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Abstract

Around the world, governments make substantial investments in public sector research and

development (R&D) entities and activities to generate major scientific and technical

advances that may catalyze long-term economic growth. Institutions ranging from the Chi-

nese Academy of Sciences to the French National Centre for Scientific Research to the

Helmholtz Association of German Research Centers conduct basic and applied R&D to cre-

ate commercially valuable knowledge that supports the innovation goals of their respective

government sponsors. Globally, the single largest public sector R&D sponsor is the U.S.

federal government. In 2019 alone, the U.S. government allocated over $14.9 billion to fed-

erally funded research and development centers (FFRDCs), also known as national labs.

However, little is known about how federal agencies’ utilization of FFRDCs, their modes of

R&D collaboration, and their adoption of non-patent intellectual property (IP) policies (copy-

right protection and materials transfer agreements) affect agency-level performance in tech-

nology transfer. In particular, the lack of standardized metrics for quantitatively evaluating

government entities’ effectiveness in managing innovation is a critical unresolved issue. We

address this issue by conducting exploratory empirical analyses of federal agencies’ innova-

tion management activities using both supply-side (filing ratio, transfer rate, and licensing

success rate) and demand-side (licensing income and portfolio exclusivity) outcome met-

rics. We find economically significant effects of external R&D collaborations and non-patent

IP policies on the technology transfer performance of 10 major federal executive branch

agencies (fiscal years 1999–2016). We discuss the scholarly, managerial, and policy impli-

cations for ongoing and future evaluations of technology transfer at federal labs. We offer

new insights and guidance on how critical differences in federal agencies’ interpretation and

implementation of their R&D management practices in pursuit of their respective missions

affect their technology transfer performance outcomes. We generalize key findings to

address the broader innovation processes of public sector R&D entities worldwide.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0268828 May 24, 2022 1 / 29

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Hemmatian I, Ponzio TA, Joshi AM

(2022) Exploring the role of R&D collaborations

and non-patent IP policies in government

technology transfer performance: Evidence from U.

S. federal agencies (1999–2016). PLoS ONE 17(5):

e0268828. https://doi.org/10.1371/journal.

pone.0268828

Editor: Antonio Rodriguez Andres, German

University in Cairo, CZECH REPUBLIC

Received: October 1, 2021

Accepted: May 10, 2022

Published: May 24, 2022

Copyright: © 2022 Hemmatian et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data underlying

the findings in our manuscript are available at

Harvard Dataverse: https://doi.org/10.7910/DVN/

DNUFWR.

Funding: A.J. This research was supported by the

Ewing Marion Kauffman Foundation under a

Kauffman Junior Faculty Fellowship grant. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

https://orcid.org/0000-0003-4607-0656
https://orcid.org/0000-0002-3023-6749
https://doi.org/10.1371/journal.pone.0268828
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268828&domain=pdf&date_stamp=2022-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268828&domain=pdf&date_stamp=2022-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268828&domain=pdf&date_stamp=2022-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268828&domain=pdf&date_stamp=2022-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268828&domain=pdf&date_stamp=2022-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268828&domain=pdf&date_stamp=2022-05-24
https://doi.org/10.1371/journal.pone.0268828
https://doi.org/10.1371/journal.pone.0268828
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7910/DVN/DNUFWR
https://doi.org/10.7910/DVN/DNUFWR


Introduction

As highlighted in a recent study by the World Intellectual Property Organization (WIPO),

governments in many countries significantly expanded and accelerated their investments in

research and development (R&D) activities as part of their policy responses to the 2009 finan-

cial crisis and the 2020 coronavirus outbreak [1]. For example, China is focused on building

critical nationwide infrastructure via the construction of advanced data centers, 5G wireless

networks, and new energy vehicles [1, 2]. These initiatives are driven primarily by greater pub-

lic sector investment in the Chinese Academy of Sciences, which in 2018 announced plans to

rapidly grow its number of national labs from 200 to 700 by 2020, with a fully operational key

lab system expected to be completed by 2025. In another example, specifically for combating

the coronavirus, France pledged 5 billion euros in R&D spending, which represents a 25%

increase over its original R&D budget for 2020. This effort is led by the 10 research institutes

that make up the French National Centre for Scientific Research (CNRS) and receive 80% of

all public R&D funds allocated by the French government [3, 4]. In a similar effort within

Europe, Germany’s second stimulus package, which targets COVID-19 recovery, features 50

billion euros of R&D investments in a wide array of future-focused technologies. These funds

are directed towards R&D projects conducted by three distinct networks of federal- and state-

sponsored labs, which include the Helmholtz Association of German Research Centers, the

Max Planck Institutes, and the Fraunhofer Institutes [5, 6]. In other countries such as Turkey

[7], India [8], and Israel [9], governments initiated similar programs to promote technology

commercialization and spark growth. Despite the considerable differences in political systems

and economic priorities across China, France, Germany, Israel, Turkey, and India, what their

respective public sector R&D entities all have in common are clearly defined government man-

dates to pursue scientific and technical breakthroughs that may fuel long-term growth, pros-

perity, and security.

In line with its counterparts in the aforementioned countries, but on an even broader scale,

the single largest public sector R&D sponsor in the world is the U.S. federal government,

which has a similar pro-growth mandate to drive scientific discovery, develop new knowledge,

promote technical standards, and generate useful innovations. For instance, in 2019 alone, the

U.S. government funded an estimated total of $141.5 billion in R&D expenditures [10], which

“plays an irreplaceable role in directing technology toward more general and active domains”

[11, 12]. Approximately 27% or $39.6 billion of this total is intramural R&D conducted inter-

nally by federal agencies, while the bulk of this funding, 73% or $101.9 billion, is allocated to

R&D conducted externally by for-profit corporations and nonprofit organizations. Within the

extramural R&D allocation, industry represents $43.6 billion, universities receive $33.4 billion,

and contractor-operated federally funded research and development centers (FFRDCs, many

of which are called ‘national labs’ or ‘federal labs’) account for $14.9 billion. Although there is

an established stream of prior research on university-industry technology transfer [13–20], far

less is known about technology transfer at national/federal labs and non-university research

institutes. Despite governments’ consistently large and increasing budget allocations to public

sector R&D entities and activities within their respective countries, there appears to be incon-

sistent and limited use of quantitative metrics for measuring performance outcomes related to

creating and commercializing new technologies.

The dearth of research in this area is surprising because national labs are an essential com-

ponent of the core systems of innovation in the U.S. and around the world [21, 22]. We aim to

extend prior research in a new direction by exploring how government-industry technology

transfer at national/federal facilities may differ from university-industry technology transfer

along critical dimensions, especially in terms of the identification, adoption, and usage of
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appropriate performance metrics. Indeed, an evaluation of institutional policies and practices

at these R&D facilities may yield new managerial and theoretical insights for improving the

effectiveness of existing government-supported technology transfer processes. Our study

investigates the following research question: How do differences in R&D policy implementation
across federal agencies affect their technology transfer activities and performance? We believe

that obtaining empirical evidence to answer this question is timely, relevant, and strategically

important as governments around the world continue to expand the scale and scope of their

funding for public sector R&D. The central premise of our study is that two main elements of

federal agencies’ varying approaches to innovation management directly influence technology

transfer performance: (1) their engagement in external R&D collaborations, through formal or

informal partnership agreements; and (2) their adoption of policies for sharing non-patented

intellectual property (IP). Although the importance of participating in external R&D collabo-

rations and adopting policies for handling IP are routinely incorporated into existing research

on university-industry transfer [23, 24], these factors are not yet systematically integrated into

the emerging stream of research on government-industry technology transfer [25]. Our study

aims to contribute to the nascent literature on federal technology transfer by providing a con-

ceptual framework, expanded metrics to measure successful technology transfer, and fresh

empirical evidence to guide scholars, managers, and policymakers in their evaluation of R&D

commercialization processes.

Our study differs from previous studies in two critical ways. First, unlike prior research on

government and academic technology transfer that focuses primarily on protecting proprie-

tary technologies through patenting activities [26, 27], we examine the importance of external

R&D collaborations and sharing proprietary technologies through non-patent IP policies such

as copyrights and materials transfer agreements (MTAs). Second, in contrast to the emerging

set of studies on federal technology transfer that use only agency-driven supply-side metrics to

evaluate agency performance [28], we introduce customer-driven demand-side metrics and

integrate both types of measures into our empirical analyses. For example, beyond the tradi-

tional supply-side metrics of filing ratio, transfer rate, and licensing success rate [29, 30] that

capture a producer’s ability to push technologies into the commercial marketplace, we use the

demand-side metrics of licensing income and portfolio exclusivity that capture a customer’s

willingness to pull technologies out of government labs [31]. By incorporating external R&D

collaborations and non-patent IP policies as predictors and demand-side metrics as outcomes
in our models, we seek to provide a more holistic picture of federal technology transfer perfor-

mance at the agency level.

