
RESEARCH ARTICLE

Proton Nuclear Magnetic Resonance-
Spectroscopic Discrimination of Wines
Reflects Genetic Homology of Several
Different Grape (V. vinifera L.) Cultivars
Boran Hu1☯*, Yaqing Yue1☯¤, Yong Zhu2, WenWen2, Fengmin Zhang3, JimW. Hardie4

1 College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China, 2 College of
Tourism and Gastronomy, Yangzhou University, Yangzhou, Jiangsu, China, 3 Testing Center of Yangzhou
University, Yangzhou, Jiangsu, China, 4 Northern Melbourne Institute of TAFE, Epping, Victoria, Australia

☯ These authors contributed equally to this work.
¤ Current address: College of Tourism and Gastronomy, Yangzhou University, Yangzhou, Jiangsu, China.
* huboran@yzu.edu.cn

Abstract

Background and Aims

Proton nuclear magnetic resonance spectroscopy coupled multivariate analysis (1H NMR-

PCA/PLS-DA) is an important tool for the discrimination of wine products. Although 1H NMR

has been shown to discriminate wines of different cultivars, a grape genetic component of

the discrimination has been inferred only from discrimination of cultivars of undefined

genetic homology and in the presence of many confounding environmental factors. We

aimed to confirm the influence of grape genotypes in the absence of those factors.

Methods and Results

We applied 1H NMR-PCA/PLS-DA and hierarchical cluster analysis (HCA) to wines from

five, variously genetically-related grapevine (V. vinifera) cultivars; all grown similarly on the

same site and vinified similarly. We also compared the semi-quantitative profiles of the

discriminant metabolites of each cultivar with previously reported chemical analyses. The

cultivars were clearly distinguishable and there was a general correlation between their

grouping and their genetic homology as revealed by recent genomic studies. Between culti-

vars, the relative amounts of several of the cultivar-related discriminant metabolites con-

formed closely with reported chemical analyses.

Conclusions

Differences in grape-derived metabolites associated with genetic differences alone are a

major source of 1H NMR-based discrimination of wines and 1H NMR has the capacity to dis-

criminate between very closely related cultivars.
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Significance of the Study

The study confirms that genetic variation among grape cultivars alone can account for the

discrimination of wine by 1H NMR-PCA/PLS and indicates that 1H NMR spectra of wine of

single grape cultivars may in future be used in tandem with hierarchical cluster analysis to

elucidate genetic lineages and metabolomic relations of grapevine cultivars. In the absence

of genetic information, for example, where predecessor varieties are no longer extant, this

may be a particularly useful approach.

Introduction
Grape wine is a complex mixture of several hundred components present in various concentra-
tions. It contains many metabolites from grapes but most chemicals in wine are products of
alcoholic and malolactic fermentations. The main compounds are water, ethanol, glycerol,
sugar and organic acids. Other compounds, such as phenols, amino acids and so-called second-
ary metabolites, are present in much lower concentrations. Many factors, including microbial
ecology of the ferment, geographical origin, grape cultivar and winemaking technologies con-
tribute to the composition and content of metabolites in wines and affect the quality of wines
[1].

Due to the increasing interest in the qualities and provenance of grape cultivars and wines
by consumers, regulatory authorities and producers, it is of commercial importance to develop
fast and accurate methods to distinguish wines according to grape cultivar, geographic origin
and other product-defining features.

NMR has been used increasingly in the characterization and quality control of wine and
food [2,3]. Although the sensitivity of NMR is dependant on magnetic strength of the instru-
ment and some NMR experiments do not yield more or better information than alternative
analytical techniques, NMR still has many advantages over other methods. NMR allows rapid,
simultaneous, measurement of a large number of organic compounds in complex mixtures and
requires minimal pre-treatment of samples; thus reducing errors introduced by pre-treatment
and preservation of the samples ([4–6]). Multivariate data analyses including principal compo-
nent analysis (PCA) and partial least squares discriminant analysis (PLS-DA) are used to
decrease the dimensionality of multivariate data and classify items according to inherent pat-
terns in the data. Hierarchical cluster analysis (HCA) allows segregation of groups of items
according to the degree of similarity between them.

