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SUMMARY

There has been substantial recent interest in record linkage, where one attempts to group the
records pertaining to the same entities from one or more large databases that lack unique iden-
tifiers. This can be viewed as a type of microclustering, with few observations per cluster and a
very large number of clusters. We show that the problem is fundamentally hard from a theoretical
perspective and, even in idealized cases, accurate entity resolution is effectively impossible unless
the number of entities is small relative to the number of records and/or the separation between
records from different entities is extremely large. These results suggest conservatism in interpre-
tation of the results of record linkage, support collection of additional data to more accurately
disambiguate the entities, and motivate a focus on coarser inference. For example, results from
a simulation study suggest that sometimes one may obtain accurate results for population size
estimation even when fine-scale entity resolution is inaccurate.

Some key words: Closed population estimation; Clustering; Entity resolution; Microclustering; Record linkage; Small
clusters.

1. INTRODUCTION

Record linkage refers to the problem of assigning records to unique entities based on observed
characteristics. One example, which is the motivating problem for this work, arises in human
rights research (Lum et al., 2013; Sadinle & Fienberg, 2013; Sadinle, 2014), where there is
interest in recording deaths or other human rights violations attributable to a conflict, such as
the ongoing conflict in Syria. In this setting, the data are incomplete records of violations, which
usually consist of a name, a date of death, and a place of death. In the turbulent atmosphere
accompanying a conflict, often multiple organizations record information on deaths with little
communication or standardization of recording practices. Because these data are usually gathered
from oral recollections of survivors, measurement errors are common. The result is multiple
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databases consisting of noisy observations on features of the deceased that in some cases would
not uniquely identify the individual even in the absence of noise. There are two distinct inferential
goals when applying record linkage in this setting: identification of specific victims and estimation
of the total number of casualties in the conflict. These two objectives are shared by other common
application areas. For example, in fraud detection, entity resolution itself is the objective, whereas
in social science applications, coarser inferences such as correlations between linked variables or
estimated regression coefficients (Lahiri & Larsen, 2005) are of primary interest; see D’Orazio
et al. (2006) for specific examples.

A variety of methods for record linkage have been proposed (Winkler, 2006; Christen, 2012),
though much of the literature has focused on the theoretical framework of Fellegi & Sunter
(1969). In this set-up, every pair of records from two databases is compared using a discrepancy
function of record features and classified as either a match, a nonmatch, or possibly a match.
The goal is to design a decision rule that minimizes the number of possible matches for fixed
match and nonmatch error rates. The necessity of performing pairwise comparisons leads to a
combinatorial explosion, and a related literature has focused on the construction of blocking rules
to limit the number of comparisons performed (Jaro, 1989, 1995; Al-Lawati et al., 2005; Bilenko
et al., 2006; Michelson & Knoblock, 2006).

An alternative and more recent approach is to perform entity resolution through clustering,
where the goal is to recover the entities from one or more noisy observations on each entity (Steorts
et al., 2014, 2015; Steorts, 2015; Zanella et al., 2016). In this framework, entities and clusters are
equivalent. Model-based or likelihood-based methods of this sort can be equated with mixture
modelling, where the number of mixture components is large and the number of observations per
component is very small. Historically, the focus in mixture modelling has been on regularization
that penalizes large numbers of clusters, in order to obtain a more parsimonious representation
of the data-generating process. Recognizing that this type of regularization is inappropriate for
most record linkage problems, Miller et al. (2015) defined the concept of microclustering, where
the cluster sizes grow at a sublinear rate with the number of observations. They proposed a Bayes
nonparametric approach to clustering in this setting that takes advantage of a novel random
partition process that has the microclustering property. This is applied to multinomial mixtures
in Zanella et al. (2016).

While microclustering is appropriate for most record linkage problems, there is a lack of liter-
ature on performance guarantees and other theoretical properties of entity resolution procedures.
Because microclustering methods favour sublinear growth in cluster sizes, the number of param-
eters of these models can grow at the same rate as the number of observations, so basic asymptotic
properties such as central limit theorems, strong laws and consistency will not hold. For example,
in the human rights applications that motivated Miller et al. (2015), the number of unique records
per entity is thought to be very small, generally less than 10, while the number of unique entities
is thought to be in the thousands or hundreds of thousands. As such, it is critical to consider the
finite-sample performance of microclustering in cases where the number of records per cluster
is a tiny fraction of the sample size, and to obtain theoretical upper bounds on how accurate
cluster-based entity resolution can possibly be when the microclustering condition holds.

