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Introduction: The conversion of testosterone into dihydrotestosterone is catalyzed by the 5α-

reductase type 2 enzyme which plays a crucial role in the external genitalia virilization. It is

encoded by the SRD5A2 gene. Allelic variants in this gene cause a 46,XY DSD with no

genotype–phenotype relationship. It was firstly reported in the early 70s from isolated clusters.

Since then, several cases have been reported. Putting together, it will expand the knowledge on

the molecular bases of androgen milieu.

Methods: We searched for SRD5A2 allelic variants (AV) in the literature (PubMed,

Embase, MEDLINE) and websites (ensembl, HGMD, ClinVar). Only cases with AV in

both alleles, either in homozygous or compound heterozygous were included. The

included cases were analyzed according to ethnicity, exon, domain, aminoacid (aa)

conservation, age at diagnosis, sex assignment, gender reassignment, external genitalia

virilization and functional studies. External genitalia virilization was scored using

Sinnecker scale. Conservation analysis was carried out using the CONSURF platform.

For categorical variables, we used X2 test and Cramer’s V. Continuous variables were

analyzed by t test or ANOVA. Concordance was estimated by Kappa.

Results: We identified 434 cases of 5ARD2 deficiencies from 44 countries. Most came from

Turkey (23%), China (17%), Italy (9%), and Brazil (7%). Sixty-nine percent were assigned

as female. There were 70% of homozygous allelic variants and 30% compound heterozy-

gous. Most were missense variants (76%). However, small indels (11%), splicing (5%) and

large deletions (4%) were all reported. They were distributed along with all exons with exon

1 (33%) and exon 4 (25%) predominance. Allelic variants in the exon 4 (NADPH-binding

domain) resulted in lower virilization (p<0.0001). The codons 55, 65, 196, 235 and 246 are

hotspots making up 25% of all allelic variants. Most of them (76%) were located at

conserved aa. However, allelic variants at non-conserved aa were more frequently indels

(28% vs 6%; p<0.01). The overall rate of gender change from female to male ranged from

16% to 70%. The lowest rate of gender change from female to male occurred in Turkey and

the highest in Brazil. External genitalia virilization was similar between those who changed

and those who kept their assigned gender. The gender change rate was significantly different

across the countries (V=0.44; p<0.001) even with similar virilization scores.

Conclusion: 5ARD2 deficiency has a worldwide distribution. Allelic variants at the NADPH-

ligand region cause lower virilization. Genitalia virilization influenced sex assignment but not

gender change which was influenced by cultural aspects across the countries. Molecular diagnosis

influenced on sex assignment, favoring male sex assignment in newborns with 5α-reductase type 2

deficiency.
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Introduction
In 1961, Nowakowski e Lenz named as pseudovaginal

perineoescrotal hypospadias an disorder of sex develop-

ment affecting individuals with 46,XY karyotype.1 The

reported phenotype included female-like external genitalia,

bilateral testes, and male urogenital tracts in which the

ejaculatory ducts terminate in a blind-ending vagina.

Subsequently, animal studies showed that male external

genitalia virilization resulted from the conversion of tes-

tosterone into dihydrotestosterone, a reaction catalyzed by

5α-reductase enzyme.2 The 5α-reductase type 2 deficiency

syndrome was biochemically and clinically reported in

24 individuals from Dominican Republic and two siblings

from North America, concomitantly.3,4 Typically, affected

individuals presented virilization (clinical and psychologi-

cal) at puberty with no gynecomastia. Both studies char-

acterized this syndrome as an autosomal recessive

inheritance pattern condition, resulting from the inability

to convert testosterone into dihydrotestosterone presenting

with a wide range of genital ambiguity at birth and pro-

nounced virilization at puberty.

Defects in the 5α-reductase type 2 enzyme arise from

mutations in the SRD5A2 gene.5,6 This gene is made up of

five exons and four introns and allelic variants have been

reported in the whole gene. Impairment in the 5α-reductase

type 2 enzymatic activity results from either homozygous or

compound heterozygous allelic variants. Initially, this disorder

was reported in clusters around the world in individuals from

specific ethnic groups. There are growing evidence reporting

affected individuals with a variety of ethnic backgrounds and

coming from several geographical areas, suggesting that 5α-

reductase type 2 deficiency has a worldwide distribution.

The 5α-reductase type 2 defects have been reported in

individuals with several degrees of undervirilization, ran-

ging from typical female external genitalia to hypospadias

or isolated micropenis. The causes of divergent pheno-

types are still unclear.

Intriguingly, 5α-reductase type 2 deficiency is reported

with an extensive phenotype variability, even in affected

individuals carrying the same SRD5A2 mutation.7,8 It

suggests that factors others than residual 5α-reductase

type 2 activity may play a role on 5α-reductase type 2

deficiency phenotype.

This review is focused on allelic variants and poly-

morphisms in the SRD5A2 gene, molecular mechanisms of

5α-reductase type 2 deficiency and in the genotype–phe-

notype correlation of this syndrome.