Proton nuclear magnetic resonance (1H NMR) spectroscopy coupled with PCA or PLS-DA
has been used to discriminate between wines produced from the same cultivar grown in differ-
ent geographic regions [7–9], two or more cultivars grown in the same geographic region
[10,11]—including under different seasonal (‘vintage’) conditions [12,13], several cultivars of
different Vitis species grown in different geographic regions [14] and binary blends of single
cultivar wines [15]. Notably, Pereira et al. found that within a season, across three contrasting
soil types within a vineyard, genotypic discrimination of cultivars by 1H HMR spectra was
dominated by variation in soil type and that, between seasons, variability induced by the cli-
mate was most dominant.

Recent genomic studies (Robinson et al. [16] and references cited therein) have revealed for
the first time the genetic relations of some commercially important cultivars. This allowed us
to determine the extent to which 1H NMR spectra, in the absence of confounding environmen-
tal and vinicultural factors, reflect inherent genotypic differences between cultivars. He found
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that three of the cultivars, Cabernet Sauvignon, Merlot and Ruby Cabernet, are closely related
genetically by sharing Cabernet Franc either as a parent (Cabernet Sauvignon and Merlot) or a
grandparent (Ruby Cabernet). The other two cultivars, Zinfandel (syn. Tribidrag, Crljenak
Kastelanski, Primativo) and Syrah (syn. Shiraz), are more distantly related, both to each other
and the ‘Cabernet Franc’ group [16]. But wines of Ruby Cabernet and Zinfandel have not been
included in previously reported NMR studies. Accordingly we applied 1H NMR with pattern
recognition analyses to discriminate wines vinified similarly from five different grape cultivars
of the same species, Vitis vinifera L., grown similarly on the same soil type in the same vineyard
and harvested at similar ripeness. To corroborate our evidence of genetic discrimination, we
compared the cultivar-related profiles in the levels of discriminant grape metabolites with
reported chemical analyses of those cultivars.

We show the capacity of 1H NMR, coupled with PCA, PLS-DA and HCA. To discriminate
between wines on the basis of the genetic relatedness of the cultivars, we also report the dis-
criminant compounds and their general relative, cultivar-based profiles.

Materials and Methods
We state clearly that no specific permissions were required for these activities, because the
brewing company issued the permission. We confirm that the field studies did not involve
endangered or protected species.

All wine samples are produced in ShachengManorWine Co. Ltd., Hebei province, China. After
fermentation, we got 3 parallel samples of each wine from the sampling mouth of a 30 ton ferment-
ing tank, each replicate sample was funnelled, using a 750 mL funnel, into a brown glass bottle
which was then sealed with a cork and transported to the laboratory, and then stored at -4°C.

Sample origin and chemical analysis
The wine samples were of Cabernet Sauvignon, Merlot, Ruby Cabernet, Syrah and Zinfandel,
each of the 2010 vintage and grown, non-grafted, in a single vineyard of uniform soil type in
the Shacheng region of Hebei Province, China. The grapes of each cultivar were harvested at
similar concentrations of reducing sugar (Table 1). Four replicate wines of each cultivar were
vinified with the same yeast (Lalvin CY 3079), without chemical adjustment other than addi-
tion of potassium metabisulfite (50 mg/L) and they were not matured in contact with wood.
The physical and chemical features of the wines, analyzed according to the Chinese national
standard (GB/T 15038–2006), are presented in Table 2.

NMR sample preparation
10mL of wine of each replicate was centrifuged at 4,000rpm for 10min. Supernatants (3 mL)
were frozen at -70°C for 10h and then lyophilized for 48h. The lyophilized product was dis-
solved in 99.9% deuterium oxide (630 μL, D2O) and 0.75% 4, 4-dimethy-l-4-silapentane-

Table 1. Grape cultivars and fruit composition at harvest.

Cultivar Harvest Date Reducing Sugar (g/L) Titratable Acidity (g/L) pH

Cabernet Sauvignon Oct. 6 226.2 6.8 3.3

Merlot Sept. 25 215.6 6.4 3.4

Ruby Cabernet Oct. 3 211.5 6.2 3.4

Syrah Oct. 4 225.1 6.7 3.3

Zinfandel Sept. 21 213.4 6.3 3.4

doi:10.1371/journal.pone.0142840.t001
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1-sulphonic acid (70 μL, DSS) and centrifuged at 13,000rpm for 10min. The supernatant
(500 μL) was placed in a 5mm NMR tube. DSS provided a chemical shift reference (δ = 0) and
the internal standard for quantitative analysis. D2O provided a field frequency lock signal.