Working with simple mixture models where some of the parameters are known, we characterize
the exact distributions of quantities related to entity resolution. Achievable performance is shown
to be a function of entity separation and the noise level. Using these results, we provide minimal
conditions for accuracy in entity resolution to be bounded away from zero asymptotically as the
number of records grows. We also provide an information-theoretic bound on the best possible
performance in the case where some of the entities cannot be uniquely identified from noiseless
observations of the available features. These results are supported by several simulation studies.
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Our problem is related to the extensive literature on mixture identifiability (Teicher, 1961, 1963;
Yakowitz & Spragins, 1968; Holzmann et al., 2006) and estimation of the number of components
(Day, 1969; Richardson & Green, 1997; Lo et al., 2001; Tibshirani et al., 2001), as well as the
voluminous literature on clustering (see Hastie et al., 2009, Ch. 3 and works cited therein), with
the important distinction that we focus on microclusters, mixtures with many components and
few observations per component, and we are interested primarily in entity resolution, not in
estimation of the parameters of the mixture.

Our results initially present a very dim view of entity resolution by microclustering; indeed,
it appears that the full problem is unsolvable without further information except under very
strong conditions. However, in many cases interest is focused on certain summary statistics of
the linked records, which may be relatively insensitive to errors in entity resolution. Motivated by
the human rights application mentioned above, we consider the case where the ultimate goal of
entity resolution is to recover the total number of entities in the population. This corresponds to
the total number of casualties in the conflict, the coarser inferential goal mentioned previously. A
variety of methods exist for this problem, which is referred to as closed population estimation, and
generally use as data a relatively small contingency table that characterizes the number of unique
records appearing in every possible combination of the databases (Wolter, 1986; Zaslavsky &
Wolfgang, 1993; Griffin, 2014). In a simulation study, we show that relatively accurate estimation
of the total population size is possible even when entity resolution is inaccurate. The success of
population estimation in this admittedly limited simulation study suggests further investigation
of whether low-dimensional summaries are in general recoverable from linked databases even
when the error rate in entity resolution is high.

2. MAIN RESULTS

2·1. Preliminaries

We work primarily with Gaussian mixtures of the form

L(y | ν, {μk , �k}k=1,...,K ) =
K∑

k=1

νkφ(y; μk , �k), (1)

where ν ∈ SK−1 is an element of the (K − 1)-dimensional probability simplex, μk , y ∈ R
p, K is

a positive integer, �k is a p×p positive-definite matrix, and φ(y; μ, �) = |2π�|−1/2 exp{−(y−
μ)T�−1(y−μ)/2} is the Gaussian density function. In (1), y are observed entity-specific features
that we will use to perform record linkage. In our motivating application, typical features are name,
time/date of death, and place of death. It is natural to treat time and place as continuous variables,
and it is common to embed name into an abstract continuous space by way of a metric on text,
such as Jaccard similarity or Levenshtein distance. As such, (1) provides a reasonable default
mixture in our setting.

The mixture (1) differs from the mixture considered in Zanella et al. (2016), which is similar to
that in Dunson & Xing (2009), a nonparametric Bayesian model for multivariate categorical data.
Our rationale for using Gaussian mixtures comes from the results of Johndrow et al. (2017) and
Fienberg et al. (2009), which make clear that the maximum number of unique mixture components
in the model of Dunson & Xing (2009) is strictly less than dp, where d is the number of distinct
levels of the categorical variables. Thus, it is impossible to resolve more than dp entities on the
basis of p categorical measurements, motivating our focus on the case of continuous features,
which does not suffer from this fundamental limitation.
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Table 1. Example of data for name problem
Name (yi) Identifier (qi)

John Smith 1
John Smith 2
Jane Wang 8
Jane Wang 9
Anna Rodriguez 11
Anna Rodriguez 14

In providing an upper bound on performance in entity resolution, we focus on a case that
favours good performance; in particular, we consider the task of correctly determining which
mixture component generated each yi ∼ L(y | ν, {μk , �k}k=1,...,K ) (i = 1, . . . , N ), assuming that
(1) is known. We focus on the estimator

k̂(y) = arg maxk log φ(y; μk , �k) = arg maxk log φk(y). (2)

We will assign y to the mixture component that maximizes the likelihood; this is the Bayes rule
classifier with equal prior weight on each component. This estimator allows many-to-one matches.
In what follows, we will study a series of cases where the set of unknown parameters in the model
is gradually expanded, which provides a set of theoretically tractable finite-sample bounds on the
best-case performance of clustering-based approaches to entity resolution. Although we focus on
Gaussian mixtures for simplicity, many of the results apply equally to mixtures of any kernels
that are functions of a metric on R

d , and we point out extensions where appropriate.

2·2. An information-theoretic bound

We first consider multiple true entities with identical values of the entity-specific parameters
(μk , �k). Suppose that we observe two complete enumerations of a population, each containing
a nearly mutually exclusive set of covariates about each individual. We assume that these two
lists contain only one field in common. For example, suppose one list contains each individual’s
name and date of birth and the other contains each individual’s name, location of death, and date
of death. The goal is to match each individual on the first list to the correct individual on the
second list to produce a complete dataset consisting of name, date of birth, date of death, and
location of death for each individual in the population.