Methods
We searched for SRD5A2 allelic variants in the literature

(PubMed, Embase, MEDLINE) and websites (ensemble,

HGMD, ClinVar). Only individuals with variants in both

alleles (either homozygous or composed heterozygous) and

5α- reductase type 2 deficiency phenotype were included. The

variants were analyzed according to ethnicity, exon, domain,

aminoacid conservation, age at diagnosis, sex assignment,

gender change, external genitalia virilization and functional

studies. External genitalia virilization was scored using

Sinnecker, which ranges from 1 to 5.9 As Sinnecker’s scores

1–4 are divided into two points (a and b), the whole scale is

made up of 9 points. The score of external genitalia virilization

was analyzed as a Likert-scale. Based on a previous retro-

spective study showing a predominance of male sex assign-

ment after 1999,10 all cases included were divided between

those born before 1999 and those born after 1999. They were

also divided according to country income based on the 2018

World Bank classification (www.worldbank.org). This classi-

fication is based on the gross national income (GIN) being

divided into four categories: low-income economies are

defined as those with a GNI per capita of $1025 or less;

lower middle-income economies are those with a GNI per

capita between $1026 and $3995; upper-middle-income

economies are those with a GNI per capita between $3996

and $12,375; and high-income economies are those with

a GNI per capita of $12,376 or more.

Categorical variables were analyzed using Chi-square

test followed by the Cramer’s V. Continuous variables

were analyzed either by Student t test or ANOVA one

way. The Bonferroni’s test was applied for multiple com-

parisons. Estimative of concordance was made by Kappa

index. A p<0.05 was considered as significant.

Steroids and Male Development
Testosterone (T) is the most abundant androgen in the serum.

T is synthesized by the Leydig cells of the testes under

control of LH.11,12 In male fetuses, T binds to the androgen

receptor (AR) and promote the differentiation of Wolffian

duct into male internal genitalia, including epididymis, vas

deferens, and seminal vesicles. The complex T plus AR is

also essential to induce male psychosexuality which starts

early during embryo development.13–15 Intracellularly, T is

converted into dihydrotestosterone (DHT), a more potent

androgen which has 2–5 times higher affinity for AR and

10-fold higher potency of inducing AR signaling than T. In

utero, DHT is crucial for growth of the prostate gland and for
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differentiation of the external genitalia into male

genitalia.16,17 In other words, the external genitalia viriliza-

tion depends on a functioning AR and DHT which, by it is

turn, depends on T as substrate for conversion.

Steroids are a particular type of lipids, that are 5α-reduced
into more potent steroids by 5α-reductases.18 Basically, sub-

strates for 5α-reductases are 3-oxo (3-keto), Δ 4,5 C19/C21

steroids which include testosterone, progesterone, cortisol

and aldosterone as examples. The reaction involves

a stereospecific, irreversible breakage of the double bond

between carbons 4 and 5 (delta 4,5) with the aid of

NADPH cofactor and the insertion of a hydride anion to the

α face at carbon C-5 (5α reduction).18,19 Outside of DHT,

much of the physiological role of 5α-reduced steroids are still

unknown.

The 5α-Reductases Enzymes and

5α-Reductases Genes
5α-RD1 and 5α-RD2 isoenzymes are membrane-associated

(microsomal) enzymes, composed of 259 and 254 aminoacids,

respectively. Both enzymes catalyze the same reaction (5α-

steroid reduction), but they only share a limited degree of

homology in protein sequence, are located on different chro-

mosomes, play distinctive biochemical roles and are expressed

in different tissues.20,21 5α-RD1 is expressed in fetal scalp and

nongenital skin. The 5α-RD1 expression is from 5 to 50 times

higher in adults than in fetus, suggesting that enzyme is not

related to male fetal development.21 On the other hand, 5α-

RD2 is highly expressed in fetal prostates. After birth, 5α-RD1

is expressed in more locations, including the liver, skin, scalp

and prostate while 5α-RD2 is expressed in prostate, seminal

vesicles, epididymis, liver.18

Their role in mammalian male physiology comes from

developmental studies of mammalian embryos showing

that 5α-reduction was highest in the prostate and external

genitalia prior to their virilization, but very low in Wolffian

duct structures.22,23 Thereafter, a generalized defect in the

conversion of T to DHT was demonstrated in individuals

with a rare disorder of male sex differentiation,3,4 subse-

quently referred to as 5α-reductase deficiency. Later,

a cDNA from rat liver was used to isolate a human 5α-RD

cDNA by cross-hybridization with a prostate cDNA library.

Further genetic studies in individuals with 5α-reductase

deficiency identified a second cDNA from the human pro-

static 5α-R.20,24 The first cDNA (from rat liver) was named

5α-RD1 and the second cDNA (from human prostate) was

named 5α-RD2.

5α-RD1 and 5α-RD2 isoenzymes are encoded by

SRD5A1 and SRD5A2 genes, respectively. Both genes have

similar structures, with five coding exons separated by four

introns.5,25 The position of the introns is essentially identical.