To confirm the influence of pre - 1H NMR sample lyophilization the following procedure
was applied: 3mL of wine (Cabernet Sauvignon) was centrifuged at 12,000rpm for 20min. The
supernatant (450 μL) was mixed with 50 μL of a solution of 0.75% 4, 4-dimethy-l-4-silapen-
tane-1-sulfonic acid (DSS) in 99.9% deuterium oxide (D2O) in a 5mm NMR tube. Four repli-
cate samples of wine treated this way were subsequently spectrally compared with lyophilized
samples after suppression of the water peaks.

NMR spectroscopy
1H NMR spectra were recorded on a Bruker AVANCE 600 spectrometer, operating at
600.13MHz 1H frequency and a temperature of 298K, using a 1H {13C/15N} probe. A NOESY-
PRESAT pulse sequence was used to suppress the residual water signal. A total of 256 tran-
sients were collected into 32,000 complex data points with a spectral width of 7183.9Hz, with a
relaxation delay of 2s, an acquisition time of 2.3s, and a mixing time of 100ms. The NMR spec-
tra were processed with a line-broadening factor of 0.3Hz prior to Fourier transformation.
1H-1H correlation spectroscopy (COSY) data were acquired with a time domain data matrix of
2048 by 512 and a mixing time of 80ms.

NMR data reduction
All of the NMR spectra were phase and baseline corrected by AMIX and then the NMR spec-
tral data were reduced into 0.005ppm spectral buckets. The regions corresponding to water

Table 2. Physical and chemical features of the wines *.

Cultivars

Cabernet Sauvignon Ruby Cabernet Zinfandel Merlot Syrah

Alcohol content %vol 12.8 12.1 11.8 12.4 12.8

Residual sugar(glucose) g/L 2.11 2.07 2.03 2.11 2.23

Total acid g/L 5.7 5.8 5.5 6 6.1

Volatile acid g/L 0.48 0.45 0.51 0.48 0.48

Dry extract g/L 24.8 25.8 23.8 24.9 25.8

pH 3.55 3.56 3.54 3.51 3.46

Total SO2 mg/L 72 82 81 79 76

Free SO2 mg/L 31 28 34 30 34

Methanol mg/L 221 191 201 214 199

Fe3+ mg/L 1.2 2.1 1.8 2.2 1.8

Cu2+ mg/L 0.05 0.05 0.08 0.06 0.07

K+ mg/L 882 931 999 988 972

Ca2+ mg/L 85 86 97 95 85

Tartaric acid g/L 2.42 2.37 2.28 2.24 2.41

Citric acid g/l 0.33 0.28 0.27 0.35 0.2

Lactic acid g/L 2.09 2.98 2.64 2.78 2.14

Colour tone 11.7 11.8 10.8 12.7 12.9

Colour tint 0.78 0.82 0.82 0.81 0.78

*Methods of determination of physical and chemical features accorded with China National Standard GB/T 15038–2006

doi:10.1371/journal.pone.0142840.t002
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(4.6–4.8ppm), incompletely removed ethanol (1.18–1.22 ppm and 3.57–3.72 ppm) and DSS
(-0.5–0.5 ppm, 1.74–1.84 ppm and 2.90–2.95 ppm) were removed. The datasets were then
imported into SIMCA-P version 12.0 for multivariate statistical analysis.

Multivariate data analysis
Principal component analysis (PCA), an unsupervised pattern recognition method, i.e. without
preliminary hypotheses, was used to examine the intrinsic variation in the dataset. To maxi-
mize the separation between samples partial least squares discriminant analysis (PLS-DA) was
applied. PLS-DA can be regarded as a supervised derivative of PCA that provides the maxi-
mum covariance between measured data (X variable, metabolites in NMR spectra) and the
response variable (Y variable, NMR spectral intensities), it can selectively extract the Y-relevant
variation of variables, but also ensure the maximum correlation between them. The Hotelling’s
T2 region, shown as an ellipse in score plots of the models, defines the 95% confidence interval
of the modeled variation [17]. After orthogonal signal correction (r = 4) was applied to elimi-
nate information that did not contribute to the discrimination, PLS-DA score plots from the
1H NMR spectra of wines of the five cultivars were generated in pairwise comparisons. The
quality of the models is described by the R2X and Q2 values. R2X is defined as the proportion of
variance in the data explained by the models and indicates goodness of fit. Q2 is defined as the
proportion of variance in the data predictable by the model and indicates predictability.