We organize our study by first explaining the historical context of key legislative acts and

proposing a conceptual framework. We then conduct a set of exploratory analyses that offer

initial empirical evidence for the effects of external R&D collaborations and non-patent IP pol-

icies on the technology transfer performance of 10 major federal executive branch agencies

(fiscal years 1999–2016). Overall, when we specifically examine agencies’ use of formal agree-

ments for partnerships, we find a positive and significant relationship between this type of

external R&D collaboration and all of our supply-side metrics (filing ratio, transfer rate, and

licensing success rate), as well as portfolio exclusivity on the demand-side. In contrast, agen-

cies’ use of other types of customized and informal external R&D collaborations appears to be

associated with two main effects on the demand-side: (1) a significant decrease in licensing

income; and (2) a simultaneous and somewhat surprising corresponding increase in portfolio

exclusivity. We find evidence that agencies with a greater utilization of FFRDCs have lower

agency-driven technology transfer performance in terms of supply-side metrics. On the

demand-side, we find that greater FFRDC utilization is associated with greater licensing

income and lower portfolio exclusivity.
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We also find the adoption of non-patent IP policies to be associated with substantial and

economically significant shifts in the supply-side and demand-side metrics. While the supply-

side effects are similar for copyright agreements and MTAs, the demand-side effects are differ-

ent. External R&D collaborations appear to further amplify these observed effects. In sum, our

findings indicate that federal technology managers must carefully consider the combined

effects of external R&D collaboration and non-patent IP policies when formulating their

respective agencies’ technology transfer plans and programs. Based on these findings, we dis-

cuss the scholarly, managerial, and policy implications for ongoing and future evaluations of

federal agencies’ technology transfer performance. Beyond U.S. federal agencies, we also con-

sider how our key findings may inform possible innovation process improvements and policy

reforms for public sector R&D entities and activities in other countries and contexts.

Historical context and conceptual framework

Historical context

The Bayh-Dole Act of 1980 (Bayh-Dole), the Stevenson-Wydler Technology Innovation Act of
1980 (Stevenson-Wydler), and the Federal Technology Transfer Act of 1986 (FTTA of 1986) are

the cornerstones of the legal foundations for federal agencies’ interpretation and implementa-

tion of their R&D management practices and technology transfer activities in pursuit of their

respective missions [32]. Bayh-Dole allows non-profits and small businesses to keep title to

inventions made using federal government funding. Enacted in December of 1980, Bayh-Dole

—which made changes to U.S. Code (USC) title 35, i.e., the “Patents” chapter—also explicitly

authorized federal agencies to “grant exclusive or partially-exclusive licenses to patents, patent

applications, or other forms of protection obtained” (Codified as amended at 35 USC 200 et

seq.). The importance of Bayh-Dole (PL 96–517) on innovation policy is well-documented in

the existing literature and is prominently featured in numerous studies of federal technology

transfer, academic entrepreneurship, and the commercialization of university-owned patents

[33–36].

Prior to Bayh-Dole, the granting of an exclusive license was a lengthy and cumbersome

endeavor, with specific requirements differing by the agency. In practice, exclusive licenses

were almost never granted [37]. The elaborate process for the U.S. Navy, considered among

the more forward-thinking agencies at the time [38], involved advertising the patent in three

different publications (the U.S. Patent Office, the Federal Register, and at least one other publi-

cation of choice) for a period of at least six months, followed by another 60 day public notice

of a prospective exclusive license [39]. Given the lengthy processes and bureaucratic hurdles,

agencies would typically grant only non-exclusive licenses, which made a prospective licensee’s

business decision of investing in federally-owned patented technologies far riskier. As a result,

the government appeared to be hoarding around 30,000 unlicensed patents, and potentially

useful and valuable new technologies were not being commercialized. Hence, prior to the

enactment of Bayh-Dole, if one looked at patent licensing activity, federal technology transfer

appeared to be at a complete standstill. For example, in 1976 alone, only about 150 patents

were licensed by all federal agencies from over 2,000 issued patents [39]. With such a small

fraction of patents actually being licensed for commercial use, proposed reforms recom-

mended offering a degree of exclusivity in licensing through a unified and more streamlined

process to accelerate the commercialization of unlicensed inventions [40, 41]. By explicitly

authorizing federal agencies to exclusively license inventions, Bayh-Dole aimed to address this

issue.

Although it is less well-known than Bayh-Dole, an equally important piece of legislation is

Stevenson-Wydler (PL 96–480), which was enacted fifty-two days earlier and signed into law,
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also by President Carter. This law made changes to title 15, the “Commerce and Trade” chap-

ter, and was focused on using the federal labs’ R&D capabilities and resulting technologies to

more directly benefit citizens of the U.S. by moving those technologies to the private sector

(Codified as amended at 15 USC 3701 et seq.). Of the two laws, Stevenson-Wydler is the only

one to explicitly mention “technology transfer” and make technology transfer a codified mis-

sion of the federal labs by requiring each agency “strive where appropriate to transfer federally

owned or originated technology to State and local governments and to the private sector [42].”

Agencies were legally bound to establish an Office of Research and Technology Applica-

tions (ORTA) at each lab, staff the office with at least one full-time professional, and devote

not less than 0.5% of the agency’s R&D budget to support the technology transfer function. A

waiver for the 0.5% budgetary requirement was built into the law, and essentially all of the

agencies requested waivers; the requirement was dropped when the law was amended in 1986

[43–45]. From the beginning, the implementation of technology transfer legislation at federal

agencies and national labs had its supporters [46, 47] and skeptics [48]. Part of the ongoing

debate about the effectiveness of these policies and laws arose from the lack of a uniform, stan-

dardized set of metrics for consistently monitoring and measuring technology transfer perfor-

mance across agencies, labs, and teams:

“There is no single, obvious way to measure the success of tech transfer that everyone has
somehow been missing. Metrics themselves should be seen as experimental, and their impact
needs to be monitored. At the same time, metrics should not be altered lightly because stability
is needed to make comparisons over time.”

RFI Response, Massachusetts Institute of Technology [49]

The enactment of Stevenson-Wydler required federal agencies to incorporate technology

transfer activities directly into their respective missions and to allocate dedicated resources but

did not adequately define appropriate metrics for measuring these activities across agencies. In

the 1980s, several academic studies indicating that the U.S. faced a risky competitive decline in

innovation, along with the growing recognition that many national labs had specialized facili-

ties and equipment that could be leveraged to support innovation more broadly, prompted

renewed attention on federal technology transfer [50–52]. In response, Congress passed the

FTTA of 1986. Signed into law by President Reagan, the legislation amended Stevenson-

Wydler in a number of noteworthy ways, including moving licensing from being handled cen-

trally by agency managers to being handled by the inventing lab, establishing a Federal Labora-

tory Consortium, and most importantly, authorizing the use of Cooperative Research and
Development Agreements (CRADAs) by the labs.

A CRADA is a contractual agreement between one or more federal laboratories and one or

more non-federal entities “under which the Government, through its laboratories, provides

personnel, services, facilities, equipment, intellectual property, or other resources with or with-

out reimbursement (but not funds to non-Federal parties) and the non-Federal parties provide

funds, personnel, services, facilities, equipment, intellectual property, or other resources

toward the conduct of specified research or development efforts which are consistent with the

missions of the laboratory” (15 USC 3710a). Shortly after the law came into effect, CRADAs

experienced explosive growth and rapidly came to dominate the formal channels of federal

technology transfer [22, 53–55].

In sum, the enactment of Bayh-Dole, Stevenson-Wydler, and the FTTA of 1986 established

some of the guiding principles that remain influential today in shaping how federal agencies’

employees manage R&D activities. All three pieces of legislation address key issues regarding
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the ownership, transfer, and sharing of knowledge generated by federal labs. Bayh-Dole

emphasized the importance of licensing out government-owned inventions. Stevenson-

Wydler established the requirement that federal agencies explicitly incorporate technology

transfer into their missions. The FTTA of 1986 broadly authorized resource-leveraging agree-

ments in the form of CRADAs to facilitate collaboration with private sector partners. These

laws collectively provide broad authorization and guidance to agencies conducting R&D on

how to execute their mission with a focus on technology transfer.

Conceptual framework

Prior research argues that an organization’s performance in managing R&D is influenced by:

(1) the types of problems that the organization seeks to solve; and (2) the forms of governance
that the organization intends to implement [56]. From the perspective of managers and policy-

makers, improving organizations’ technology transfer performance requires matching the gov-

ernance form with the problem type [56–58]. Previous findings indicate that misaligned

governance forms and problem types may be costly to organizations in terms of lost time and

wasted resources and may be harmful in ways that are economically significant [59, 60]. Thus,

the use of insufficient or unsuitable governance forms for problem-solving may inhibit or

impede the inventive output and commercial activities that organizations ultimately seek to

generate through producing new knowledge and engaging in R&D collaborations [61].

In the context of U.S. federal government technology transfer, we contend that evaluating

the possible performance consequences of choosing governance forms that are congruent with

problem types is especially important for producing useful knowledge [62–64]. The federal

government and its individual executive branch agencies play a vital role in the production of

scientific knowledge as a public good [65]. The core issue of allocation associated with knowl-

edge [66, 67] as a public good is exacerbated by the fact that elected leaders, agency officials,

taxpaying citizens, and private sector firms are all interested stakeholders in public sector R&D

programs administered by a representative bureaucracy [68]. These divergent stakeholder

groups may fail to reach a policy consensus because they are often driven by competing or con-

flicting political, social, and economic motivations for either supporting or opposing govern-

ment R&D investment in creating national capacity for scientific problem-solving [69–71].

We argue that the frequent failure to achieve a broad-based policy consensus is due in part to a

lack of standardized and consistent government-wide performance metrics for quantifying the

value of technology transfer outcomes at the agency-level [29]. Furthermore, key constituen-

cies such as taxpaying citizens, industry associations, advocacy groups, and media watchdogs

may express valid concerns about only being able to observe the amount of financial resources

allocated to and invested in public sector R&D activities without being able to observe any

eventual commercial outcomes or actual economic impacts [72]. In other words, in the

absence of observable outputs with quantifiable benefits, these constituencies tend to focus on

the known costs of observable inputs. Hence, we contend that because the value of producing

scientific knowledge and sharing it as a public good is usually difficult to ascertain [73], this

makes actually introducing, reforming, replacing, or eliminating innovation programs difficult

for public sector organizations such as federal agencies to initially justify and eventually opera-

tionalize [74].