They share approximately 60% of sequence identity, indicat-

ing the possibility of a common precursor gene during evolu-

tion. The SRD5A1 gene is located on chromosome 5p15 and

encodes a 259 amino acid protein (5α-reductase type 1)

whereas the SRD5A2 gene is located on 2p23 and encodes

a 254 amino acid protein (5α-reductase type 2).2,19 More

recently, with the development of genome-wide gene expres-

sion profile analysis, a third 5α-RD gene (SRD5A3) was

identified, located at 4q12. This gene encodes a 318 aminoa-

cids protein (5α-reductase type 3), which has 19% of homol-

ogy with 5α-RD1 and 20% of homology with 5α-RD2.
All SRD genes are implicated in human disorders. The

main one is the SRD5A2 gene in which several allelic var-

iants have been reported in individuals with 5α-reductase
type 2 deficiency, a rare difference of sex differentiation

among 46,XY individuals resulting from defective conver-

sion from T to DHT.5,6,8,21,26

The role of the others 5α-reductases in human diseases are

still not fully understood. 5α-reductases isoenzymes irreversi-

bly catalyze A-ring reduction of pregnene-based steroids,

which includes glucocorticoids and androgens. As

5α-RD1 is highly expressed in liver, 5α-RD1 disruption

could impact on steroid metabolism. It was tested in female

mice with transgenic disruption of 5α-reductase type 1

(5αRD1-KO) in which 5α-RD1 deficiency resulted in gluco-

corticoid clearance impairment, predisposes to glucose intol-

erance and hepatic steatosis upon metabolic challenge.27 The

hypothesis that inhibition of 5α-R1 causes metabolic dysfunc-

tion in humans was tested in a double-blind randomized con-

trolled parallel study comparing the insulin effects of using

finasteride (which inhibits only 5α-RD2), and dutasteride (5α-
RD1 and 5α-RD2 inhibitor). Dutasteride was able to modulate

insulin sensitivity in human peripheral tissues.28

The role of 5α-RD3 in human diseases is even more

recent. SRD5A3 encodes a polyprenol reductase enzyme

required for the synthesis of dolichol, a final product of the

mevalonate pathway.29 Biallelic mutations in SRD5A3

gene have been reported in individuals with congenital

disorders of glycosylation, eventually associated with

ophthalmological and neurological features.30,31

Phenotype, Ethnicity and Sex of Rearing
We identified 434 cases of 5α-reductase type 2 deficiency

in the literature from 44 different countries (Table 1),
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which means that this condition has a worldwide distribu-

tion. It is noteworthy that many cases have recently been

reported in China and Turkey,32–34 besides reports in

countries without no previous cases, as Bulgaria.8

Neonatal diagnosis was carried out in 29.7%. Most cases

had the 5α-reductase type 2 deficiency diagnosis later in

life (mean 12.56 ± 8.41, from 1 to 47 years of age). The

diagnosis was done at childhood in 58%, at puberty in

25%, and adulthood in 17%.

Most cases were assigned as female (69.4%). The associa-

tion between the score of external genitalia virilization and sex

assignment was significant (p<0.001). This score was higher

among thosewhowere assigned as female (6.48 ± 1.82) versus

those assigned as male (4.66 ± 1.89), suggesting that external

genitalia appearance influenced the choice of assigned sex.

When we divided the cases into those who were diagnosed

after and before 1999, the percentage of male sex assignment

rise from 26.8% to 42.8% (p<0.0001, X2=17.79). The esti-

mated odds ratio for female sex assignment for individuals

with diagnosis after 1999 was 1.7 (1.03–2.83). In the same

direction, the rate of sex reassignment from female to male

was lower in those who were diagnosed after 1999 (p=0.036,

X2=4.39).

In fact, there are a clear temporal trends pointing toward

an increased likelihood of affected 46,XY DSD being raised

as boys.10 According to our analysis, it is also true for 5α-

reductase type 2 deficiency individuals. This probably results

of several studies that have shown that many individuals with

46,XY have a male psychosexuality regardless the external

genitalia appearance,13,35 especially those with DSD due

disorders of androgen synthesis, such as 5α-reductase type

2 deficiency and 17β-Hydroxysteroid dehydrogenase type 3

deficiency.10,13,36,37

To evaluate an eventual impact of income on sex

assignment, we divided the patients according to the coun-

try’s income. Surprisingly, there was no impact of income

on sex designation (p=0.21). However, it is interesting to

note that no cases have been reported in countries classi-

fied as low-income. The vast majority of cases (86%) were

reported by countries with high and upper-middle econo-

mies. The absence of reports from low-income countries is

maybe due to several reasons, such as barriers for mole-

cular diagnosis, scientific access, and specialized medical

assistance.

As molecular diagnosis is valuable for 46,XY DSD

management, it is fast becoming the first-line approach

for DSD newborns.12,38-40 However, genetic testing is

still not available everywhere. As important as molecular

advancement is also to make this genetic test easy and

feasible for any newborn, anywhere in the world.

Table 1 Country of Birth of the Individuals with 5α-Reductase Type 2 Deficiency Included in This Review