Hierarchical cluster analysis
1H NMR data for four replicate wine samples of each cultivar was imported into IBM SPSS
19.0 for hierarchical cluster analysis to characterize the degree of metabolic similarity between
the cultivars.

Assignment of metabolites
From the 1H NMR and 1H-1H COSY spectra, e.g. Fig 1, and according to chemical shifts
reported by Larsen et al. [18]; Lee et al. [19]; Pereira et al. [20]; and Son et al. [7], we identified
and assigned the major resonances for 17 components in the wines (Table 3). Identification of
corresponding loading plot signals indicated the PLS-DA discriminant metabolites.

Relative amounts of discriminant metabolites between cultivars
To provide an indication of the relative amounts of each of the discriminant metabolites
between the cultivars and to allow some general hierarchical trends in those metabolites

Fig 1. The 1H-1H COSY NMR spectrum of lyophilized Cabernet Sauvignon dry red wine.

doi:10.1371/journal.pone.0142840.g001
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according to cultivar, a matrix of cultivar-discriminating compounds was constructed using
the relative peak heights of compounds represented in the pairwise comparison loading plots.
Ranking within each hierarchy was established on a semi-quantitative basis with regard only to
the comparative magnitude (i.e. greater or lesser) of the peak heights in each possible pairwise
comparison.

Results

Comparison of wine samples with and without lyophilization
Fig 2 presents the comparison of NOESYPRESAT water peak—suppressed 1H NMR spectra of
Cabernet Sauvignon wine with and without lyophilization to remove water. In the spectra of
samples without lyophilization the signals of ethanol and glycerol were so intense that they
obscured the signal of other less abundant components. That made the identification and
assignment of minor components difficult. In the spectra of lyophilized samples, even though a
small amount of water and ethanol remained, the minor components were not obscured and
were more readily identified.

Multivariate analysis
All of the NMR spectra were pre-treated by AMIX and then imported into SIMCA-P version
12.0 for PCA and PLS-DA. PCA of 1H NMR spectra revealed a general clustering of the repli-
cate wines by cultivar. The score plot of the first two principal components (PCs) is shown in
Fig 3A. The first two PCs accounted for 65.9% of the total variance. On this analysis wines of

Table 3. Metabolites and their 1H chemical shifts identified by 600 MHz 1H NMR*.

No. Compound Molecular formula 1H NMR chemical shift

1 Ethanol C2H5OH 1.19(t,C2H3),3.66(q,C1H2)

2 Methanol CH3OH 3.36(s,CH3)

3 2,3—butanediol C4H10O2 1.15(d,C1H3),3.88(q,C4H3)

4 Glycerol C3H8O3 3.56(q,C2H2),3.65(q,C3H2),3.78(m,C1H)

5 Acetic acid CH3COOH 2.07(s,C3H3)

6 Lactic acid C3H6O3 1.38(d,C3H3),4.29(m,C2H)

7 Tartaric acid C4H6O6 4.53(s,C2H+C3H)

8 Succinic acid C4H6O4 2.67(s,C2H2+C3H2)

9 β-glucose C6H12O6 4.64(d,α-C1H,ring),3.24(dd,u,C2H,ring)3.54(dd,u,C3H,ring)

10 α-glucose C6H12O6 5.26(d,β-C1H,ring),3.55(dd,u,C2H,ring)

11 α-D-glucuronic C6H10O7 5.34(d,C1H,ring)

12 β-D-glucuronic C6H10O7 4.58(d,C1H,ring)

13 Valine C5H11NO2 0.89(d,C4H3),0.95(d,C5H3)

14 Alanine C3H7NO2 1.52(d, β-C3H3),3.88(q, u, α-CH)

15 Proline C5H9NO2 2.02(m,u,γ-CH2),2.07(m,u,β-CH),2.36(m,u,β'-CH),3.36(m,u,δ-CH),3.42(m,u,δ-CH),4.17(m,u,α-CH)

16 Choline C5H15NO2 3.19(s,N-CH3),3.49(t,u, α-CH2),3.83(t, β-CH2)

17 Gallic acid C7H6O5 7.16(s,C2H+C6H)

*Letters in parentheses indicate the peak multiplicities

s, singlet

d, doublet

t, triplet

dd, doublet of doublet

tt, triplet of triplets

q, quartet; and

m, multiplet.

doi:10.1371/journal.pone.0142840.t003
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both Zinfandel and Syrah were characterized by positive score clusters on PC1 in contrast to
the other cultivars that were generally characterized by negative scores on that PC. Wines of
the other cultivars were less strongly discriminated but on PC2 the scores for Ruby Cabernet
were positive while those for Merlot were mostly negative and those of Cabernet Sauvignon
were both positive and negative.