To specifically address the challenge of formulating and executing evidence-based policies

for managing government-funded innovation, our study attempts to develop managerially

sound and empirically observable metrics that capture the implementation of certain salient

governance forms within the distinct problem types encountered by federal agencies. We

believe that these tools may help scholars, managers, and policymakers who are seeking further
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transparency and greater accountability when examining federal agencies’ management of

public resources for R&D undertaken in the national interest.

It is generally easier to assess the potential commercial value of knowledge that is more

applied and practical versus knowledge that is more basic and theoretical. For example, an

optical sensor technology that can accurately detect faint objects from a great distance might

enhance existing commercial products such as satellites. However, a new underlying theory

that predicts the quantum effects of gravity on bending light from distant stars may be consid-

erably more difficult to immediately use in commercial applications including satellites. In

addition, knowledge that spans multiple scientific domains is more interdependent because it

requires synthesizing discoveries across distinct disciplines. Greater knowledge interdepen-

dence is often associated with fundamental breakthroughs as opposed to incremental innova-

tions. For example, nuclear physicists, computer scientists, and medical researchers from a

range of national labs collaborated to originally prototype and develop medical imaging tech-

nologies that use radioisotopes to detect and treat cancerous tumors. Both dimensions–applied

knowledge and interdependent knowledge–affect researchers’ abilities to solve scientific prob-

lems. Consistent with the prior literature, we posit that the scientific problems that organiza-

tions face may be characterized along two critical dimensions: the use of applied knowledge
[75, 76] and the interdependence of the knowledge [77] required to solve the problem.

Hence, effectively solving a problem is dependent on knowing how to navigate the interde-
pendence and knowing where to search for the relevant knowledge [78]. Compared to major

R&D-intensive multinational corporations in the private sector, major R&D-intensive federal

agencies are typically tasked by their leaders to engage in larger-scale and longer-term scien-

tific endeavors that may have no immediate commercial value but that are nonetheless

expected to be strategically important for the future of the country as a whole. FFRDCs and

external (non-federal) R&D partners may possess unique resources and capabilities that are

essential for commercializing scientific knowledge. This implies that utilizing FFRDCs and

engaging in formal and informal R&D partnerships [79, 80] are potentially useful means for

federal agencies to transfer technologies in fulfillment of their missions [81–83].

Leading R&D-intensive federal agencies–including the U.S. Department of Energy, the

Department of Defense (DOD), the Department of Health and Human Services (HHS), the

National Aeronautics and Space Administration (NASA), and the U.S. Department of Agricul-

ture (USDA)–independently pursue their own portfolios of scientific research characterized

by varying levels of applied versus basic knowledge and varying levels of knowledge interde-

pendence across domains [84]. Analyzing similarities and differences across these agencies

provides insight into how to navigate this interdependence and precisely where to search for

the relevant knowledge. We argue that some of these similarities and differences are readily

apparent in each agency’s decisions regarding the appropriate set of governance forms to

apply in solving the types of scientific problems that are central to fulfilling their respective

missions. These governance forms typically include a broad array of knowledge sharing pro-
cesses and structures–from standardizing contracts, to forming alliances, to offering grants and

prizes, to leveraging crowdsourced platforms, and building global user communities [85–88].

Unlike prior research on government and academic technology transfer, which focuses pri-

marily on protecting proprietary technologies through patenting activities, here we examine

the importance of engaging in external R&D collaborations (such as FFRDC utilization, tradi-

tional CRADAs, and other R&D collaborations) and sharing proprietary technologies through

non-patent IP policies such as copyrights and MTAs [89, 90], and evaluate these agency-spe-

cific policies on performance measures. Because solving difficult scientific problems frequently

requires the development of technical artifacts such as software, datasets, and materials as

complementary resources and tools, we examine this aspect of knowledge sharing. In addition,
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“increased linkages to and knowledge flows from various external partners, particularly in

uncertain environments, lead to improved innovation outcomes” [91].

“Although copyright can protect computer software, under the Government Works excep-

tion, the U.S. Government is prohibited from claiming copyright in the United States in any

works prepared by officers or employees of the Federal Government in the course of their offi-

cial duties” [49]. “MTAs may apply to anything from materials that are simply under the con-

trol of the originator but have no formal intellectual property rights attached to them to

proprietary materials protected by patents and trade secrets” [92]. Defining policies for the use

of copyrights and MTAs presents an interesting dilemma for managers of federal agencies. On

the one hand, potential external R&D partners and prospective licensees often need access to

accompanying software, datasets, materials, and associated know-how to be able to further

develop and possibly commercialize technologies transferred from federal labs. On the other

hand, if the copyright status or property transfer rights of the software, datasets, materials, or

know-how is unclear or infeasible due to the agency’s interpretation and implementation of

federal statutes, this may hinder the subsequent use of these essential technical artifacts in the

development of commercial applications in the private sector.

In sharp contrast to the emerging set of studies on federal technology transfer that utilize

only supply-side performance metrics [28], we propose the use of demand-side metrics as well

[93, 94]. For example, previous research recommends measuring the filing ratio, transfer rate,

and licensing success rate to evaluate the effectiveness of federal technology transfer efforts

[29, 30]. A key limitation of all of these metrics is that they represent the potential market read-

iness of the technologies solely from the selling producer’s perspective. We attempt to overcome

this limitation by extending the relevant metrics to include the licensing income generated

and the degree of portfolio exclusivity associated with income bearing licenses. We contend

that licensing income and portfolio exclusivity represent actual market acceptance of the tech-

nologies from the paying customer’s perspective. In other words, filing ratio, transfer rate, and

licensing success rate reflect an agency’s ability to prudently manage and convert its technolo-

gies into accessible artifacts, while licensing income and portfolio exclusivity reflect actual cus-

tomers’ market adoption of the technical artifacts generated by the agency. In keeping with the

emphasis of recent administrations on Lab to Market (Lab2M) initiatives across the entire U.S.

federal government, we believe a balanced usage of both supply-side and demand-side perfor-

mance metrics is warranted. A holistic appraisal of supply- and demand-side metrics may help

stakeholders better understand technology transfer performance and drive a policy consensus.

Managing federal technology transfer performance

The historical context and conceptual framework we proposed above suggest that there is a set

of practical and actionable ideas that should be explored empirically to provide federal tech-

nology managers with an initial sense of the potential direction and magnitude of the possible

effects of key innovation management decisions under their control. For example, when allo-

cating their annual R&D budgets and aligning these budgets with their missions, federal tech-

nology managers are empowered to determine their respective agencies’ utilization of

FFRDCs. Instead of using classical contracts or CRADAs, greater reliance on FFRDCs for con-

ducting R&D might plausibly reduce supply-side technology performance while boosting

demand-side performance. This is because the generation of key knowledge artifacts becomes

more decentralized and more distributed, though still without a commercial sector nexus,

when it is shifted from agency-operated sites to contractor-operated FFRDCs. However, this

same shift may advance the technologies closer to commercialization by mitigating scientific

or technical risk, which may enhance demand-side performance.
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In addition, greater use of formal R&D agreements such as portfolios of CRADAs [95] as

well as informal R&D partnerships, which feature public sector agency and private sector firm

(government-industry) relationships and interactions, may have different effects on supply-

side performance. Partnership agreements such as CRADAs may facilitate improved filing

ratios, transfer rates, and licensing success rates by clearly specifying partnership terms and

conditions and IP rights in a structured and consistent manner that is straightforward for

external R&D partners to grasp and implement. In contrast, non-standardized forms of exter-

nal R&D partnerships such as one-off custom collaborative agreements may reduce supply-

side performance by constraining technology managers’ options for IP protection [96] and

increasing the complexity of licensing arrangements.

The implementation of non-patent IP policies varies considerably across federal agencies. If

an agency’s innovation activities generate substantial amounts of software, data, and expertise

that is useful and valuable to the private sector, then non-patent IP policies such as copyright

agreements are directly relevant to the agency’s technology transfer performance. Or, if an

agency’s innovation activities involve unique or difficult to obtain proprietary materials such

as biological samples or chemical compounds that are of commercial importance, then MTAs

are also directly relevant to the agency’s performance. Differences in the adoption of copyright

agreements and MTAs may account for observed differences between supply-side and

demand-side metrics.

Methodology and data

Data sources and collection procedures

Our sample timeframe is from 1999–2016 and our unit of analysis is at the federal agency

level. Under the Technology Transfer Commercialization Act of 2000 (TTCA of 2000, PL 106–

404), U.S. federal agencies are required to report certain measurements annually. Under this

statute (15 USC 3710(f)(2)(B)), the specific parameters are: (1) the number of patent applica-

tions filed; (2) the number of patents received; (3) the number of fully-executed licenses that

received royalty income in the preceding fiscal year, categorized by whether they are exclusive,

partially-exclusive, or non-exclusive; (4) the time elapsed from the date the license was

requested by the licensee in writing to the date the license was executed; (5) the total earned

royalty income; (6) what disposition was made of the income described in the clause; (7) the

number of licenses terminated for cause; and (8) any other parameters or discussion that the

agency deems relevant or unique to its practice of technology transfer (in practice, (4) and (6)

are not actually reported by U.S. federal agencies). In addition, agencies also report the number

of invention disclosures, as well as the number of CRADAs.