Country Number Country n Frequency Country Number Country n Frequency

1 Africa 1 0.2 24 Jordanian 1 0.2

2 Algeria 2 0.5 25 Korea 2 0.5

3 Arab Emirates 9 2.1 26 Maltese 1 0.2

4 Austria 1 0.2 27 Morocco 4 0.9

5 Belgium 1 0.2 28 Mexico 16 3.7

6 Brazil 32 7.3 29 Mongolian 1 0.2

7 Bulgaria 3 0.7 30 New Guinea 2 0.5

8 Canadian 2 0.5 31 Pakistan 11 2.5

9 Cape Verde 1 0.2 32 Palestine 1 0.2

10 China 73 16.7 33 Poland 1 0.2

11 Egypt 15 3.4 34 Russia 1 0.2

12 French 9 2.1 35 Saudi Arabia 25 5.7

13 Germany 3 0.7 36 Spain 11 2.5

14 Greek Cypriot 4 0.9 37 Sri Lanka 2 0.5

15 Hong Kong 4 0.9 38 Thailand 5 1.1

16 India 21 4.8 39 Tunisia 2 0.5

17 Iraq 1 0.2 40 Turkey 105 24

18 Ireland 2 0.5 41 United Kingdom 3 0.7

19 Israel 1 0.2 42 United States 4 0.9

20 Italia 41 9.4 43 Venezuela 3 0.7

22 Ivorian 1 0.2 44 Vietnam 4 0.9
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Genotype
We found 129 different allelic variants in the SRD5A2 gene

in the literature among individuals with 5α-reductase type 2

deficiency. Most are missense mutations (n = 83), but small

deletions (n = 12), splicing mutations (n = 6), stop codons

(n = 4), small indels (n = 20) and gross deletions (n = 4) have

also been described (Human Gene Mutation Database at the

Institute of Medical Genetics in Cardiff, Wales, UK:

SRD5A2 gene: http://www.hgmd.cf.ac.uk, Clinvar and

PubMed) (Figure 1). These variants have been reported in

all exons of this gene, but most mutations are mainly located

at exons 1 (33%) and at exon 4 (25%), similarly to previously

reported.7,25,41 Among the 254 amino acids that make up the

5α-RD2 protein, we found allelic variants in the SRD5A2

gene in 76 of them.

5α-R2 deficiency is inherited in an autosomal recessive

pattern. As in other recessive conditions, the consanguineous

population presented a higher frequency of this disease. 5α-

R2 deficiency results either from homozygous defects in the

SRDA2 gene or compound heterozygosity. Allelic variants

in homozygosity are more frequent than compound hetero-

zygous among affect individuals with 5α-R2 deficiency.5,6,42

We identified 70% (305 out 434) of AV in the SRDA2 gene

causing 5α-reductase type 2 deficiency in homozygosity and

30% (129 out 434) in composed heterozygosity, reinforcing

that most 5α-reductase type 2 deficiency cases are homozy-

gous. This rate is in agreement with a previous study which

includes 55 individuals with 5α-R2 deficiency and also with

other 5α-RD2 deficiency review.7,43

The positions 196, 227, 235 and 246 are hotspots of the

SRD5A2 gene. Collectively, they make up 25% of all AV

reported as causative of 5α-reductase type 2 deficiency.

These hotspots are suggested based on some SRD5A2 gene

mutations that have been reported in individuals from different

Figure 1 Allelic variants in the SRD5A2 related to 5α-reductase type 2 deficiency. The SRD5A2 exons are defined from 1 to 5. Variants in homozygous are in the pinkish-

red boxes. Variants reported only as compound heterozygous are in the blue boxes.

Note: *It indicates the position of the premature stop codon.
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countries and from different ethnicities. As an example, the p.

Arg246Gln mutation was reported in India, Austria, Brazil,

Italy, Korea, Pakistan, Dominican Republic, Egypt, China,

Saudi Arabia and Mexico6,42,44-48 as well as the p.Gly196Ser

in Turkey, China, Bulgaria, Italy, and the United

Kingdom.8,33,49-51 On the other hand, many SRD5A2 muta-

tions remain from specific ethnicities, such as p.Pro59Arg

from Algeria, p.Asn160Asp from Egypt, c.188_189insTA

from India, c.453delC from Italy, p.Gly183Ser from Brazil

and p.Ala65Pro from Turkey.7,33,52-54 Therefore, ethnicity

does not seem to impact on phenotype–genotype correlation.

Functional Studies on Allelic Variants of

the SRD5A2 Gene
Despite a very well-characterized disease, functional studies

of the SRD5A2 allelic variants are uncommon. Most reports

have been focused in clinical phenotype, laboratory data, and

SRD5A2 sequencing whereas the functional consequences of

the SRD5A2 variants remain unexplored. As a consequence,

only 40 SRD5A2 allelic variants were functionally investi-

gated for their deleterious potential (Table 2). Among the

allelic variants that were investigated, most are non-

synonymous allelic variants (36 out 40), in all exons

(Table 3).

The 5α-RD2 is a membrane-bound enzyme that cata-

lyzes the irreversible conversion of testosterone into dihy-

drotestosterone using NADPH as cofactor.21,55 Based on

that, most of the functional studies focused on enzymatic

kinetics studies. Enzymatic activity is estimated by Vmax

and most non-synonymous 5α-RD2 allelic variants

affected the Vmax of 5α-RD2 enzyme (Table 3). Sixteen

of these variants result in a protein with no detectable

enzyme activity, whereas the remaining give rise to

proteins with severely decreased enzymatic activity

(Table 3). The variants able to impair the 5α-RD2 activity

can be divided into two groups: those that affect the

affinity for NADPH and those that affect the ligand-

binding (testosterone).6,19,55-57 However, the impact of

the residual activity on phenotype is controversial.

Allelic variants with 0% of residual function (p.

Leu55Gly and p.Arg246Gln) resulted in several degrees

of external genitalia virilization,7,51,57 but allowing some

degree of external genitalia virilization even without 5α-

RD2 residual function.