PLS-DA of 1H NMR spectra (Fig 3B) provided similar but slightly greater discrimination
than PCA, PC1/PC2 mapping accounted for 65.5% of total variability. With the exception of
Cabernet Sauvignon wines, the scores of each cultivar cluster were more exclusively positive or
negative on PC2 than in the PCA analysis.

Hierarchical cluster analysis
Following aggregation of the replicates of each cultivar, the successive nodes of the dendrogram
aggregated Merlot and Cabernet Sauvignon, the ‘Cabernet Franc’ group, and Syrah and Zinfan-
del respectively (Fig 4). There was clear separation between each of the groups.

Fig 2. 1H NMR spectrum of Cabernet Sauvignon wine with NOESYPRESAT water peak suppression, (A) sample not lyophilized, (B) sample
lyophilized.

doi:10.1371/journal.pone.0142840.g002
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Pairwise comparison of wines and discriminating metabolites
Pairwise PLS-DA score plots derived from the 1H NMR spectra of wines of the five cultivars
showed clear discrimination (i.e. high values of the regression coefficients R2X, R2Y and cumu-
lative Q2; the proportion of the variation of Y predicted by the model) between wines of each
cultivar by the first component, and the loading plots showed the metabolites that contributed
to the discrimination (Fig 5). In the loading plot each peak represents an integral region of the
NMR spectra and the height of the peak corresponds to a contribution coefficient of the region
to the separation shown in the score plot. The discriminating compounds were grape metabo-
lites, viz. proline, valine, total phenols (mostly Gallic acid), tartaric acid and glucose; and vinifi-
cation products, viz. glycerol, 2, 3—butanediol, succinic acid, lactic acid, acetic acid and valine.

Table 4 presents the matrix of cultivar-discriminating compounds derived from the pairwise
comparison of peak heights from the loading plots. The matrix provides an indication of the

Fig 3. Comparison of wine discrimination derived from the 1H NMR spectra. (A) PCA Scores Plot (t1/t2),
R2X = 0.959, Q2 = 0.872. PC1/PC2 accounted for 65.9% of the total variance. (B) PLS-DA Scores Plot (t1/t2),
R2X = 0.959, R2Y = 0.991, Q2 = 0.954. PC1/PC2 accounted for 65.5% of the total variance. Grape cultivars:
m, Merlot; s, Syrah; z, Zinfandel; r, Ruby Cabernet; c, Cabernet Sauvignon.

doi:10.1371/journal.pone.0142840.g003
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relative levels of many of those compounds and allows some general hierarchical classifications
by cultivar. Some compounds were insufficiently represented within the matrix to allow hierar-
chical classification.

Discussion
The high resolution of 1H NMR spectral data coupled with either PCA or PLS-DA allowed dis-
crimination between wines of Syrah and Zinfandel and between each of those two cultivars and
each of the representatives of the Cabernet Franc group, viz. Cabernet Sauvignon, Merlot and
Ruby Cabernet. Among those three cultivars there was clear discrimination between Merlot
and Ruby Cabernet, and Cabernet Sauvignon clustered between them. While several previous
NMR studies of wine ─ including wine fromMerlot, Cabernet Sauvignon and Cabernet Franc
grown on three different soil types within a single vineyard in Saint Emilion, southwestern
France [13] ─ have shown clear discrimination between the cultivars, their genetic relations

Fig 4. Dendrogram of wines of five cultivars (M, Merlot; C, Cabernet Sauvignon; R, Ruby Cabernet; Z, Zinfandel; S, Syrah), (4 replicates of each),
based onmultidimensional analysis of metabolites detected by 1H NMR spectroscopy.