In locations with low entropy in the name distribution, as is the case in Syria, this list is likely to
be composed of many individuals sharing exactly the same first and last name. In this section, we
illustrate the limitations in performance of record linkage when multiple entities have identical
values of (μk , �k) and the data are observed without noise. In the context of (1), this corresponds
to the limit as the maximum eigenvalue of �k approaches zero, resulting in a mixture of delta
measures. For simplicity, we focus on the case where the features are names, with an obvious
parallel to the case where features are vectors in R

p and multiple entities have identical true
values of the feature vector.

Suppose that we observe a list of names yi for i = 1, . . . , N = K , where yi takes M < N
unique values. Let Nm =∑i 1(yi = μ∗m) for m = 1, . . . , M , where {μ∗m : m = 1, . . . , M } is the
set of unique values of μk ; Nm is the number of times the name μ∗m appears in the database. Let
qi ∈ {1, . . . , K} denote an unobserved identifier of the component that generated yi. For example,
the full data could look like Table 1 and we only observe the name column.

The goal is to assign the correct identifier to each record or, equivalently, to determine from
which component each record was generated. This is related to the problem of relinking two
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paired variables when the ordering of the variables has been independently permuted, as outlined
in DeGroot & Goel (1980) and references therein. We consider the case where it is known that
there is exactly one record corresponding to each person, and use a random allocation procedure.
When multiple true entities have identical values of μk , the estimator in (2) does not give a unique
solution, since pr(y | μk) = 1 if y = μk and 0 otherwise, so the likelihood has identical values
for all k such that μk = y.

Let Im = {i : yi = μ∗m} be the set of all records with name μ∗m, and let I∗m = {k : μk = μ∗m} be
the set of all components with mean μ∗m; this is the set of values qi can potentially take for each
i ∈ Im. The procedure used is to randomly assign records i ∈ Im to a permutation of the elements
of I∗m such that each record is assigned to exactly one of the mixture components that could have
generated it. After making this assignment, the true value of qi is revealed and the number of
correct assignments enumerated. Clearly, there are Nm! ways to assign each individual with the
same name to an element of I∗m, where |I∗m| = Nm, and only one of these assignments will be
exactly right. Let Zm be the number of correct assignments with name μ∗m, and let Z =∑M

m=1 Zm.
Then the probability of assigning every record i to its true qi is pr(Z = N ) = ∏M

m=1(Nm!)−1.
On the log scale this turns out to be very intuitive since, by Stirling’s approximation,

log{pr(Z = N )} = −
M∑

m=1

log Nm! = −
M∑

m=1

Nm log Nm − Nm + O(log Nm)

= −HY + N −
M∑

m=1

O(log Nm),

where HY is the entropy of the name distribution. Moreover, the distribution of Zm can be described
by the probability mass function

pr(Zm = z) = 1

Nm!
(

Nm

z

)
{!(Nm − z)} (3)

where, for an integer n, !n is the number of derangements of the integers 1, . . . , n, i.e., the number
of ways to rearrange the sequence 1, . . . , n such that none of the elements of the sequence are in
their original locations. We have the relation

!n =
⌊

n!
e
+ 1

2

⌋
= round(n!/e) (4)

for n � 1, where �·� is the floor function; also, !0 ≡ 1.
We now consider the expectation of Zm. It is straightforward to compute upper and lower

bounds; proofs are deferred to the Appendix.

Remark 1. The expectation of Zm satisfies

�(Nm, 1)

�(Nm)
� E(Zm) � �(Nm, 1)

�(Nm)
+ 2Nm−1

(Nm − 1)! ,

where �(Nm, 1) = ∫∞1 tNm−1 exp(−t) dt is the incomplete gamma function.
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Fig. 1. Upper and lower bounds on E(Zm) (lines) and the
exact value of E(Zm) (points) for Nm ∈ {0, . . . , 10}.

The difference between the upper and lower bounds is less than 0·001 when Nm = 11, so for
large Nm the lower bound is very accurate. Figure 1 shows the upper and lower bounds as well as
the exact value of E(Zm), which can quickly be computed exactly for Nm � 10 and is identically
1 in all cases. From this it is clear that taking E(Zm) = 1 for all Nm is at least a very accurate
approximation, and is probably the exact value of the expectation. Assuming it is exact, we have
E(Z) = M , and the expected proportion of correct assignments is MN−1.

We give a concentration inequality for the proportion of correct assignments, Z/N . We have
N−1Z = N−1∑M

m=1 Zm. As the Zm are independent and E(Z) = M , by Hoeffding’s inequality
we have

pr(|Z/N −M/N | > t) � 2 exp

{
−2t2∑M

m=1(Nm/N )2

}
= 2 exp

(
−2N 2t2∑M

m=1 N 2
m

)
.