We use variables collected from three online databases managed by the U.S. federal govern-

ment. The National Science Foundation (NSF) maintains two of these databases: (1) the

National Center for Science and Engineering Statistics (NCES) database; and (2) the FFRDC

R&D Survey. The remaining database is from the National Institute of Standards and Technol-

ogy (NIST) Annual Technology Transfer Reports managed by the U.S. Department of Com-

merce (DOC).

NIST Annual Technology Transfer Reports contain information about CRADAs, invention

disclosures and patenting, portfolio profiles of active licenses, and income from licensing. We

downloaded and gathered our data from the FY 2003–2019 annual reports, which covers tech-

nology transfer activities over the eighteen-year period of 1999–2016, inclusive.

The FFRDC R&D Survey is the main source of information on R&D expenditures at

FFRDCs in the U.S. These annual surveys categorize R&D spending by: (1) source of funds

(federal, state and local, business, nonprofit, or other); (2) federal agency source; (3) type of
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R&D (basic research, applied research, or development); (4) type of costs (salaries, software,

equipment, subcontracts, and other direct or indirect costs); and (5) total operating budget.

The NCES database provided statistical data about the breakdown of R&D expenditures at

FFRDCs (university-administered, nonprofit-administered, and industry-administered) by

the source of funds. Specifically, NCES indicates the R&D funds allocated by the federal gov-

ernment to state and local government, businesses, nonprofit organizations, or other federal

and non-federal entities.

Variables

We use the NIST, NSF-NCES, and NSF-FFRDC R&D databases to construct and compute the

following dependent, explanatory, and control variables, as described below.

Dependent variables. Our analysis spans five primary dependent variables that represent

technology transfer activities managed by federal agencies [97]. The first set of dependent vari-

ables serves as supply-side metrics for evaluating technology transfer outcomes. The Filing
Ratio is the ratio of the number of patent applications divided by the total number of new

invention disclosures in a given fiscal year [29]. Transfer Rate is the ratio of the number of

newly granted patent licenses over the total number of filed patent applications in a given fiscal

year [29]. Licensing Success Rate is the number of licenses granted out of the total number of

invention disclosures received by an agency’s Technology Transfer Office (TTO) in a given fis-

cal year [30].

The second set of dependent variables captures demand-side metrics for evaluating the

technology transfer performance of federal agencies. License Income (log) is the base 10 loga-

rithm of the annual dollar amount of licensing income compiled and communicated by NIST

in a given fiscal year [97, 98]. Portfolio Exclusivity is the total annual amount of active exclusive

licenses divided by total active income bearing licenses communicated by NIST in a given fis-

cal year [97, 99].

Explanatory variables. Our two sets of explanatory variables represent federal agencies’

R&D collaborations and non-patent IP policies. The first set of explanatory variables measure

the extent of federal agencies’ external R&D collaborations. FFRDC Utilization (%) is the per-

centage of FFRDCs utilized by a given agency, in a given year. It is important to note that

some agencies fund R&D projects conducted by FFRDCs that are primarily aligned with other

agencies. For example, the DOD funds research at multiple FFRDCs associated with the DOE.

There are many types of CRADAs, and here we focus on those that formalize a substantive col-

laboration, the traditional CRADAs. Traditional CRADAs (log) is the base 10 logarithm of an

agency’s number of traditional CRADAs. Other R&D Collaborations (log) is the base 10 loga-

rithm of the number of other collaborative R&D relationships that are not part of traditional

CRADAs. These measures capture different dimensions of the size and scale of an agency’s

R&D partner portfolio.

Our second set of explanatory variables defines federal agencies’ adoption of policies for

non-patented IP. Copyright Policy is a binary variable, which is 1 if the federal agency adopted

copyright IP policy as a mechanism for technology transfer, as disclosed by NIST and equals 0

otherwise. Materials Transfer Policy is s a binary variable, which is 1 if the federal agency

adopted MTAs as a mechanism for technology transfer, as disclosed by NIST, and equals 0

otherwise.

Control variables. To account for alternative explanations, we include a set of control var-

iables at the U.S. federal agency level that may plausibly influence technology transfer activi-

ties. R&D Asset Intensity (%) is the percentage of total annual R&D obligations allocated to

R&D plants in the form of fixed assets such as specialized facilities. R&D Applied Knowledge
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(%) is the dollar-weighted percentage index of R&D expenditure in Applied R&D activities as

a percentage of the total R&D budget disclosed to NSF-NCSES in a given fiscal year. The fol-

lowing control variables account for agencies’ allocation of R&D to other entities. R&D to Uni-
versities (%) is the percentage of total annual R&D obligations performed by academic

institutions (universities and colleges, excluding FFRDCs). R&D to State and Local Govt. (%)
is the percentage of total annual R&D obligations performed by state and local governments.

Model specification

Because of the nature of our data (repeated observations across agencies over multiple years)

we follow a panel data methodology. To deal with additional unobserved heterogeneity, we use

random effects panel regressions using the xtreg command in Stata 15 statistical software

[100]. The large chi-square value from Breusch-Pagan test reveals heteroscedasticity; thus we

run our models with the ‘vce (robust)’ option, which computes robust standard errors and

accounts for clustered observations by agency [101].

Results

Descriptive statistics and correlations

Table 1 below lists the means, standard deviations, minimum, maximum, and correlations

among the variables in our models for the full sample (FY 1999–2016). The average Filing Ratio
of federal agencies in our sample is 61%, which is consistent with the university industry-wide

benchmark [102]. The mean value for Transfer Rate, a measure of effectiveness, over the

18-year period is about 75%. This is significantly higher than the 42% industry-wide norm [29]

but is driven by an aging success from the Department of Commerce (see DOC Transfer Rates

Table 1. Descriptive statistics and correlations (full sample 1999–2016).

Variable Mean S.D. Min Max 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Dependent Variables

1 Filing Ratio 0.61 0.46 0 3.67 1.00

2 Transfer Rate 0.75 2.48 0 23.38 -0.12 1.00

3 Licensing Success Rate 0.34 0.81 0 5.93 0.05 0.92 1.00

4 License Income (log) 5.65 2.10 0 8.21 -0.03 -0.01 -0.01 1.00

5 Portfolio Exclusivity 0.29 0.27 0 1.00 -0.10 0.11 0.09 0.05 1.00

Explanatory Variables

R&D Collaborations
6 FFRDC Utilization (%) 19.34 22.99 0 85.71 -0.01 -0.08 -0.11 0.31 -0.24 1.00

7 Traditional CRADAs (log) 1.96 0.93 0 3.44 0.15 0.01 0.02 0.36 0.01 0.46 1.00

8 Other R&D Collaborations (log) 1.25 1.56 0 4.21 -0.15 0.17 0.14 0.10 0.42 -0.13 -0.22 1.00

Non-Patent IP Policies
9 Copyright Policy 0.29 0.45 0 1.00 -0.30 0.21 0.16 0.26 0.01 0.08 -0.15 0.34 1.00

10 Materials Transfer Policy 0.48 0.50 0 1.00 -0.06 0.15 0.16 0.29 0.26 0.12 0.49 0.20 -0.18 1.00

Control Variables

11 R&D Asset Intensity (%) 5.77 9.44 0 54.88 -0.19 0.00 -0.04 -0.31 -0.13 0.08 -0.10 0.18 0.31 -0.23 1.00

12 R&D Applied Knowledge (%) 53.49 23.43 18.53 97.02 0.25 -0.01 -0.01 -0.14 -0.01 0.24 -0.02 -0.10 -0.23 -0.19 -0.07 1.00

13 R&D to Universities (%) 15.47 15.42 0 57.81 0.12 0.09 0.18 0.38 -0.07 -0.08 0.13 0.13 -0.14 0.36 -0.11 -0.43 1.00

14 R&D to State and Local Govt. (%) 1.93 5.02 0 30.93 0.09 -0.06 -0.05 -0.40 0.05 -0.12 -0.30 -0.08 -0.18 -0.30 -0.11 -0.02 -0.13 1.00

N = 127; p<0.05 in bold

https://doi.org/10.1371/journal.pone.0268828.t001

PLOS ONE R&D collaborations and non-patent IP policies in federal technology transfer performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0268828 May 24, 2022 11 / 29

https://doi.org/10.1371/journal.pone.0268828.t001
https://doi.org/10.1371/journal.pone.0268828


18yrs and 5yrs in Table 3). The average Licensing Success Rate, a measure of efficiency, is 34%,

which is higher than the 25% industry-wide benchmark, and reflects the efficiency of a technol-

ogy transfer at federal agencies [30]. We note that our sample is a longitudinal panel spanning

fiscal years 1999–2016; hence our benchmarks may vary from the results reported in the previ-

ous cross-sectional studies cited in the literature. Here too, the number is driven by historical

success, also out of the DOC. The mean values for FFRDC Utilization (%), Traditional CRADAs
(log), and Other R&D Collaborations (log) are 19.34%, 1.96, and 1.25, respectively, which indi-

cate the average strength of R&D collaborations at federal agencies between 1999 and 2016. In

terms of non-patent IP policies, about 29% of agencies adopted a non-patent invention policy

(Copyright Policy) and about 48% of them adopted MTAs (Materials Transfer Policy).