doi:10.1371/journal.pone.0142840.g004
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were not considered. Significantly, in the present study the degree of discrimination between
all cultivars reflected a broad range of genetic homology. Ruby Cabernet, bred by H. P. Olmo
in California, is well known as the progeny of Cabernet Sauvignon and the distantly related
Carignan (syn. Cariñena) [21]. Recent genomic analyses have shown that Cabernet Sauvignon
and Merlot have a common parent; Cabernet Franc,a cultivar grown in southwestern France
from the seventeenth century [22,23]. The other two wines were from more distantly related
cultivars, viz. Zinfandel, grown in Croatia as Tribidrag or Crljenak Kastelanski from the seven-
teenth century [16], and Syrah, a cultivar from southeastern France [24]. The discrimination of
Ruby Cabernet samples from the other representatives of the ‘Cabernet Franc’ group almost
certainly reflects metabolic differences arising from the intermixing of the genes of ‘Cabernet
Franc’ group of south-western France and Carignan, a cultivar believed to have originated in
Spain [16]. Significantly Pereira et al. (2007) found that for similarly vinified wines both sea-
sonal climate and soil type influenced the degree of discrimination between cultivars [13].
Thus on the basis of differences in those factors we would expect differences evident in the
degree of discrimination of Cabernet Sauvignon and Merlot in our study and theirs.

Hierarchical cluster analysis revealed groupings that not only reflect the genetic heritage of
the cultivars but also represented the degree of similarity between them. The cultivars segre-
gated into two groups, viz. the ‘Cabernet Franc’ group comprising Cabernet Sauvignon, Merlot
and Ruby Cabernet, and the ‘others’; Zinfandel and Syrah. Notably, within the ‘Cabernet
Franc’ group Merlot and Cabernet Sauvignon which have the common parent Cabernet Franc,
were more closely linked to each other than to Ruby Cabernet; despite Cabernet Sauvignon
being a parent of Ruby Cabernet. As we have suggested, this is possibly the result of human-
mediated breeding which introduced the more distantly related cultivar, Carignan, into the
group. Within the ‘other’ group it appears that, in contrast to the ‘Cabernet Franc group, Zin-
fandel and Syrah do not share close relatives.

Most significantly, the general correlation between degree of discrimination and genetic
relatedness across a wide range of genetic homology represented by the cultivars in this study,
including discrimination between very closely related cultivars, establishes that genetic varia-
tion among grape cultivars can account for the discrimination of wine by 1H NMR. The grape
metabolites that most represented that variation were proline, valine, total phenols (mostly
Gallic acid), tartaric acid and glucose (see in S1 File.). Proline, which unlike other amino acids,
usually (but not always) remains unconsumed by yeast during fermentation, was the predomi-
nant amino acid found in the NMR spectrogram. It is well known that among the red wine cul-
tivars Cabernet Sauvignon and Merlot have particularly high levels of proline [25,26]. Ough
(1968) showed that the general order of abundance (% of total juice N) of proline among the
‘Cabernet Franc group’ is Cabernet Sauvignon>Merlot = Cabernet Franc> Ruby Cabernet.
Similarly in our study, the content of proline was highest in wines of the ‘Cabernet Franc

Fig 5. PLS-DA score plots, loading plots and correlation parameters derived from the 1H NMR spectra
of wines as pair wise comparisons (A) Merlot (m) and Syrah (s), R2X = 0.737, R2Y = 0.991, Q2 = 0.958.
PC1/PC2 variance accounted for 72.1%. (B) Merlot (m) and Zinfandel (z), R2X = 0.791, R2Y = 0.992, Q2 =
0.973. PC1/PC2 accounted for 79.1%. (C) Merlot (m) and Ruby Cabernet (r), R2X = 0.679, R2Y = 0.982, Q2 =
0.888. PC1/PC2 variance accounted for 67.9%. (D) Merlot (m) and Cabernet Sauvignon (c), R2X = 0.511,
R2Y = 0.991, Q2 = 0.891. PC1/PC2 variance accounted for 51.4% (E) Syrah (s) and Ruby Cabernet (r),
R2X = 0.705, R2Y = 0.998, Q2 = 0.968. PC1/PC2 variance accounted for 70.5%. (F) Syrah (s) and Zinfandel
(z), R2X = 0.807, R2Y = 0.992, Q2 = 0.989. PC1/PC2 accounted for; 80.7%. (G) Syrah (s) and Cabernet
Sauvignon (c), R2X = 0.586, R2Y = 0.985, Q2 = 0.945. PC1/PC2 variance accounted for 56.7%. (H) Ruby
Cabernet (r) and Zinfandel (z), R2X = 0.822, R2Y = 0.998, Q2 = 0.994. PC1/PC2 variance accounted for
80.2%. (I) Cabernet Sauvignon (c) and Zinfandel (z), R2X = 0.897, R2Y = 0.994, Q2 = 0.983. PC1/PC2
variance accounted for 89.7%. (J) Cabernet Sauvignon (c) and Ruby Cabernet (r), R2X = 0.775, R2Y = 0.995,
Q2 = 0.976. PC1/PC2 variance accounted for 74.8%.