We obtained data from the U.S. Census Bureau on the frequency of all surnames and given
names in the U.S. population. Assuming independent selection of first and last names in the
overall population, we estimate E(Z/N ) = 0·28 for entity resolution of the U.S. population on
the basis of only first name and last name. Dependence between first and last names will tend to
decrease this expectation. We have N 2(

∑
m N 2

m)−1 > 6× 105, so

pr(|Z/N −M/N | > t) � 2 exp(−1·2× 106t2);

for example, the probability that Z/N > 0·29 is less than 10−51. Hence, in the United States
names example, the distribution is highly concentrated around its expectation and there is an
extremely low probability of getting even one third or more of the assignments correct.

For additional context, we also computed E(Z/N ) for two states. For the least populated
state, Wyoming, we estimate E(Z/N ) = 0·89, while for the most populated state, California,
we estimate E(Z/N ) = 0·45. We also compute E(Z/N ) for the entire United States, assuming
that in addition to first and last names we also observe the last four digits of each person’s social
security number. We assume that these digits are assigned uniformly at random from integers
between 0000 and 9999 independently of first and last name. Adding this extra information to
first name and last name for the U.S. population gives E(Z/N ) = 0·57. Thus, in each case a
substantial proportion of errors is likely. These examples illustrate the fact that in many entity
resolution problems, the best possible performance is substantially less than perfect accuracy
due to redundancy in the true values of the entity features. This provides an upper bound on the
performance achievable when features are observed with noise.
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2·3. Analysis of noisy observations when mixture parameters are known

Having established the limitations resulting from redundancy of the true entity features, we
now analyse the effect of noise in the setting where all true entity features are distinct. We begin
with a highly simplified case. Suppose we observe a data sequence y1, . . . , yN and that each
observation originates from the mixture in (1) with N = λK for λ ∈ N, νk = N−1, μk ∈ [a, b],
and �k = σ 2 for all k . Although the results are general, we have in mind situations in which λ

is some small positive integer and most entities have on the order of λ records in the data, the
typical situation in our motivating human rights applications.

Assume that the parameters {μk}1�k�K , σ 2 and ν are known. On observing y, we use
estimator (2) of the mixture component it originated from. Let k0 be the true value of k . Then,
letting prφk0

{A(y)} denote the probability of event A(y) if y is drawn from component k0 of (1),

pr
{
k̂(y) = k0

} = prφk0

{
(y − μk0)

2 =
K∧

k=1

(y − μk)
2

}
,

where
∧K

k=1 yk denotes the minimum of the collection {yk , k = 1, . . . , K}. We make the simpli-
fying assumption that the μk are equally spaced, so that |μk−μk+1| = δK = (K−1)−1|b−a| =
(K − 1)−1
 for all k . Then, letting �(·) denote the standard normal distribution function,

pr
{
k̂(y) = k0

} = prφk0

{
(y − μk0)

2 <
δ2

K

2

}
= prφk0

( |y − μk0 |
σ

<
δK

2σ

)

= �

(
δK

2σ

)
−�

(−δK

2σ

)
= 2�

(
δK

2σ

)
− 1, k0 |= 1, K . (5)

For k0 = 1 or k0 = K , the expression is �{δK/(2σ)}. When K is large, the effect of using
(5) for all k is negligible, so to simplify exposition we will do so. A condition like that in (5)
would hold for any mixtures where the component densities are a function of a metric on R, with
�(·) replaced by a different distribution function. This includes many of the kernel functions
commonly used in machine learning, as well as other common densities such as the t density.

With Z being the number of correct classifications, we have the following result for the Gaussian
mixture.

Remark 2 (Infeasibility result for microclustering). Suppose μk ∈ R are equally spaced and
restricted to a compact set, so that δK = (K − 1)−1
. Then

pr
(∣∣∣∣ Z

N
−
[

2�

{



2(K − 1)σ

}
− 1

]∣∣∣∣ > t

)
< 2 exp(−2t2λK)

and

lim
K→∞ pr(Z = 0) = lim

N→∞

[
2− 2�

{



2(N/λ− 1)σ

}]N

= exp
[−
λ/{(2π)1/2σ }].

Therefore, in large populations, the proportion of correct assignments, N−1Z , is highly con-
centrated around its expectation given by (5), which will be very near zero when K−1 
 
/(2σ).
Evidently, Z → 0 almost surely and the probability of zero correct assignments is bounded away
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from zero unless limK→∞ 
/(σK) > 0, which requires 
/σ = �(K), where f (K) = �{g(K)}
means that there exist constants C and K0 < ∞ such that f (K) > Cg(K) for all K > K0. In
other words, either the width of the set containing the means must grow at a rate of at least
K , or the observation noise must go to zero at least as fast as K−1. We refer to the condi-
tion 
/σ = �(K) as infinite separation, as it effectively requires that the entities be infinitely
far apart relative to the noise level in the limit. Practically, this means that for entity resolu-
tion via microclustering, measurements on entity-specific features must get more precise as the
number of entities increases. Given that this regime applies when all the parameters of the mix-
ture are known, Remark 2 suggests that the full problem of entity resolution by clustering is
practically impossible in most cases. Estimates of these parameters would have standard error
of the order K1/2N−1/2. Therefore, when N = λK , which is the case in most record link-
age applications, standard errors are constant in the number of observations, and uncertainty in
parameters remains even asymptotically, so the result in Remark 2 understates the futility of the
problem.