A 3D protein model for SRD5A2 protein was recently

constructed.58 That model suggests that the SRD5A2 pro-

tein is comprised of six α-helices and two smaller loops

corresponding to transmembrane domains. According to

this model, the residues Y98, N102, Y107, L167, R171,

H231, and Y235 are in direct contact with NADPH in the

binding cavity. Among these residues, three were recur-

rently reported in individuals with 5α-R2 deficiency

(R171, H231, and Y235). Mutations in two of these points

(p.R171S and p.H231R) were evaluated in a functional

study.59 While the p. H231R primarily affected the ability

of the enzyme to bind testosterone, the p.HR171S severely

decreased the affinity of the enzyme for NADPH.

Using an informatics tool to analyze the evolutionary

relationship between species, the same study was able to

select the amino acids of the SRD5A2 gene that are highly

conserved. They are: 1,5,10,14,21,33-5, 49, 52, 53, 56, 57,

59, 87, 90, 91, 92, 94, 95, 98, 102, 104, 106, 108, 118, 119,

122, 123, 126, 128, 130, 133, 140, 145, 149, 153, 156, 157,

159-64, 167, 170-3, 175, 178, 180, 181, 183, 184, 186, 188-

90, 191-3, 196-8, 200, 201, 203, 20, 210, 212, 216, 217,

219, 220, 224, 227, 228, 231-3, 235, 239, 241, 243, 248,

Table 2 Functional Studies of Allelic Variants of the SRD5A2 in Patients with 5α-Reductase Type 2 Deficiency

Allelic Variant Functional Impact Ref

p.Tyr136Term Abolish Enzymatic Activity [47]

p.Gly183Ser Descrease of testosterone affinity [54]

p.Gly115Asp p.Ser210Phe p.Pro212Term Devoided enzimatic activity [54,57]

p.Arg171Ser p.Gly183Ser p.Asn193Ser p.Gly196Ser p.Arg246Gln NADPH-binding abnormality [57]

p.Pro59Arg p.Tyr91Asp p.Gly115Asp p.Gln126Arg p.Asp164Val p.Ala207Asp p.Leu224Pro p.

His230Pro p.Leu55Gln p.Gln56Arg p.Glu197Asp p.Pro212Arg p.Gln6Term p.Asn193Ser p.

Ala228Val p.Arg246Gln IVS1-2A>G IVS4+2T>C

No enzimatic activity [55,57,104]

p.Arg145Trp p.Thr187Met p.Gly203Ser

Phe219Serfs*60 p.Arg227Gln p.Ile253Hisfs*8 p.Lys35Asn p.His162Pro p.Pro212Arg p.

Arg246Trp p.Arg246Trp p.Glu57Gln p.Gly85Asp

Reduced enzimatic activity [6,53,104]

p.Gly34Arg p.His231Arg Testosterone-binding abnormality [57]

Notes: *Variants with more than one functional study.
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251, 252 and 254). Thus, we compared all variants in the

literature according to amino acid conservation. Not sur-

prisingly, most SRD5A2 variants (76%) were located at

conserved amino acids. However, allelic variants at non-

conserved amino acids were more frequently indels (28%

vs 6%; p<0.01, V=0.38) than those at conserved amino

acids and caused lower scores of external genitalia viriliza-

tion (p = 0.001). It makes sense, once insertions and dele-

tions in protein-coding regions primarily involve amino

acids that have a minor impact on the structure and function

of the protein.60 On the other hand, frameshifting indels

usually are deleterious, leading to mRNA degradation

owing to nonsense-mediated mRNA decay or the produc-

tion of severely truncated proteins, which could explain the

lower external genitalia virilization.61 Except by the p.

Met157del reported in patients from Turkey,7,33 all the

others small indels in the SRD5A2 are frameshifting leading

to a premature stop codon (Table 4).

Table 3 Sinnecker’s Score*

Phenotype Subtype Likert-Scale

Classification

Characteristics

Male 1a 1 No overt undermasculinization

Male 1b 2 Impaired spermatogenesis

Predominantly male 2a 3 Isolated hypospadias

Predominantly male 2b 4 Micropenis and severe hypospadias, bifid scrotum

Ambiguous 3a 5 Microphallus, perineoscrotal hypospadias

Ambiguous 3b 6 As 3a but sinus urogenitalis with a short, blind ending vagina

Predominantly female 4a 7 Clitoromegaly and labial fusion, blind ending vagina, sinus urogenitalis with a wide opening

Predominantly female 4b 8 Slight signs of androgen effects. Slight clitoromegaly or partial labial fusion, distinct urethral

and vaginal opening

Female 5 9 No signs of virilization

Notes: *Adapted from Sinnecker GH, Hiort O, Dibbelt L, et al. Phenotypic classification of male pseudohermaphroditism due to steroid 5 alpha-reductase 2 deficiency. Am
J Med Genet. 1996;63(1):223–230.9

Table 4 Indel Variants in the SRD5A2 in Individuals with 5α-Reductase Type 2 Deficiency