As shown in Table 1, the largest significant correlation appears to be 0.92, which is between

Licensing Success Rate and Transfer Rate. This is expected since both contain the number of

licenses in the numerator, with the difference in the denominator being either disclosures

(LSR) or filed patent applications (TR). The high correlation shows the historical patent-cen-

tric model of licensing and is not an issue, since both dependent variables are not used in the

same regression models. We check the variance inflation factor (VIF) for all variables in our

models. We find that average VIF for our variables is 1.63 and no variable exceeds 2.08, indi-

cating that multicollinearity is not an issue in any of our models. Table 2 below shows the

descriptive statistics for the last 5 years of our sample (FY 2012–2016, inclusive).

Table 3 presents the average summary of our variables broken down by 10 agencies in the

fiscal years 1999–2016 and 2012–2016. We elaborate on the interpretation of the agency-level

summary table (Table 3) in the discussion section of the paper.

Summary of results

We present the results of our study and models for our analyses of federal agency technol-

ogy transfer performance in Table 4. As shown in Table 4, a 1% unit increase in the FFRDC

Table 2. Descriptive statistics (5 Years 2012–2016).

Variable Mean S.D. Min Max

Dependent Variables

1 Filing Ratio 0.55 0.36 0 1.80

2 Transfer Rate 0.40 1.09 0 8.00

3 Licensing Success Rate 0.18 0.28 0 1.33

4 License Income (log) 5.78 1.71 0 8.21

5 Portfolio Exclusivity 0.31 0.32 0 1.00

Explanatory Variables

R&D Collaborations
6 FFRDC Utilization (%) 19.91 23.97 0 83.33

7 Traditional CRADAs (log) 2.11 0.92 0 3.43

8 Other R&D Collaborations (log) 1.85 1.48 0 4.21

Non-Patent IP Policies
9 Copyright Policy 0.27 0.45 0 1.00

10 Materials Transfer Policy 0.46 0.50 0 1.00

Control Variables

11 R&D Asset Intensity (%) 5.91 11.43 0 54.88

12 R&D Applied Knowledge (%) 52.29 23.44 23.86 97.02

13 R&D to Universities (%) 14.69 15.22 0 56.14

14 R&D to State and Local Govt. (%) 1.96 5.17 0 21.53

https://doi.org/10.1371/journal.pone.0268828.t002
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Utilization (%) is associated with a 4.76% decrease (Model 2: β = -0.0476, p<0.01) in Trans-
fer Rate, 1.89% decrease (Model 3: β = -0.0189, p<0.01) in Licensing Success Rate, 3.15%

increase (Model 4: β = 0.0315, p<0.01) in License Income (log), and 0.44% decrease (Model

5: β = -0.0044, p<0.01) in Portfolio Exclusivity. In Table 4 (Model 1), we see that the coeffi-

cient for the FFRDC Utilization (%) is negative (β = -0.0012), but not significant for the Fil-
ing Ratio.

As shown in Table 4, we find that one order of magnitude increase in Traditional CRADAs
(log) in federal agencies is associated with a 23.52% increase (Model 1: β = 0.2353, p<0.01) in

Filing Ratio (indicating less active management), a 39.40% increase (Model 2: β = 0.3940,

p<0.05) in Transfer Rate, a 20.46% increase (Model 3: β = 0.2046, p<0.01) in Licensing Success
Rate, and an 8.14% increase (Model 5: β = 0.0814, p<0.05) in Portfolio Exclusivity. In Table 4

Table 3. Data summary of measures.

Agency DOC DOD DOE DOI DOT

18 Yrs 5 Yrs 18 Yrs 5 Yrs 18 Yrs 5 Yrs 18 Yrs 5 Yrs 18 Yrs 5 Yrs

Filing Ratio 0.516 0.506 0.775 1.002 0.531 0.572 0.965 0.700 0.831 0.295

Transfer Rate 4.080 0.349 0.080 0.050 0.214 0.173 0.371 0.217 0.190 0.000

Licensing Success Rate 1.451 0.167 0.058 0.052 0.111 0.097 0.310 0.172 0.236 0.000

License Income (log) 5.414 5.290 7.041 7.017 7.577 7.589 4.828 4.943 3.101 4.112

Portfolio Exclusivity 0.462 0.549 0.287 0.267 0.083 0.054 0.291 0.398 0.325 0.200

FFRDC Utilization (%) 7.804 5.238 75.529 81.429 39.418 38.571 0.661 0.476 13.624 6.190

Traditional CRADAs (log) 2.180 2.365 3.282 3.295 2.839 2.870 1.450 1.506 1.194 1.119

Other R&D Collaborations (log) 3.026 3.483 0.984 2.269 0.000 0.000 0.820 2.488 0.607 1.568

R&D Asset Intensity (%) 11.732 14.392 0.293 0.256 9.707 6.962 0.846 0.774 2.833 2.912

R&D Applied Knowledge (%) 50.592 46.237 93.344 93.025 28.341 25.011 60.384 59.197 50.716 51.723

R&D to Universities (%) 16.321 17.104 4.223 3.948 9.703 9.201 9.292 7.905 7.557 8.228

R&D to State and Local Govt. (%) 0.681 0.415 0.094 0.047 0.084 0.122 1.680 2.012 15.170 17.899

Total R&D (Million) 1283.000 1449.000 59800.000 61870.000 9607.000 11600.000 680.200 778.200 785.100 901.100

Non-Patent IP Policies (+/-)

Copyright Policy Yes No Yes No No

Materials Transfer Policy Yes Yes No No No

Agency EPA HHS NASA USDA VA

18 Yrs 5 Yrs 18 Yrs 5 Yrs 18 Yrs 5 Yrs 18 Yrs 5 Yrs 18 Yrs 5 Yrs

Filing Ratio 0.980 0.794 0.639 0.706 0.128 0.084 0.726 0.722 0.227 0.171

Transfer Rate 0.835 1.830 0.886 0.779 0.357 0.406 0.266 0.199 0.388 0.161

Licensing Success Rate 0.442 0.579 0.536 0.553 0.045 0.034 0.186 0.143 0.097 0.017

License Income (log) 5.159 5.593 8.004 8.139 6.540 6.472 6.257 6.689 4.728 5.499

Portfolio Exclusivity 0.198 0.242 0.078 0.079 0.336 0.061 0.590 0.716 0.406 0.787

FFRDC Utilization (%) 2.381 8.571 28.042 30.952 19.709 17.143 0.132 0.000 0.000 0.000

Traditional CRADAs (log) 1.777 1.747 2.373 2.473 0.212 0.223 2.316 2.285 1.986 3.211

Other R&D Collaborations (log) 0.000 0.000 0.478 1.720 3.258 3.307 3.404 4.164 0.000 0.000

R&D Asset Intensity (%) 1.794 1.095 1.177 0.465 9.877 0.841 4.098 0.646 0.053 0.000

R&D Applied Knowledge (%) 94.194 96.147 23.988 25.411 56.584 42.122 35.637 34.311 40.954 38.531

R&D to Universities (%) 15.104 13.694 56.009 55.707 10.417 8.581 30.172 30.494 0.000 0.000

R&D to State and Local Govt. (%) 0.730 0.000 0.653 0.588 0.775 0.033 0.318 0.388 0.000 0.000

Total R&D (Million) 559.400 536.600 28490.000 30890.000 9112.000 11200.000 2225.000 2244.000 486.300 639.900

Non-Patent IP Policies (+/-)

Copyright Policy No No Yes No No

Materials Transfer Policy No Yes No Yes Yes

https://doi.org/10.1371/journal.pone.0268828.t003
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(Model 4), we see that the coefficient for the Traditional CRADAs (log) is negative (β =

-0.0945), but is not significant for License Income (log).
A one order of magnitude increase in Other R&D Collaborations (log) is associated with a

5.07% increase (Model 1: β = 0.0507, p<0.01) in Filing Ratio, a 29.65% decrease (Model 2: β =

-0.2965, p<0.1) in Transfer Rate, a 12.14% decrease (Model 4: β = -0.1214, p<0.05) in License
Income (log), and a 6.39% increase (Model 5: β = 0.0639, p<0.01) in Portfolio Exclusivity. In

Table 4 (Model 3), we see that the coefficient for the Other R&D Collaborations (log) is negative

(β = -0.1645), but is not significant for Licensing Success Rate.

Table 4. The effects of R&D collaborations and non-patent IP policies on federal agency technology transfer performance metrics.