2·4. The effect of dimension

We now consider the case where the dimension pK grows with K , and show that when the
parameters of the mixture are known, infinite separation can be achieved when the means reside
on a compact set and observation noise does not decay to zero as K → ∞. Consider the mix-
ture in (1) with μk ∈ R

pK and �k = σ 2IpK for all k . Assume that the means are restricted
to the Euclidean unit ball B(pK ) in R

pK and they are arranged so that ‖μj − μk‖ � δK for
every j |= k , where ‖ · ‖ is the Euclidean norm. The maximum number of means that can fit
inside B(pK ) while satisfying this separation condition is the δK -packing number M{δK ; B(pK ),
‖ · ‖}, which is related to the δK -covering number N {δK ; B(pK ), ‖ · ‖} by the inequality

N {δK ; B(pK ), ‖ · ‖} � M{δK ; B(pK ), ‖ · ‖} � N {δK/2; B(pK ), ‖ · ‖}. (6)

The covering number of the unit ball satisfies

pK log
1

δK
� log N {δK ; B(pK ), ‖ · ‖} � pK log

(
1+ 2

δK

)
. (7)

If we have K points inside B that are δK -separated, then at most K = M{δK ; B(pK ), ‖ · ‖},
so combining (6) and (7) gives

K−1/pK < δK < 4(K1/pK − 1)−1. (8)

The maximum likelihood estimator (2) satisfies

pr{k̂(y) = k0} = prφk0

{
(y − μk0)

T(y − μk0)

σ 2 <
δ2

K

2σ 2

}
= pr

(
χ2

pK
<

δ2
K

2σ 2

)
,

where χ2
pK

is chi-squared with pK degrees of freedom. Appealing to the central limit theorem,

pr

(
χ2

pK
<

δ2
K

2σ 2

)
→ �

{
δ2

K/(2σ 2)− pK

(2pK )1/2

}
,
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so δ2
K/σ 2 � CpK for all large K with 0 < C < ∞ is a necessary and sufficient condition

for pr{k̂(y) = k0} to converge to a nonzero constant as K , pK → ∞. Combining this with (8),
we obtain that δ2

K/σ 2 � CpK implies σ 2 � 16(CpK )−1(K1/pK − 1)−2. Thus, it is even pos-
sible to have σ 2 bounded away from zero if pK grows fast enough with K . For example, if
pK = (log K)2, then limK→∞ 16(CpK )−1(K1/pK − 1)−2 = 16C−1. Of course, having pK →∞
in the case where the mixture parameters are unknown means that for each mixture compo-
nent we must estimate a growing number of parameters, and N = �(KpK ) is a necessary
condition for consistency. Therefore N = λK will not be sufficient, and we must have the
number of records per entity growing faster than pK , which cannot occur in the microcluster-
ing setting. The practical ramification is that, if we ignore the need to estimate the parameters
of each component, one way to combat the failure of entity resolution as the number of enti-
ties increases is to attempt to increase the number of variables collected per record on each
entity.

2·5. The case where means are unknown: Bayesian mixtures

We now consider the case where the mixture component means are unknown. Suppose that
N observations are generated from the mixture given in (1) with σ 2 and ν known. Consider
a Bayesian analysis with independent priors μk ∼ N (0, τ 2). The calculations leading to the
following results can be found in the Appendix and Supplementary Material.

Let γ1, . . . , γN for γi ∈ {1, . . . , K} be a configuration of the N observations into K classes,
and let Nk =∑i 1(γi = k). Let G = {1, . . . , K}N be the set of all possible configurations, with
|G| = KN . The marginal likelihood of the configuration, integrating out the means, is

L(y, γ | ν, τ 2, σ 2) =
K∏

k=1

ν
Nk
k σ

(2πσ 2)Nk/2(Nkτ
2 + σ 2)1/2 exp

{
τ 2(Nkȳk)

2

2σ 2(Nkτ
2 + σ 2)

− Nky2
k

2σ 2

}
, (9)

where y2
k = N−1

k

∑
i: γi=k y2

i and ȳk = N−1
k

∑
i: γi=k yi; so the posterior probability of the

configuration is

p(γ | y, ν, τ 2, σ 2) = L(y, γ | ν, τ 2, σ 2)∑
γ ∗∈G L(y, γ ∗ | ν, τ 2, σ 2)