Variant Description Predicted Protein Ethinicity Genotype Ref

c.332_333delTC p.Leu111Hisfs*24 Italy H [48]

c.468_470delAAT p.Met157del Turkey H [9,32]

c.453delC p.Phe151Phefs*8 Italy/Turkey H/CH [32,48]

c.753delA p.Phe252Serfs*27 Turkey H [32]

c.450delC p.Val150Valfs*9 Turkey H [32]

c.563_564delTA p.Tyr188Cysfs*9 Bulgaria H [8]

c.217_218insC p.Leu73Profs*73 Brazil H [52]

c.122_123del p.Lys41Thrfs*94 Marocco H [7]

c.188_189insTA p.Pro64Serfs*68 India H [50]

c.delCTCTCCCTCTCCinsT p.Leu73Tryfs*59 Turkey CH [102]

c.553_568delTTGTTTACGTATGTTT p.Leu185Thrfs*192 China CH [102]

c.268insA p.His90Thrfs*31 China CH [102]

c.418del p.Trp140Valfs*7 Brazil CH [52]

c.655delT p.Phe219Serfs*60 China/Spain CH [102,103]

c.663_664delTT p.Cys222Phefs*11 China CH [102]

c.89dupC p.Ser31Leufs*105 China H [33]

c.755_756insT p.Ile253Hisfs*8 China H [104]

c.34del p.Ala12Glnfs*29 French CH [7]

c.464delT p.Leu155Trpfs*5 French CH [7]

g.80_87delTCGCGAAG p.Ala27fs*132 India CH [105]

c.562_563delTA p.Tyr188Cysfs*9 Spain CH [103]

Notes: *H = homozygous; CH = compound heterozygous.
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As in other inherited disorders, allelic variants in canonical

splicing sites use to be deleterious.62,63 It was also reported in

cases of 5α-RD2 deficiency.7,42 These variants usually result-

ing in exon skipping with a dramatic impact on protein.63

However, splicing is a process that can be disrupted in several

ways. Single nucleotide changes (including those in synon-

ymous variants) can disrupt splicing, either abolishing or creat-

ing a new splice site, which usually leads to the inclusion of an

intron fragment or to an exon skipping.63,64 Although muta-

tions at splicing region are not rare among individuals with

5α-RD2 deficiency only one was functionally investigated

(IVS4+2T>C), which resulted on exon 4 skipping leading to

a truncated protein of 205 amino acids that lacks 5α-RD2
residual activity.57

Unusual patterns of inheritance have also been reported.

In an interesting case of uniparental disomy (UND), a patient

was born to nonconsanguineous parents who are carriers of

two distinct variants (p.Glu197Asp and p.Pro212Arg). The

patient was homozygous for the p.Glu197Asp, indicating an

alternative mechanism whereby 5α-R2 deficiency can derive
from a single parent.65

In a case series with 14 individuals with 5α-RD2 defi-

ciency from China, two patients carried three mutations in

the SRD5A2 gene. The first one with p.Gln6Term, p.

Phe234Leu, and p.Lys35Asn and the second one with p.

Gly203Ser, p.Arg227Gln, and p.Gly34Arg. The first case

had a completely female external genitalia while the second

one had only hypospadias.49

Deletion of the entire SRD5A2 gene, as well as exons 1

and 2 deletions, have been reported in the 5α-RD2
deficiency.24,66,67 The understanding of themechanisms under-

lying those deletions would be interesting to expand the mole-

cular possibilities of 5α-RD2 deficiency. Genomic deletions

give rise from multiple genetic phenomena,68,69 but recombi-

nation among repetitive elements in the DNA has grown as

a CNV mechanism.70–72 In fact, the chromosomal region

of the SRD5A2 gene (chr2:31,522,480-31,580,938) is

enriched by mobile DNA elements, especially LINE-1

(long interspersed nuclear elements) sequences as

L1Hs (chr2:31575999-31577158), L1PA15 (chr2:3156

9929-31572454), L1M1(chr2:31540540-31541521), L1MB3

(chr2:31540540-31541521), and L1MDa (chr2:31539048-

31539981) and also by Alu elements as AluSx1, AluSg4,

AluSp, and AluSx3 (verified on genome browser; gene

SRD5A2). Due to their ability to mobilize across the genome,

both LINE-1 and Alu elements are able to impact on the

genome structure and their role in inherited disorders has

been increasingly reported.73–75

Well-documented subjects with 5α-RD2 deficiency

(including hormonal data) with only a single SRD5A2 variant

suggest that other mechanisms beyond SRD5A2 exonic

sequences may play a role in this condition.21 Interesting

mechanisms of gene disruption have been reported in other

46,XY DSD conditions, especially in subjects with androgen

insensitivity syndrome (AIS). As examples, synonymous

variants of the Androgen Receptor (AR) gene proved to be

causative of both partial and complete phenotype of AIS as

well as post-zygotic mosaicism.76,77 Epigenetic alterations

compromising AR expression were reported in patients

which were negative for AR mutations but presented clinical

evidence of AIS.78 Single nucleotide change in the 5ʹUTR

region of the AR was able to cause a new open frame region

leading to CAIS.79 Finally, a LINE-1 retrotransposon was

recently reported as causative of PAIS.73 All of these inter-

esting molecular mechanisms of disease are still underex-

plored in 5α-RD2 deficiency.