doi:10.1371/journal.pone.0142840.g005
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group’ and the hierarchical order of abundance from highest to lowest was Cabernet
Sauvignon>Merlot> Ruby Cabernet> Syrah = Zinfandel. This finding accords with that of
Son et al. (2008) who found that proline was an important variable in discriminating Austra-
lian Cabernet Sauvignon from Australian Shiraz wines by 1H NMR[7]. Although valine was a
discriminant compound in our study, levels of this amino acid are determined by both grape
and microbial metabolism [5] and there was insufficient evidence to identify it as a useful dis-
criminating variable in terms of genetic relatedness of cultivars. Variation in glucose content
among grape cultivars at similar total sugar content is well known but variation among yeast
strains in the capacity to ferment glucose and fructose is also known [27]. Thus variation in the
glucose content of wine in our study may not be attributable solely to genetic differences
among the grape cultivars.

The levels of phenols (mono and polymeric) in wine are affected, not only by grape cultivar
but also by region, cultural practices, fermentation processes, maturation with wood contact
and wine age [1]. Polyphenolic compounds, in particular, are not easily assigned by NMR due
to their complex s tructures [2]. Nevertheless total phenols (mostly Gallic acid) contributed to

Table 4. Matrix of cultivar-discriminating compounds*.

Cabernet Sauvignon Merlot Ruby
Cabernet

Syrah Zinfandel

Compounds that quantitatively exceed those of the cultivar in left hand column

Cabernet Sauvignon lactic acid,
glucose,valine

lactic
acid,
tartaric
acid,
glucose,
valin,
phenols

2,3-butanediol,glycerol,
lactic acid,tartaric acid,
glucose

glycero,tartaric acid,valine,gallic acid

Merlot 2,3-butanedio,glycero,
tartaric acid,succinic acid,
proline

lactic
acid,
succinic
acid,
phenols

ethanol,2,3-butanediol,
glycerol

2,3-butanediol,glycerol,succinic acid,glucose

Ruby Cabernet 2,3-butanediol,acetic acid,
succinic acid,glucose,
proline

2,3-butanediol,
glycerol,acetic
acid,tartaric
acid,proline

2,3-butanediol,glycerol,
tartaric acid

2,3-butanediol,glycero

Syrah acetic acid,succinic acid,
proline

tartaric acid,
glucose,
proline,phenols

lactic
acid,
succinic
acid,
proline,
phenols

glycerol,tartaric acid,succinic acid,glucose

Zinfandel 2,3-butanediol,acetic acid,
succinic acid,glucose,
proline,phenols

acetic acid,
tartaric acid,
valine,proline,
phenols

lactic
acid,
tartaric
acid,
succinic
acid,
glucose,
valine,
proline,
phenols

2,3-butanediol,acetic
acid

*Compounds determined from loading variables from pair wise PLS-DA. Contents of compounds within cultivar columns exceed those of the cultivar

shown in the column to the left.

doi:10.1371/journal.pone.0142840.t004
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the discrimination of wines by cultivar in this study. The order of abundance, viz. Ruby
Cabernet> Cabernet Sauvignon>Merlot> Syrah> Zinfandel, generally accord with analyti-
cal reports which indicate relative levels of total phenols in wines of those cultivars as follows:
Ruby Cabernet> Cabernet Sauvignon�Merlot� Cabernet Franc> Syrah� Zinfandel;
although the position of Syrah from those reports is not completely clear [28–34].

Tartaric acid is the major grape acid in wine. The concentration of tartaric acid in grapes
depends on cultivar, ripening conditions and fruit maturity. Although tartaric acid is also com-
monly added prior to fermentation in order to adjust the pH and acidity, the wines examined
in this study were not treated this way. In our study, tartaric acid was a discriminant compound
however there was insufficient evidence to establish a hierarchy among the cultivars based on
tartaric acid. It is well known that the content of tartaric acid is not constant during wine fer-
mentation because of the formation of potassium bitartrate and calcium tartrate which tend to
precipitate in wines. Generally, as Son et al. [14] noted, tartaric acid is unlikely to be a useful
biomarker to characterize wines of hetereogenous vinification processes but as we have shown,
without addition during vinification, it may be a useful component for discrimination wines by
genetic origin.