Dependent Variable Model 1 Model 2 Model 3 Model 4 Model 5

Supply-Side Supply-Side Supply-Side Demand-Side Demand-Side

Coefficients Coefficients Coefficients Coefficients Coefficients

5-Yr Lag 5-Yr Lag 5-Yr Lag 5-Yr Lag 5-Yr Lag

Filing Ratio Transfer Rate Licensing Success Rate License Income (log) Portfolio Exclusivity

Explanatory Variables

R&D Collaborations
FFRDC Utilization (%) -0.0012 -0.0476��� -0.0189��� 0.0315��� -0.0044���

(0.0023) (0.0132) (0.0062) (0.0057) (0.0008)

Traditional CRADAs (log) 0.2353��� 0.3940�� 0.2046��� -0.0945 0.0814��

(0.0480) (0.1795) (0.0716) (0.1076) (0.0390)

Other R&D Collaborations (log) 0.0507��� -0.2965� -0.1645 -0.1214�� 0.0639���

(0.0196) (0.1591) (0.1077) (0.0612) (0.0135)

Non-Patent IP Policies
Copyright Policy -0.3651�� 4.6061��� 1.6179�� 0.3971 -0.2100���

(0.1619) (1.6863) (0.6650) (0.4739) (0.0401)

Materials Transfer Policy -0.3312��� 2.0366��� 0.7156�� -0.1190 0.2036���

(0.1216) (0.6391) (0.3522) (0.4227) (0.0516)

Control Variables

R&D Asset Intensity (%) 0.0016 -0.1370 -0.0400 0.0082 0.0094���

(0.0019) (0.1128) (0.0294) (0.0060) (0.0025)

R&D Applied Knowledge (%) 0.0021 0.0378��� 0.0144�� -0.0050 -0.0009

(0.0020) (0.0110) (0.0058) (0.0069) (0.0008)

R&D to Universities (%) 0.0042 0.0229 0.0124� 0.0388��� -0.0080���

(0.0028) (0.0145) (0.0067) (0.0070) (0.0009)

R&D to State and Local Govt. (%) 0.0034 0.1043�� 0.0462�� -0.1112��� 0.0158���

(0.0064) (0.0475) (0.0214) (0.0194) (0.0029)

Constant 0.1945 -3.0940��� -1.2226�� 5.5924��� 0.2793���

(0.2124) (1.0731) (0.5330) (0.7052) (0.1034)

Observations 127 128 127 130 130

Gaussian Wald Chi Square 6893 1347 3277 40907 61799

R Square (within) 0.0339 0.0713 0.0896 0.0313 0.133

R Square (between) 0.832 0.904 0.816 0.925 0.950

R Square (overall) 0.411 0.256 0.289 0.664 0.551

Note: ��� p<0.01,

�� p<0.05,

� p<0.1; Standardized coefficients are reported; Robust standard errors in parentheses

https://doi.org/10.1371/journal.pone.0268828.t004
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In terms of non-patent IP policies, establishing a non-patent invention policy (Copyright
Policy) is broadly associated with improved metrics, such as a 36.51% decrease (Model 1: β =

-0.3651, p<0.05) in Filing Ratio (reflecting more prudent management), a 460.61% increase

(Model 2: β = 4.6061, p<0.01) in Transfer Rate, a 161.79% increase (Model 3: β = 1.6179,

p<0.05) in Licensing Success Rate, and a 21% decrease (Model 5: β = -0.2100, p<0.01) in Port-
folio Exclusivity. In Table 4 (Model 4), we see that the coefficient for the Copyright Policy is pos-

itive (β = 0.3971), but is not significant for License Income (log).
As shown in Table 4, adopting MTAs (Materials Transfer Policy) is associated with a

33.12% decrease (Model 1: β = -0.3312, p<0.01) in Filing Ratio, a 203.66% increase (Model 2: β
= 2.0366, p<0.01) in Transfer Rate, a 71.56% increase (Model 3: β = 0.7156, p<0.05) in Licens-
ing Success Rate, and a 20% increase (Model 5: β = 0.2036, p<0.01) in Portfolio Exclusivity. In

Table 4 (Model 4), we see that the coefficient for the Materials Transfer Policy is negative (β =

-0.1190), but not significant for License Income (log).
In Table 5, we report the results of the interaction effects of non-patent IP policies on fed-

eral agency technology transfer performance. As shown in Table 5, for the supply-side metrics,

the interaction term between Copyright Policy and Materials Transfer Policy is positive and sig-

nificant for Filing Ratio (Model 1: β = 0.6381, p<0.05), Transfer Rate (Model 2: β = 4.2867,

p<0.01), and Licensing Success Rate (Model 3: β = 1.7917, p<0.01). For the demand-side met-

rics, the interaction term between Copyright Policy and Materials Transfer Policy is negative

and significant for License Income (log) (Model 4: β = -3.4228, p<0.01) and positive (β =

0.1994), but is not significant for Portfolio Exclusivity.

Discussion

With the caveat that we assumed consistent and accurate reporting across the agencies, our

analysis underscores the value that a broad view of technology transfer brings to a federal

agency. Specifically, our model indicates that agencies’ technology transfer success, as judged

by the licensing-focused metrics of transfer rate and licensing success rate, is typically

improved when those agencies have considered and implemented diverse approaches to dis-

seminating non-patented proprietary artifacts, including data, software, and materials. In gen-

eral, those agencies also have reduced filing ratios, indicating a higher level of acumen and

rigor in making and supporting technology transfer decisions and activities. They also have a

higher number of traditional CRADAs as normalized to their R&D budgets, indicating a more

open approach to technology transfer.

The importance of non-patent policies

Technology transfer has historically focused on inventions, and specifically patentable inven-

tions, even as the word ‘invention’ remained undefined in Stevenson-Wydler. It was not until

1986 and PL 99–502 that Congress made it clear their view of ‘inventions’ referred to “any

invention or discovery which is or may [emphasis added] be patentable or otherwise protected

under title 35, United States Code, or any novel variety of plant which is or may be protectable

under the Plant Variety Protection Act (7 U.S.C. 2321 et seq.).” Setting aside the circular

nature of the definition, a lot of things may be patentable under U.S. patent law, at least back

in 1986. However, the technology areas that lend themselves to patent protection are becoming

fewer, and the protection itself available through patents is becoming narrower [103]. Thus,

the trends in technology licensing have naturally evolved to include (if not increasingly rely

on) other forms of IP, even as scholarly attention still concentrates on patents due to their ease

of access [104]. Unfortunately, despite how easily quantifiable patents are, few sources
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document trade secrets and know-how licenses, and the extent to which federal laboratories

participate in those types of transactions is not clear.

However, some agencies have promulgated non-patent IP policies related to technology

transfer, such as copyright and MTA policies [49], indicating a broader view of technology

transfer. There appears to be a strong association between improved agency performance and

the implementation of these non-patent technology transfer mechanisms. Agency perfor-

mance is ranked in Table 6, and each of these factors is associated with improved transactional

count metrics, indicating more opportunities to leverage resources, accelerate R&D, and boost

commercialization efforts. For example, the establishment of a copyright policy (at DOC,

DOE, and NASA) is associated with exercising a more prudent use of patenting resources as

measured by the filing ratio, even if copyrights have not been historically available to federal

employees (See: 17 USC 105; copyright protection is generally not available to Government

Owned Government Operated laboratories (GOGOs) but is available to Government Owned

Table 5. The interaction effects of non-patent IP policies on federal agency technology transfer performance metrics.

Dependent Variable Model 1 Model 2 Model 3 Model 4 Model 5

Supply-Side Supply-Side Supply-Side Demand-Side Demand-Side

Coefficients Coefficients Coefficients Coefficients Coefficients

5-Yr Lag 5-Yr Lag 5-Yr Lag 5-Yr Lag 5-Yr Lag

Filing Ratio Transfer Rate Licensing Success Rate License Income (log) Portfolio Exclusivity

Explanatory Variables

Non-Patent IP Policies
Copyright Policy -0.6898��� 1.0857 0.1050 2.3564��� -0.2727��

(0.1842) (1.2638) (0.3709) (0.6888) (0.1227)

Materials Transfer Policy -0.4546�� -0.1773 -0.2169�� 1.4175��� 0.1992��

(0.2201) (0.3971) (0.0936) (0.3341) (0.0918)

Copyright Policy X Materials Transfer Policy 0.6381�� 4.2867��� 1.7917��� -3.4228��� 0.1994

(0.2481) (0.4811) (0.1158) (0.6899) (0.1271)

Control Variables

R&D Asset Intensity (%) 0.0012 -0.1231 -0.0376 -0.0018 0.0118���

(0.0014) (0.1162) (0.0334) (0.0073) (0.0038)

R&D Applied Knowledge (%) -0.0017 0.0041 0.0002 0.0136� -0.0023�

(0.0026) (0.0062) (0.0013) (0.0071) (0.0013)

R&D to Universities (%) 0.0049 0.0093 0.0062 0.0380��� -0.0073���

(0.0032) (0.0077) (0.0038) (0.0092) (0.0028)

R&D to State and Local Govt. (%) -0.0249��� 0.0035 0.0005 -0.0361��� 0.0123���

(0.0021) (0.0274) (0.0093) (0.0027) (0.0031)

Constant 1.0239��� 0.4014 0.3439��� 3.7645��� 0.4824���

(0.2162) (0.4596) (0.1074) (0.5747) (0.1339)

Observations 127 128 127 130 130

Gaussian Wald Chi Square 470.4 3588 119250 790.0 268.4

R Square (within) 0.0807 0.0552 0.0355 0.0360 0.122

R Square (between) 0.444 0.961 0.982 0.847 0.617

R Square (overall) 0.260 0.258 0.296 0.646 0.378

Note: ��� p<0.01,

�� p<0.05,

� p<0.1; Standardized coefficients are reported; Robust standard errors in parentheses

https://doi.org/10.1371/journal.pone.0268828.t005
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Contractor Operated laboratories (GOCOs)). There is also an association between employing

a copyright policy and offering more non-exclusive licenses (see Table 4). Here, it is interesting

to note that the three agencies mentioned above take different policy approaches to licensing

software. DOC, which includes NIST as well as the National Oceanic and Atmospheric

Administration (NOAA), does not appear to ‘license’ software and datasets, preferring to place

it in the public domain, and so the non-exclusive license counts reported in the annual reports

presumably do not include software [105]. This may be due to DOC labs being mainly govern-

ment owned and government operated, making copyright protection generally unavailable.

NASA applies a similar approach, while DOE licenses software from the contractor-managed

national labs [106]. Enacting another non-patent policy—a material transfer policy—is simi-

larly associated with improved performance metrics. Three of the top five performers for

transfer rate have MTA policies. In fact, for all of the performance metrics shown in Table 6,

one thing is common among the majority of top agencies: the official adoption of defined non-

patent IP policies.