= 1

1+∑γ ∗ |=γ BF(γ ∗, γ )
,

where the Bayes factor is BF(γ ∗, γ ) ≡ L(y, γ ∗ | ν, τ 2, σ 2)/L(y, γ | ν, τ 2, σ 2). Consider the case
where γ ∗ consists of all singleton clusters while γ consists of N−2 singleton clusters, one empty
cluster, and a single cluster with two observations. There are N such elements of G. The Bayes
factor is

BF(γ ∗, γ ) = νj

νk

σ(2τ 2 + σ 2)1/2

(τ 2 + σ 2)
exp

[
τ 2

2σ 2

{
y2

i + y2
i′

τ 2 + σ 2 −
(yi + yi′)2

2τ 2 + σ 2

}]
,

where i and i′ are the indices of the two observations that are allocated to the same cluster in
γ and different clusters in γ ∗, j is the cluster that contains yi in configuration γ ∗ and is empty

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asy003#supplementary-data
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Fig. 2. Performance of Bayes mixtures in entity resolution: (a) proportion of entities correctly assigned using maximum
likelihood assignment when parameters are known; (b) boxplot of Markov chain Monte Carlo samples of ‖A−A(0)‖0

for Bayes mixtures with unknown means versus c−1.

in configuration γ , and k is the index of the cluster that contains observation yi′ in configura-
tion γ ∗ and contains both yi and yi′ in configuration γ . Suppose that the truth is configuration
γ ∗, with N = K distinct entities. Integrating the Bayes factor over the data distribution, we
obtain∫

BF(γ ∗, γ )φ(yi; μi, σ)φ(yi′ ; μi′ , σ) = νj

νk

2τ 2 + σ 2

{2(σ 2 + τ 2)2 − σ 4}1/2

× exp
[
−1

4
τ 2
{
−(μi − μi′)2

σ 4 + (μi + μi′)2

2(σ 2 + τ 2)2 − σ 4

}]
.

(10)

From this it is clear that when N = K , as ‖μi − μi′‖ → 0, the expectation of the Bayes factor
converges to a constant, and a necessary condition for E{BF(γ ∗, γ )} → ∞ is ‖μi − μi′‖ → ∞.
Therefore, when the μi are confined to a compact set, Bayes factors for infinitely many incorrect
configurations will converge to constants in expectation as K → ∞, since K → ∞ implies
‖μi − μi′‖ → 0 for infinitely many pairs i, i′. It follows that the posterior will not even be
consistent for entity resolution, and will fail to concentrate on any finite set of configurations
asymptotically.

3. EMPIRICAL ANALYSIS OF ENTITY RESOLUTION BY MICROCLUSTERING

We show through simulation studies that the infeasibility results are borne out empirically. We
first consider the case where there are K = 5000 entities and we observe data yi ∼ N (μi, σ 2) for
i = 1, . . . , N with N = K . The common variance parameter σ 2 is cK−1, and c is varied between
0·1 and 2 across the simulations. In every case μi = i/K , so the means are equally spaced on the
unit interval. Entity resolution is performed using the estimator in (2).

The results are shown in Fig. 2(a). As expected, the proportion correctly assigned decreases
with c. Entity resolution is nearly perfect for c = 0·1, but begins to decline noticeably around
c = 0·25, which is intuitive since at that value, half the distance between the true means, the
threshold at which misassignment occurs using the maximum likelihood estimate is twice the
standard deviation. For c = 2/3, approximately half of the observations are correctly assigned.
When c = 2, the proportion correctly assigned is about 0·2.
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We perform a second simulation in which we conduct entity resolution without knowledge of
the true means. We simulated N = 100 observations from

γi ∼ Categorical{(1/K , . . . , 1/K)}, yi | γi ∼ N (γi/K , σ 2)

with σ 2 = cK−1, where c varied between 0·1 and 2 across the simulations. We then performed
posterior computation by collapsed Gibbs sampling for the Bayesian mixture model with known
component weights and component variances described in § 2·5. We used identical priors
μk ∼ N (0, 9) on the means for each component. For each Markov chain Monte Carlo
sample, we computed an adjacency matrix A for the 100 observations, where Aij = 1 if
observations i and j are assigned to the same component and Aij = 0 otherwise. We then com-
puted the L0 distance between the sampled A and the true adjacency matrix A(0), defined as
‖A − A(0)‖0 = ∑N

i=1
∑N

j=1 1(Aij |= A(0)
ij ), for each Markov chain Monte Carlo sample. Perfect

entity resolution corresponds to ‖A−A(0)‖0 = 0, while the value of ‖A−A(0)‖0 can conceivably
be as large as 1002 − 100, which occurs when A is a matrix of ones and A(0) is the identity.
Figure 2(b) shows boxplots of the approximate posterior distribution of ‖A−A(0)‖0 as a function
of c−1. As expected, performance in entity resolution degrades as c increases, with the error rate
increasing sharply near the value c = 0·25.