Although compounds of grape origin obviously provide the foundation for discrimination
between cultivars, the PCA and PLS-DA approach relies on discrimination on the basis of max-
imizing differences in chemical profiles in both qualitative and quantitative terms regardless of
source. The discriminating compounds arising during alcoholic fermentation were 2, 3—buta-
nediol, glycerol, valine and succinic acid (see in S2 File.).

In the wine of each cultivar the amount of ethanol, although quantitatively the most abun-
dant metabolite, was similar and ethanol was not a major discriminant compound,in afct in
my study,there is no enanol through procrsses. 2, 3—butanediol and glycerol are major constit-
uents of wine. In this study the content of 2, 3—butanediol in Syrah wine was higher than in
other wines and that compound appeared to be an important discriminant factor. The concen-
tration of 2, 3—butanediol in the five wines in order from high to low was: Syrah> Cabernet
Sauvignon> Zinfandel>Merlot> Ruby Cabernet. Glycerol was also an important discrimi-
nant compound. Its concentration in the five wines in order from high to low was:
Zinfandel> Syrah> Cabernet Sauvignon>Merlot> Ruby Cabernet.

Most succinic acid in wine is a product of nitrogen metabolism by yeast but it is also formed
during malolactic fermentation (MLF) in which lactic acid bacteria convert malate and citrate
into lactate and other components [1]. Levels of succinic acid are thus related to the malic acid
content of the grapes. The high level of lactic acid in each of the wines indicates MLF. The con-
centration of succinic acid is also generally related to the concentration of ethanol, glycerol and
2, 3—butanediol [9]. In a survey of the succinic acid content of Australian red wines made
from Cabernet Sauvignon, Merlot, Ruby Cabernet and Shiraz between 1991 and 2003, Coulter
et al. [35] found no influence of cultivar. In our study the range in concentration of succinic
acid in wines was low and the order from high to low: Zinfandel> Ruby Cabernet> Cabernet
Sauvignon>Merlot> Syrah. Succinic acid is very stable and its concentration changes little
during aging [1] thus its close association with malic acid, a cultivar-related trait [36] indicates
that it is likely to be a useful discriminant of wines according to cultivar. Interestingly Kliewer
et al. reported that the level of malic acid in Zinfandel was about 70% greater than that in Mer-
lot and Cabernet Sauvignon. That may explain the relatively high levels of succinic acid in Zin-
fandel wines in our study.

Having demonstrated the impact of plant genotype alone in discriminant analysis of 1H
NMR spectra at one geographic site, we note that due to the biological interaction of genotype
with environment both the discriminant factors and the degrees of discrimination obtained
using the 1H NMR-PCA/PLS-DA approach are subject to specific environmental (edaphic,
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climatic, biotic and phyto-cultural) conditions at other sites as previous cross-environment
studies have shown. It is this biological interaction that makes 1H NMR-PCA/PLS-DA a partic-
ularly powerful tool in the geographic discrimination of wine and other plant-based products.

Finally, our study indicates that 1H NMR-derived spectra of wine of single grape cultivars
grown under the same conditions may be used in tandem with hierarchical cluster analysis to
elucidate presently unknown genetic lineages and metabolomic relations of grapevine cultivars.
In the absence of genetic information, for example, where predecessor varieties are no longer
extant, this may be a particularly useful approach. Further confirmation of this prospect will
require validation with more fully genetically-characterized cultivars.

Conclusions
It may be concluded from this study that differences in grape-derived metabolites associated
with genetic differences alone are a major source of 1H NMR-based discrimination of wines
and that 1H NMR has the capacity to discriminate between very closely related cultivars.

The study also indicates that 1H NMR-derived spectra of wine of single grape cultivars
grown under the same conditions coupled with hierarchical cluster analysis may be used to elu-
cidate genetic lineages and metabolomic relations of grapevine cultivars.

Supporting Information
S1 File. Metabolites for PDO Lambrusco wine of Modena (Lambrusco Salamino di Santa
Croce) DOI: 10.1021/jf302728b.
(PDF)

S2 File. Figures of compounds, PCA and PLS-DA to show discrimination between culti-
vars. DOI: 10.1016/j.foodres/2009.08.006.
(PDF)
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