Most agencies tend to use the CRADA authority to execute various agreement types, includ-

ing MTAs, non-disclosure agreements, and traditional CRADAs [107]. However, HHS as well

as USDA have long had distinct statutory authorities to transfer materials. For example, the

original Public Health Service (PHS) Act of 1944 explicitly highlighted open and coordinated

research (See PL 78–410). As amended, it broadly enables cooperative research across the full

PHS (See: 42 USC 241), as well as explicitly authorizes the transfer of ‘substances’ from its larg-

est intramural component (See: 42 USC 282(c))—the National Institutes of Health (NIH).

This World War II-era law seeded a culture of cooperative research, and in an attempt to

streamline the sharing of biomaterials among universities and non-profits, NIH proposed to

use an efficient Universal Biological Material Transfer Agreement (UBMTA) in a notice in the

Federal Register (60 FR 12771–12775). However, they explicitly recognized not all agencies

may have the same ability to execute a stand-alone UBMTA implementing document and that

other agencies may need to alternatively execute a CRADA due to a perceived lack of a legal

authority. Therefore, either through explicit legal authorities or through permissive interpretation
of existing authorities, agencies positioned for greater success are those able to expand their inter-
pretations of both a) which assets are transferable and b) the statutory mechanisms available.

Table 6. Agency technology transfer performance.

Performance Rankings SUPPLY-SIDE DEMAND-SIDE R&D COLLABORATION

Filing Ratio Transfer Rate Licensing Success Rate R&D Budget/License

Income

R&D Budget/CRADAs

18 Yrs 5 Yrs 18 Yrs 5 Yrs 18 Yrs 5 Yrs 18 Yrs 5 Yrs 18 Yrs 5 Yrs

1 NASA NASA DOC EPA DOC EPA DOE HHS VA VA

2 VA VA HHS HHS HHS HHS HHS DOE DOC DOC

3 DOC DOT EPA NASA EPA DOI USDA USDA EPA EPA

4 DOE DOC VA DOC DOI DOC NASA EPA USDA� USDA�

5 HHS DOE DOI DOI DOT USDA EPA VA DOE DOE

6 USDA DOI NASA USDA USDA DOE DOC NASA DOI DOI

7 DOD HHS USDA DOE DOE DOD DOD DOD DOD DOD

8 DOT USDA DOE VA VA NASA VA DOC DOT DOT

9 DOI EPA DOT DOD DOD VA DOI DOI HHS� HHS�

10 EPA DOD DOD DOT NASA DOT DOT DOT NASA� NASA�

� These agencies have additional statutory authority beyond CRADAs

https://doi.org/10.1371/journal.pone.0268828.t006
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The importance of open innovation

CRADAs were authorized under the FTTA of 1986. The importance of CRADAs has endured

and grown, and there continue to be far more CRADAs (or similar partnership agreements)

than licenses executed by the individual laboratories and across all agencies [29]. However,

even as their importance (by the numbers) far outweighs that of licenses, the emphasis on

licensing lingers, and a recent report by the Government Accountability Office attempted to

prescribe actions to increase licensing activity [108].

Several years prior to the enactment of the TTCA of 2000 and the required annual agency

reports, a survey of industry leaders was conducted to ascertain what, in fact, industry wanted

from the federal labs. The thinking was that rather than asking policymakers and academics

for answers, it would make sense to seek real-world perspectives from the very people respon-

sible for conducting the practical commercial application side of technology transfer: industry

partners. Industry was found to view the very outputs Congress focuses on as actually provid-

ing minimal value, with more value stemming from contract and cooperative R&D activities,

as well as idea transfer vs. technology transfer per se [31]. In this regard, industry leaders saw

the federal labs’ contribution to collaborative, multidisciplinary R&D as potentially helpful,

articulating federal labs’ promise within the context of an ‘open innovation’ system several

years before the term took root [109]. While industry prized the cooperative activities above

licensing or IP, the absence of a CRADA metric in the reporting statute is an early example of

how empirically derived information may not appreciably affect policy in this realm [54, 110].

Our model suggests that industry input has been proven correct, in that there is a strong asso-

ciation between CRADAs and classical measures of success.

For example, if industry does indeed prize open innovation arrangements with federal labs,

it would follow that those agencies that practice more open innovation should have more

opportunity to be involved in the development of commercially-relevant licensable IP. Specifi-

cally, those agencies that engage in more CRADAs would be expected to develop more licens-

able IP, including patents, resulting in a higher transfer rate and licensing success rate [29, 30],

not to mention licensing income. Broadly speaking, our empirical results suggest that this is

indeed the case. If we normalize traditional CRADAs to the R&D budget, agencies can be

ranked by normalized cost/CRADA (Table 6). Agencies with a lower cost/CRADA have a

higher open innovation or ‘R&D Collaboration’ rank. Three of the top agencies (EPA, USDA,

and DOE) are also among the top agencies receiving licensing income normalized to R&D

budget, and three (VA, DOC, and EPA) are top performers for transfer rate.

It might be expected that agencies engaged in open innovation would be exposed to more

market demand for those same technologies. For example, the VA has engaged in the largest

number of CRADAs as normalized to its R&D budget over the 18-year period, yet it had low-

mid range normalized license royalties. One explanation can be found in the CRADA statute

itself, which provides a notable carrot for industry partners:

“The laboratory shall ensure, through such agreement, that the collaborating party has the
option to choose an exclusive license for a pre-negotiated field of use for any such invention
under the agreement or, if there is more than one collaborating party, that the collaborating
parties are offered the option to hold licensing rights that collectively encompass the rights that
would be held under such an exclusive license by one party.” (See 15 USC 3710a(b)(1))

This required provision essentially removes the risk of market competition for inventions

developed under a CRADA. While those agencies that execute more CRADAs may have

higher performance metrics such as higher transfer rates and higher licensing success rates,
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the actual licensing income is not significantly affected. The association between a higher

number of traditional CRADAs and a higher portfolio exclusivity rate corroborates this expla-

nation. Specifically, for every 10-fold increase in traditional CRADAs, there appears to be an

8% increase in exclusivity (see Table 4). Those are likely to be inventions developed under a

CRADA and subject to the above provision.

The special case of the DOD

The DOD alone accounts for over half the government’s R&D funding. At the other end of the

spectrum, we have the EPA and the VA (see Table 3). Indeed, given that both agencies focus

predominately on applied R&D and exhibit a relatively unrestricted approach to filing patent

applications (see filing ratios in Table 3), the EPA may be the most appropriate comparator to

the DOD. The model explored here treats those agencies the same, at least in most aspects. For

example, transfer rate, licensing success rate, and filing ratio are within-agency measures,

which can be compared between agencies. In essentially all cases and every measure, the EPA

outperforms the DOD, and by far (see Table 6). One reason for this may be that, while the

DOD reports as a single agency, according to the statute that defines a federal agency (See: 15

USC 3703), it actually comprises at least four distinct ‘agencies’ under the law:

“‘Federal agency’ means any executive agency as defined in section 105 of title 5 and the mili-
tary departments as defined in section 102 of such title, as well as any agency of the legislative
branch of the Federal Government.”

The above definition explicitly carves out each of the three named ‘military departments’

(i.e., Army, Navy, Air Force) as their own respective agencies, in addition to the rest of the

DOD, precluding the adoption of a single set of common DOD technology transfer policies

and practices. However, according to data plots showing the relative contribution of various

DOD components, the Army accounts for the majority of DOD’s technology transfer transac-

tions and does so with an R&D budget less than its counterparts [111]. If the Army were to

report alone, it could well be among the top agencies in Table 6. Still, the DOD Defense Labo-

ratories Office collates and delivers a single annual report of what statutorily should be four

distinct agency accounts while each military department can point to the statute to substantiate

their differences. The differences naturally contribute to frustrating delays in industry-DOD

collaborations involving more than one DOD ‘agency’ [112, 113]. Amending the statute to

remove the underlined part above would enable harmonized policies and practices broadly

throughout the DOD.

For good measure

Agency technology transfer reports containing prescribed measures have been required since

the TTCA of 2000. One of those is “the time elapsed from the date which the license was
requested by licensee in writing to the date the license was executed” but process metrics such as

this are rarely officially reported or publicly disclosed. The concern with lengthy processes is

well documented and continues to throttle effective federal technology transfer [31, 114–122].

Recognizing this, President Obama’s 2011 memorandum called to “streamline” processes and

increase the “pace” of activities [123]. There are few, if any, agency- and laboratory-level

reports analyzing the actual processes, and practical time and personnel costs associated with

establishing technology transfer mechanisms are broadly lacking [124]. However, one study

did evaluate the effects of collaboration-specific factors on inter-organizational transactional

efficiency [125]. Given the overall size and continued growth of government investment in
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intramural R&D, more empirical studies are needed. With this in mind, here we used normal-

ized output metrics as approximations to assess performance and investigated the associations

that a host of variables have with performance measures.