Polymorphisms of the SRD5A2 Gene
Evidence about the role of polymorphism in human dis-

eases have been on debate for a long time. In part because

its frequency is relatively high to be causative of diseases

and also because some polymorphisms are not located at

coding regions. However, techniques to study the whole

genome are maturing fast and there are growing evidence

that polymorphisms are able to both change phenotypes and

cause diseases.80,81 It appears to be true for 5α-R2 defi-

ciency. The most frequent polymorphism of the SRDA2

gene is located at exon 1. A substitution from valine to

leucine (p.V89L) proved to decrease the 5α-R2 activity by

30% compared with the wild type.82 This polymorphism

was reported as a compound of heterozygous mutations in

patients with 5α-R2 deficiency5,7 and it was also reported as

causative of isolated hypospadias among Chinese and

Indian children.45,83 A recent metanalysis included six stu-

dies focused on the relationship between SRD5A2 poly-

morphism and hypospadias. Using an Egger’s test to rule

out the possibility of publication bias, the authors concluded

that SRD5A2 polymorphisms might be one of the risk

factors of isolated hypospadias.84 Interestingly, this poly-

morphism is frequent among Chinese and Japanese man

and it has been considered as a protector factor to prostate

cancer once this cancer is rare among individuals from this

ethnicity. On the other hand, the presence of p.V89L poly-

morphism has been associated with a higher risk of breast

cancer.85
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Another polymorphism of the SRD5A2 gene is the change

from alanine residue to threonine at codon 49 (p.A49T). In

vitro studies showed that this polymorphism increases the

enzymatic activity of the 5α-R2 enzyme by five folds, which

has been suggested as a risk for prostate cancer development,

mainly among African-American and Latin-American popu-

lations. However, while this risk is suggested,86 it has not been

confirmed in other studies.87 On the other hand, a modest

association of this polymorphism has been reported in less

severe hypospadias.88

The SRD5A2 gene harbors a polymorphic site at the

3ʹunstranslated region (3ʹUTR) where a variable number

of dinucleotide TA repeat length exists.89 Variations of

these TA repeats occur in tandem, ranging from zero

[(TA) 0] or [(TA) 9] to [(TA) 18]. Variations in TA lengths

could influence the enzymatic activity of the SRD5A2 gene

and it has been reported among Caucasian, African-

Americans, Non-Hispanics and South Indian men. A study

failed to prove the role of TA repeats favoring breast or

ovarian cancer as well as another study failed to prove this

polymorphism as causative of isolated hypospadias among

North Indian children.89,90 Conversely, another study sug-

gested that TA repeats polymorphism confers a prostate

cancer risk among Lebanese man.91

Summarizing, the p.V89L polymorphism is probably

associated with hypospadias because it impairs the 5α-R2

activity. The presence of this polymorphism should be taken

into account both in cases of isolated hypospadias or as

a compound of heterozygous mutations in cases of α-R2

deficiency. The role of others SRD5A2 polymorphisms either

as causative of isolated hypospadias or as a contributing

factor for breast and prostate cancer remains unclear.

Genotype–Phenotype Relationship in

Individuals with 5α-Reductase Type 2

Deficiency
We analyzed the range of external genitalia virilization of

recurrent variants in homozygosity reported in the litera-

ture in order to estimate the genotype–phenotype relation-

ship. The Sinnecker’s scores of the p.Leu55Gly, reported

in individuals from Turkey, Lebanon and Iraq, ranged from

2a to 4b.33,82,92-94 For the p.Ala65Pro variant reported in

individuals from Turkey, the Sinnecker’s scores ranged

from 2a to 5.33 For the p.pro181Leu variant, which was

reported in Saudi Arabia and Turkey, the Sinnecker’s

scores ranged from 2a to 4a.33,42,95

Phenotype variability was also observed in mutations at

hotspots of the SRD5A2 gene. The p.Thy235Phe, which is

located at a very conserved amino acid in direct contact with

NADPH, the Sinnecker’s scores ranged from 2a to 5.50,59,95,96

In the p.Gly196Ser variant, that score ranged from 1a to

4a.6,33,50,97 However, some variants were more congruent

in their impact on external genitalia virilization. The

p.Arg246Gln variant is associated with more virilization

(2a – 3a) than both p.Gly183Ser and p.Gln126Arg variants,

which consistently caused severe undervirilization (3b – 4b

and 4a – 4a, respectively).5,6,33,47,50,54,97

In cases of nonsense variants in homozygosity would

be expected more undervirilization. However, individuals

from Saudi Arabia carrying nonsense variants in homo-

zygosity (p.Arg227Term and P.Arg103Term), manifested

with hypospadias and microphallus,42 showing that phe-

notypic variability remains even in cases of truncated

proteins.

We compared the mean Sinnecker’s score of external

genitalia virilization among the types of allelic variants

(homozygous, compound heterozygous and indels). The

mean score was 5.44 ± 2.2 in those in homozygous, 5.02

± 2.1 in compound heterozygous, and 6.89 ± 1.1 in indels.

There was no difference between homozygous and com-

pound heterozygous (p=0.16). Conversely, when these two

groups were compared independently with indels, signifi-

cant statistical differences were obtained in both instances

with p=0.02 and p<0.001, respectively.