4. POPULATION SIZE ESTIMATION WHEN ENTITY RESOLUTION IS POOR

4·1. Overview of population size estimation

Estimation of the number of unique entities when some entities may not appear in any database
is referred to as population size estimation and is the ultimate objective of entity resolution in
our motivating human rights setting. In this section we give a positive empirical result for this
inference problem. We construct a simulation in which it is possible to accurately estimate the
number of unique entities from a clustering assignment even when the proportion of records
correctly assigned to clusters is small.

We first describe the population size estimation problem and its relationship to entity resolu-
tion. Our observed data consist of noisy observations yi of entity characteristics and an integer
di ∈ {1, . . . , T } such that di = j indicates that record i appeared in database j, and we aim to
estimate K , the number of unique entities. The typical approach uses a two-stage procedure. First,
we perform entity resolution on the observed data. The linked records are summarized as a 2T

contingency table that records the estimated number of individuals appearing in every possible
combination of the T databases. Specifically, for every x ∈ {0, 1}T , let n̂(x) be the estimated count
of the number of entities that appeared in databases {j : xj |= 0}. For example, the entry n̂(011)

in the case of three databases gives the estimated count of the number of entities that appear
in the second and third databases but not the first. Performing entity resolution gives us n̂(x)
for every x except x = 00 · · · 0. In the following, we use n(0) as shorthand for n(00 · · · 0).
One then uses a second-stage population estimation procedure to estimate n̂(0), resulting
in K̂ =∑x∈{0,1}T n̂(x).

4·2. Simulation set-up

To simulate observations (yi, di), we use the following procedure. We first generate a collec-
tion of T database-specific observation probabilities π1, π2, . . . , πT from πj ∼ Be(a, b). These
are population-level probabilities that any given entity will appear in database j. We then use
Algorithm 1 to generate data.
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Algorithm 1. Generation of synthetic databases.

Set i = 0
For k = 1, . . . , K

For j = 1, . . . , T
Sample xj ∼ Ber(πj)

If xj = 1
i← i + 1
Sample yi ∼ N (k/K , σ 2)

di = j
Output Nobs = i, yi, di for i = 1, . . . , Nobs

This results in T synthetic databases which do not contain entries for any of the entities for
which the sampled value of x in Algorithm 1 was the zero vector. These are the unobserved
entities that are estimated in the second stage of the procedure, and their true count is n(0). In
general, we choose a and b in the beta distribution to make n(0) ≈ 0·25K . This is consistent
with real population estimation problems encountered in the human rights field and makes the
problem relatively challenging compared to, say, the choice a = b = 1, which results in much
smaller proportions of unobserved entities.

4·3. Inference procedure

We perform inference using the following two-stage procedure. For the observed records yi

(i = 1, . . . , Nobs), we first calculate an estimate k̂ of the cluster assignments using (2). Let
x̂k ∈ {0, 1}T denote a binary vector with a 1 in element j if entity k is estimated to appear
in database j and with zero entries otherwise, for j = 1, . . . , T . For any x ∈ {0, 1}T , define
n̂(x) = ∑

k 1(x̂k = x), giving an estimate of the list intersection counts n(x) for all x |= 0.
Then, in the second stage, we estimate the number of unobserved entities n(0) using a standard
estimator implemented in the R (R Development Core Team, 2018) package Rcapture. We then
define K̂ = ∑

x∈{0,1}T n̂(x), the sum of the estimated number of entities appearing in every
possible combination of the databases, including those that appear in no databases. We perform
this inference process for 250 replicate, independent simulations for several values of σ 2.

To assess performance, we consider four metrics: (i) the mean proportion of records assigned
to their correct entity/cluster; (ii) mean coverage of 95% confidence intervals for K , which is
an output of Rcapture; (iii) accuracy of point estimates for the total number of entities K , as
measured by

1− RMSE(K̂)

K
= 1− 1

K

{
1

r

250∑
r=1

(K̂r − Kr)
2

}1/2

,

where r indexes simulation replicate; and (iv) accuracy in estimation of n(x), x |= 0, as measured
by 1−{1−R2(n̂, n)}, where R2 is the squared correlation of n̂(x) with n(x) taken over the entries
in n(x) with x |= 0 and the 250 replicate simulations.

The results are presented in Fig. 3 for a series of simulations with σ 2 = cK−1 for values of
c between 0·1 and 2 and K = 5000 in each case. As expected, as c increases, accuracy in entity
resolution decreases markedly. On the other hand, coverage of 95% confidence intervals for K
and the root mean squared error for estimation of K by K̂ are insensitive to the value of c. Thus,
at least in this example, population estimation on the basis of linked records is not sensitive to the
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Fig. 3. Plots of simulation results as a function of c for population estimation after entity resolution as described in
the text: (a) mean proportion of records correctly assigned; (b) mean coverage of 95% confidence intervals for K ;

(c) 1− K−1 RMSE(K̂); (d) 1− {1− R2(n̂, n)}1/2.

accuracy of entity resolution. This is particularly interesting, since estimation of n(x) by n̂(x) for
x |= 0 is sensitive to the value of c, as shown in Fig. 3(d). In other words, poor entity resolution
results in poorer estimates of the individual cells n(x), x ∈ {0, 1}T , of the contingency table, but
their sum K is still estimated accurately.

