen cryptic sites to a level exceeding the nearest natural site). Therefore, 46.3% of the
constitutive mutations at natural or cryptic splice sites were also flagged by SP. This suggests that
the lower predictive accuracy of SP in our original submission was, in part, due to the limitations in
its ability to detect pathogenic mutations in SRF binding sites.

We addressed the reviewer’s suggestion to compare expression of the same gene in tumours with
Veridical-validated mutations with other tumors with SP-predicted mutations in the same gene that
were not experimentally validated. To perform the analysis, we obtained pre-processed mRNA
expression data from the same RNAseq sources of TCGA patients from cBioPortal (
www.cbioportal.com; provisional datasets were used, which contained largest number of patients
for each tumor type). We extracted these gene expression values with a software program we
wrote that determined transcripts per million (TPM) for each gene containing a SP-flagged variant.
Expression values for gene present multiple times (due to the presence of multiple splice
isoforms) were averaged for the particular tissue from which they were derived.

We separated mRNA expression values for each gene in TCGA patients into the Veridical-flagged
vs. non-validated SP-predicted mutation categories, and performed a Student’s t-test on the two
groups. The expression values of 58.2% of genes were statistically distinct with 90% confidence;
>2 patients per category per gene). With at least 10 patients per category, the number of
statistically different genes increased to 69.3%. Among these genes, patients with
Veridical-flagged variants had higher overall gene expression in 99.7% of cases. These inherent
differences in expression suggest that the failure to validate predicted mutations may be related to
little or no expression of these genes in tumour and/or control samples, rather than to accuracy of
IT prediction methods. Non-sense mediated decay could be responsible for the decreased
expression of these mutated genes in the tumour genomes that carry them, or the failure to
validate could be related to low levels of expression of these genes in the particular tissues from
which the tumours were derived. This analysis is now described in the revised manuscript
(‘Dataset validation and discussion,’ para. 8).

Note: The gene expression data from cBioPortal had some limitations: 4196 genes containing
variants flagged by SP are not present in the mRNA expression datasets, though the vast majority
occurred in non-coding RNAs (i.e. 145 microRNAs, 194 LINC RNAs) or other uncharacterized
RNAs (e.g. 324 ‘LOC’ RNAs). Furthermore, certain TCGA patients that we analyzed were not
available in cBioPortal among the available expression datasets (2 TCGA-BRCA, 18
TCGA-COAD, 19 TCGA-GBM, 1 TCGA-HNSC, 1 TCGA-LUAD, 119 TCGA-OV, 4 TCGA-READ, 4
TCGA-STAD, 4 TCGA-THCA, and 7 TCGA-UCEC patients). Nevertheless, sufficient data were
obtained for the analysis that we carried out.

Furthermore, this analysis has other caveats, especially regarding the accuracy of RNAseq
quantification between samples, even upon normalization of the data. The vast majority of TCGA
tumor samples do not have a matched normal counterpart, and many TCGA tumor datasets (e.g.
TCGA-LAML) do not provide any normal control RNAseq data at all. While we could perform an
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analysis in which the tumor is compared to a set of normals for the same tissue, variation in
expression between different individuals would obfuscate evidence of any apparent NMD caused
by the mutation. A 50% reduction of expression (or less) may not be observable under these
conditions.

5. In general, the authors seem to exclude that their prediction method could lead to false positives.
Rather they justify the poor overlap with limitations of mMRNA detection. If this is the case, this
should be quantified and probably a comparison with other prediction methods could help.

Response: We have quantified RNA expression in tumors for mutations that were validated by
Veridical vs those which were not (see response to point 4). Regarding false positives: An
extensive comparison of Information Theory to other bioinformatic programs which evaluate
variants for splicing impact (MaxEntScan and Human Splice Finder) has been performed (Mucaki
et al. 2013; Caminsky et al. 2014; see response to point 1). False positives are extremely rare
because strength of binding sites (in bits) is directly related to their binding affinities; we have
demonstrated that unused cryptic splice sites in the vicinity of natural splice sites are significantly
weaker. Based on our experience and published analyses of a genome-wide site of binding sites
(Rogan et al. 2003), such decoy splice sites are nearly always at least 4 bits (274 or 16 fold)
weaker than sites that are actually recognized by spliceosomes.

The predictive accuracy of the IT methodology for detecting expression-validated mutations was
determined to be 87.9% (762 of 867 variants from 122 different publications; changes to SRFs
were included in this variant dataset; Caminsky et al. 2014). This value is similar to the predictions
made to those of Cheung et al. (2019), where we predicted splice site and/or SRFs changes to
89.5% mutations experimentally validated to cause exon definition events.

The performance of IT-based methods for predicting splicing mutations has been well established
over the past two and a half decades. Re-evaluation of its accuracy is not necessary, and this
issue is, at best, only tangentially relevant, to the purpose of presenting the resource described in a
Data Note article.

6. Of the >351k mutations with an effect on splicing supported by RNA data, only 35 affect CGC
genes. Is this only a subset of mutations affecting driver genes or is it the complete list? In the
former case, | would suggest that the authors provide the full list as supplementary data. In the
latter case, the authors should discuss the implication of such a low number. Considering that
there are >700 CGC genes, does it mean that aberrant splicing is very rarely a driver event? Is the
overwhelming majority of splicing variants passenger?

Response: There are 25 CGC genes indicated in Table 2, however these were never intended to
be interpreted to be a complete list of CGC genes with Veridical-flagged mutations. The table has
been renamed to indicate that these are a set of representative mutations. In the previous version
of this paper, the number of variants (“n=25") did not indicate the total number of CGC genes. This
has been removed and replaced with the actual number of CGC splicing mutations that were
validated:

“In Table 2, we highlight a subset of validated splicing mutations which were identified in known
driver genes implicated in the COSMIC (Catalogue Of Somatic Mutations In Cancer) Cancer Gene
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Census catalog (CGC) 27. In total, 543 “Tier 1” CGC genes have at least one Veridical-flagged
variant present in the ValidSpliceMut database.”
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The increasing amount of sequencing data that is being generated in many biological systems has
represented a real challenge to researchers in terms of trying to link individual changes to a particular
biological process. The attempt, described in this work, to use IT approaches to evaluate the potential
biological significance can significantly contribute to fill this gap. The laboratory of Peter Rogan has a long
standing and internationally prominent role in addressing the possible consequences of sequence
variants on the pre-mRNA splicing process especially with regards to its connection with human

disease. The ValidSpliceMut developed in this work presents a user friendly interface that allows users to
manually search for a variant (by gene name or genome coordinate range) and obtain information with
regards to its possible effect on splicing. This will greatly help to better appreciate the functionality of
Variants of Unknown Significance that are currently abundant genomic and transcriptomic Atlases.
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