We find that the average transfer rate over the past 5 reported years, approximately 40%, is

exactly the same that has been calculated for university counterparts. In a similar manner, the

government-wide licensing success rate of 18% and its filing ratio of 55% are also comparable

to university counterparts (see Table 2). However, the extent of differences between agencies is

striking (see Tables 3 and 6), raising the question, ‘What drives success?’ Through our analyses,

we find a strong association between both non-patent IP policies and CRADAs and improved

measures of technology transfer success. Based on the performance metrics of Table 6, the top

agencies across the full 18-year period are, in order: DOC, HHS, VA, EPA, and DOE. In the

most recent 5-year period, the top performers in order are: EPA, HHS, DOC, VA & DOE

(tied). For the other agencies, implementing and taking the following actions may be associ-

ated with improved technology transfer performance:

1. DOI: adopt non-patent IP policies and a more discerning approach to patent filing

2. USDA: to the extent possible, adopt a copyright policy and employ a more discerning

approach to patent filing

3. DOD: apply a more discerning approach to patent filing; consider adopting a copyright pol-

icy minimally for FFRDCs and other contractor-operated labs

4. DOT: adopt non-patent IP policies to the extent possible and continue to apply rigor to dis-

closure review

5. NASA: adopt a material transfer policy

In summary, while most prior performance studies focus on patents and licenses, our

analysis uncovers the importance of R&D collaboration and non-patent IP policies to tech-

nology transfer success. Specifically, we find agencies that employ an open and comprehen-

sive approach to innovation management have measurably higher successes in traditional

technology transfer metrics. We find a significant association between a higher number of

traditional CRADAs and higher transfer and licensing success rates. Non-patent IP policies

enabled through long-standing agency-specific authorities or a more inclusive interpreta-

tion of pan-government statutes are similarly associated with significant improvements in

performance as measured by the transfer and licensing success rates, as well as with a more

prudent approach to invention review and patent filing. Our research underscores the

importance of evaluating how the utilization of external R&D collaboration and coordina-

tion of non-patent IP policies affects the supply-side and demand-side of federal technology

transfer performance.

Generalizing key findings

As we introduced at the outset of this study, national government leaders and senior policy-

makers around the world–from Beijing to Tel Aviv to Berlin to Washington, D.C.–are all

increasingly investing in and leveraging public sector R&D entities and activities to recover

from unexpected external shocks and rebuild core components of their respective infrastruc-

tures and economies. These clear official mandates and policy directives emphasize the para-

mount importance of innovation as a chief driver of future growth, greater prosperity, and

stronger security. In this context, we believe that our study of U.S. federal agencies’ technology

transfer activities and outcomes offers initial empirical evidence and actionable insights that
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may be more broadly applicable to overcoming similar challenges with managing govern-

ment-industry innovation processes in other countries as well.

For example, ongoing government efforts to prioritize national labs as strategic resources,

coupled with incentives for external R&D collaboration, and mechanisms for sharing non-pat-

ented IP are all essential parts of the available managerial toolkit for supporting technology

transfer. We find evidence that U.S. federal agencies with a greater utilization of FFRDCs have

lower agency-driven technology transfer performance in terms of supply-side metrics. On the

demand-side, we find that greater FFRDC utilization is associated with greater licensing

income and lower portfolio exclusivity. We now turn to explaining how these findings may

potentially inform comparable efforts in other countries.

Recall that China is in the midst of dramatically expanding its system of national labs from

200 to 700 institutes administered by the Chinese Academy of Sciences. As noted earlier,

France is already allocating 80% of its public R&D spending to the 10 institutes of the CNRS,

while its European counterpart, Germany, is deploying a massive technology-focused eco-

nomic stimulus package delivered through three distinct federal- and state-sponsored R&D

networks consisting of the Helmholtz Association of German Research Centers, the Max

Planck Institutes, and the Fraunhofer Institutes. To facilitate stronger technology transfer

from national labs, Israel is revising its policy in the governmental R&D sector. Other coun-

tries such as India, Turkey, Uruguay, and South Africa are putting greater emphasis on devel-

oping national innovation systems to pursue scientific breakthroughs that may yield long-

term economic growth [7–9, 126–128].

Our findings suggest that simply increasing the overall portion of public R&D funding allo-

cated to these national labs may not necessarily produce corresponding increases in supply-

side metrics. In fact, our findings spanning several years of U.S. federal agencies suggest that

greater overall utilization of national labs may actually produce lower supply-side performance

measured in terms of filing ratio, transfer rate, and licensing success rate. There may also be a

considerable time lag between the initial investment and the observable inventive outputs. The

knowledge generated as a public good through R&D activities undertaken by national labs is

cumulative and highly interdependent in terms of drawing from multiple disciplines and

domains. This further suggests that the pathways to commercialization may require a longer-

term and sustained initiative that includes a range of external R&D collaborators in the private

sector and new types of arrangements for handling non-patented IP.

Our findings also indicate that the trade-off between the demand-side metrics of licensing
income and portfolio exclusivity must be carefully managed. On the one hand, if a government

intends to help establish a technical standard based on essential IP, it may actively promote

licensing arrangements with a full spectrum of industry participants. In such cases, lower levels

of licensing income do not necessarily signal a lack of commercial viability. In fact, if the

licensing rights are offered at nominal fees, the associated income might indicate exactly the

opposite, namely that widespread adoption of the standard is occurring. This is why the inter-

pretation of the demand-side metric of licensing income should always be evaluated in con-

junction with the level of portfolio exclusivity. On the other hand, if a government intends to

nurture a particular sector, it may offer exclusive licensing terms with only a select few indus-

try participants. Here, the policy aims may be completely different than promoting standards,

and the approach is to provide essential IP as a potential source of competitive advantage to

protect certain actors within a promising industry sector. Again, the demand-side metrics of

licensing income and portfolio exclusivity must be evaluated and interpreted in the context of

the overarching policy objectives and regulatory frameworks of the respective countries that

are implementing these metrics.
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As a further example that the key findings of this study may be generalized, consider that

by allocating and aligning annual R&D budgets with their missions, federal technology

managers are able to ascertain the utilization of FFRDCs for their respective agencies.

Rather than using CRADAs or traditional contracts, greater emphasis on FFRDCs utiliza-

tion for managing R&D might potentially reduce supply-side while amplifying demand-

side technology performance. By decentralizing core knowledge generation and shifting it

from agency-operated sites to contractor-operated FFRDCs, this change may advance the

technologies closer to commercialization and increase demand-side performance. Recalling

our previous description of the role of national labs in China, France, and Germany, our

findings suggest that the extent to which the day-to-day operations of these labs are admin-

istered by internal government agencies or external private contractors may have a mean-

ingful impact on the observed levels of supply-side and demand-side metrics for technology

transfer performance.

In addition, our findings regarding the importance of CRADAs and non-patent IP policies

as predictors of success align with reports investigating university-industry collaborations

from many regions. Companies operating in the same sector can benefit from knowledge spill-

overs within a geographic location, and university-industry collaborations can solidify such

geographic industrial clusters [129]. CRADAs are inherently collaborative, and collaborations

based on clear shared goals and honest, open dialogue enhance university-firm performance

[130, 131]. Evidence from comparative case studies reported in the literature and our quantita-

tive analyses in this study suggests that the same is likely true for government-firm collabora-

tions [55, 132, 133]. Similarly, the strategic significance of non-patent IP is increasingly being

recognized [134, 135], even as the approach to knowledge management and appropriation of

non-patent IP requires more nuance than the management of patent IP [136, 137].

For example, proposals based on expectations that blockchain technology may facilitate a

practical approach to knowledge management of these forms of IP, and thereby enhance their

commercialization potential, are being developed and disseminated [138, 139]. In another

example that is especially pertinent to the outbreak and aftermath of the coronavirus, there is

renewed interest among national governments and transnational actors such as the World

Health Organization to facilitate greater pooling of cohort data from clinical trials, foster more

open sharing of biological materials, and encourage the voluntary waiving of certain IP rights

to accelerate medical R&D for combating COVID-19 [140–142]. Hence, new forms of CRA-

DAs and MTAs may emerge in the near future, which only underscores the importance of

identifying valid and meaningful ways to measure technology transfer activities and perfor-

mance over time.

Limitations and future directions

Our study is limited in ways that further research may overcome in the future. Based on pub-

licly available databases managed by the U.S. federal government, our sample timeframe was

restricted from 1999–2016 and sample size to 127. However, due to this limitation, we carefully

interpreted the results and determined the effect sizes. Future research may be able to utilize a

larger sample when federal agency data is made publicly available and provides the opportu-

nity to extend our initial findings.

Our empirical findings provide guidance for formulating evidence-based policy reforms

that are tailored to the mandated missions and statutory constraints of each agency. We believe

that our findings could be the starting point for new streams of research on this topic that may

be generalized and applied to other countries and contexts. We encourage future researchers

to continue to investigate this area and help provide policymakers with essential tools that may
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drive a policy consensus regarding best practices for improving technology transfer perfor-

mance within and across government agencies around the world.

As other countries such as China, in particular, continue to rapidly expand their own sys-

tems of national labs and make more managerial data available for external use by interested

parties, it may be feasible to conduct comparative quantitative analyses of technology transfer

across multiple countries during the same timeframe. In addition, there may be opportunities

to expand our work by examining the extent to which multiple networks of public sector R&D

institutes in countries such as Germany and Israel are complementary or competitive with

each other in creating and commercializing scientific and technical breakthroughs. The more

decentralized and distributed approach to public sector R&D followed by Germany may pro-

vide an interesting contrast to the more centralized and concentrated approach followed by its

fellow European Union member, France. We believe that our study highlights a promising

avenue for future research and scholarly inquiry. Although countries may differ substantially

in their political systems and economic priorities, they may continue to encounter similar

challenges when analyzing and formulating future policies to achieve their respective national

innovation goals. Our study suggests that understanding the most effective practices and pro-

cess for managing government-industry technology transfer on the supply-side as well as the

demand-side is a matter of strategic importance that may help leaders and stakeholders in the

public and private sectors make progress towards building a policy consensus and reaching

their development objectives.
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