We also analyzed the influence of the exon location on

external genitalia virilization among 156 individuals with

5α-reductase type 2 deficiency from the literature. There

was a significant difference between the mean scores of

the external genitalia virilization (F=10.57, p<0.001). The

Bonferroni test for multiple comparisons showed that this

difference was caused by the lower scores of external

genitalia virilization from variants in the exon 4 (p<0.001

vs exon 1; p=0.002 vs exon 2, p<0.001 vs exon 3, and

p=0.036 vs exon 5) (Figure 2). The exon 4 is made up of

28 conserved amino acids (28 out 49 = 57%).58 Among the

variants in homozygous located at exon 4 in the literature,

66 out of 68 (97%) are in conserved amino acids.

Functional analysis of some variants in the exon 4 showed

either no residual activity (p.Gly196Ser, p.Glu197Asp, p.

Ala2017Asp, p.Pro212Arg, p.Leu224Pro, p.Ala228Val,

and p.His230Pro) or alter the affinity of the enzyme for

NADPH (p.Asn193Ser and p.Gly196Ser).57,59 Moreover,

there are two variants (p.His230Pro and p.His231Arg)

located in a stretch of histidine (residues 230–232) which
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is highly conserved among species, suggesting that these

residues are catalytically important.59

Collectively, these data show that 5α-reductase type 2

deficiency is a condition without genotype–phenotype correla-

tion. However, the presence of the allelic variant in exon 4 and

indel variants influence on phenotype. The fact that relative

virilization can occurs even in cases with nonsense variants

without any residual 5α-reductase activity suggests that other

factors, such as AR-mediated signal transduction activity,

environmental factors, and other androgens may play a role

in the phenotype of 5α-reductase type 2 deficiency.

Gender Change in 5α-Reductase Type 2

Deficiency
For many reasons, individuals with 46,XY DSD are more

likely to present some gender incongruence. However, gen-

der change is more exception than the rule among these

individuals.98,99 5α-reductase type 2 deficiency is an impor-

tant exception. Gender change in individuals with this defi-

ciency is frequently reported, over 50% in some series.13,35

Among all individuals who were included in this review,

the percentage rate of gender change was 25% (87 out 349).

All but one changed their gender from female to male. We

compared the means scores of external genitalia virilization

between the individuals who changed and the ones who

kept their gender. Both presented similar means of viriliza-

tion score (5.68 ± 2.07 vs 5.97 ± 1.97; p=0.37, respectively).

The rate of gender change was significantly different across

the ethnicities (V=0.44; p<0.001). The overall rate of gender

change from female to male among countries with more

than 10 reported cases ranged from 16% to 70%, suggesting

the influence of socio-cultural and environmental factors.

The lowest rate of gender change occurred in Turkey and

the highest in Brazil.

Human psychosexuality is strongly influenced by

androgens.14,100 Briefly, in the presence of androgens, the

human psychosexuality is usually direct towards male while

female psychosexuality results from the absence of andro-

gens (even in the absence of estrogens).13,15 During certain

critical prenatal periods, androgens cat directly on neural

regions containing androgen receptors providing organiza-

tional changes in the brain is areas related with male sexual

behavior.15,101,102 However, if the external virilization

depends on dihydrotestosterone, testosterone is enough for

the brain virilization. In other words, male psychosexuality

develops even in the absence of dihydrotestosterone, which

explain the frequency of gender change from female to male

in 5α-reductase type 2 deficiency.

Figure 2 Boxplots of the external genitalia virilization accordingly the exonic location of the allelic variants in SRD5A2 gene.
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Many factors play a role in human psychosexuality

development, such as androgen exposure, sex of rearing,

and sociocultural and environmental factors. For most 46,

XY DSD conditions, the sex of rearing remains as the

main predictive factor of gender identity.98,103 Again, 5α-

reductase type 2 deficiency is an exception. While some

affected individuals maintain the female gender, many

change to male gender. This change happens regardless

of the external genitalia appearance, most of them at child-

hood and it occurs even in individuals who underwent

gonadectomy. Altogether, these observations evidence the

strong role of prenatal androgen exposure in male psycho-

sexuality, reinforcing the importance of the molecular

diagnosis in 46,XY DSD.

Conclusion
5α-reductase type 2 deficiency is a rare condition with

a worldwide distribution which needs to be considered as

a diagnosis in front of all 46,XY newborn with atypical

genitalia. It results from allelic variants in the SRD5A2

gene, leading to a broad spectrum of external genitalia

phenotypes with no strong genotype–phenotype relation-

ship. However, allelic variants at exon 4 and indels con-

sistently caused more severe phenotypes. The genotype–

phenotype incongruence occurs even in individuals carry-

ing the same variant and also in individuals from the same

family, suggesting that other factors beyond the 5α-

reductase type 2 enzyme play a role in phenotype. These

factors are still unclear and constitute a relevant field for

future research. Although many allelic variants in the

SRD5A2 gene have been reported, other genetic mechan-

isms that may influence gene expression have not yet been

investigated. The role of SRD5A2 polymorphisms in

human diseases is debatable. Most cases of 5α-reductase

type 2 deficiency were assigned as female at birth due to

severe undervirilization of external genitalia. Later, many

changed from female to male gender. It clearly favors to

base the sex assignment on molecular diagnosis instead on

external genitalia appearance. There has been an improve-

ment in the number of 5α-reductase type 2 deficiencies

individuals raised as boys. However, the impact of this

change on long-term health outcomes requires further

research.
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