5. DISCUSSION

This work exposes a fundamental problem with entity resolution via clustering, even in ide-
alized cases, such as when the true data-generating model is known. Empirically, it appears that
some functionals of the linked records may be reliably estimated even if entity resolution per-
formance is poor. Understanding which classes of functionals we can estimate and under what
conditions is an important area for future research. Another interesting direction is to consider
ways of checking whether extensive errors in entity resolution are likely to have occurred after per-
forming model-based clustering by comparing component-specific variance with the separation
between the cluster centres.

ACKNOWLEDGEMENT

This work was inspired by research conducted at the Human Rights Data Analysis Group.
The authors gratefully acknowledge funding support for this work from the Human Rights Data
Analysis Group and the U.S. National Institutes of Health.

SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes a Mathematica notebook with
computation of the expression in (10).

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asy003#supplementary-data
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APPENDIX

Proof of Remark 1

From (3) and (4) we have

E(Zm) �
Nm∑
j=0

j

Nm!
(

Nm

j

)
(Nm − j)!

e
�

Nm∑
j=0

j

j!(Nm − j)!
(Nm − j)!

e
� 1

e

Nm∑
j=1

1

(j − 1)! =
�(Nm, 1)

�(Nm)
,

where �(Nm, 1) = ∫∞
1 tNm−1 exp(−t) dt is the incomplete gamma function. The corresponding upper

bound is

E(Zm) �
Nm∑
j=0

j

Nm!
(

Nm

j

){
(Nm − j)!

e
+ 1

}

�
Nm∑
j=0

j

Nm!
(

Nm

j

){
(Nm − j)!

e
+ 1

}
� �(Nm, 1)

�(Nm)
+ 2Nm−1

(Nm − 1)! .

Proof of Remark 2

If Z ∼ Bi[N , 2�{δK/(2σ)} − 1] then pr(Z = 0) = [2− 2�{δK/(2σ)}]N . Clearly, if the μk are equally
spaced and restricted to be on a compact set of width 
, then δK = 
/(K − 1) = 
(N/λ− 1)−1 for 
 <∞.
Since

lim
K→∞

pr(Z = 0) = lim
N→∞

[
2− 2�

{



2(N/λ− 1σ)

}]N

= exp{−
λ/(2πσ 2)1/2},

we obtain the second assertion. The first statement is obtained by an application of Hoeffding’s inequality.

Gaussian mixture marginal likelihoods

We do the calculation that gives rise to (9). Since each μk is assigned an independent prior, we have

L(y, γ | ν, τ 2, σ 2) = p(y | γ , σ 2, τ 2)p(γ | ν) = p(γ | ν)

K∏
k=1

p(y(k) | σ 2, τ 2),

where y(k) = (yi)i:γi=k are the observations in class k . The terms p(y(k) | σ 2, τ 2) are marginal likelihoods
of the data class k in the conjugate Gaussian model with unknown mean, with

p(y(k) | σ 2, τ 2) = σ

(Nkτ 2 + σ 2)1/2
exp

{
τ 2(Nkȳk)

2

2σ 2(Nkτ 2 + σ 2)
− Nky2

k

2σ 2

}

and p(γ | ν) =∏N
i=1

∏K
k=1 ν

γi
k (1− νk)

1−γi =∏K
k=1 ν

Nk
k , where ȳk and y2

k are defined in the main text.

Bayes factors

The Bayes factor for comparing all singleton clusters γ ∗ to N − 2 singleton clusters, one empty cluster,
and one cluster with two observations γ is

BF(γ ∗, γ ) = νkνj

ν2
k

(2τ 2 + σ 2)1/2(σ 2)1/2

τ 2 + σ 2
exp

{
τ 2(y2

i + y2
i′)

2σ 2(τ 2 + σ 2)
− τ 2(yi + yi′)2

2σ 2(2τ 2 + σ 2)

}

= νj

νk

σ(2τ 2 + σ 2)1/2

τ 2 + σ 2
exp

[
τ 2

2σ 2

{
y2

i + y2
i′

τ 2 + σ 2
− (yi + yi′)2

2τ 2 + σ 2

}]
,

where the notation i, i′ and k , j is defined in the main text.
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Expectation of the Bayes factor

This expression can be obtained by repeatedly completing the square. The calculation is simple but
tedious and was performed in Mathematica. A Mathematica notebook is provided in the Supplementary
Material.
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