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Abstract: Shiga toxigenic E. coli (STEC) are an important cause of foodborne disease globally with
many outbreaks linked to the consumption of contaminated foods such as leafy greens. Existing
methods for STEC detection and isolation are time-consuming. Rapid methods may assist in pre-
venting contaminated products from reaching consumers. This proof-of-concept study aimed to
determine if a metabolomics approach could be used to detect STEC contamination in spinach. Using
untargeted metabolic profiling, the bacterial pellets and supernatants arising from bacterial and
inoculated spinach enrichments were investigated for the presence of unique metabolites that enabled
categorization of three E. coli risk groups. A total of 109 and 471 metabolite features were identified
in bacterial and inoculated spinach enrichments, respectively. Supervised OPLS-DA analysis demon-
strated clear discrimination between bacterial enrichments containing different risk groups. Further
analysis of the spinach enrichments determined that pathogen risk groups 1 and 2 could be easily
discriminated from the other groups, though some clustering of risk groups 1 and 2 was observed,
likely representing their genomic similarity. Biomarker discovery identified metabolites that were
significantly associated with risk groups and may be appropriate targets for potential biosensor
development. This study has confirmed that metabolomics can be used to identify the presence of
pathogenic E. coli likely to be implicated in human disease.

Keywords: leafy greens; spinach; metabolomics; metabolic profiling; food pathogens; biomarker dis-
covery

1. Introduction

The World Health Organization has identified foodborne diseases as a major concern
for public health and the world economy [1]. An estimated 600 million people fall ill
every year from consuming contaminated foods. Among the leading causes of disease are
bacterial pathogens such as pathogenic Escherichia coli.

E. coli are Gram-negative bacteria that are found in a wide variety of habitats including
the gastrointestinal tract of animals and humans. Most E. coli are considered important
microbiota members; however, some strains are known to be pathogenic and can cause
diarrheal or systemic diseases in the host. The diarrheagenic E. coli consists of five patho-
types: enteropathogenic E. coli (EPEC), Shiga toxigenic E. coli (STEC) which also constitute
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the enterohemorrhagic (EHEC) strains, enteroaggregative E. coli (EAEC), enterotoxigenic
E. coli (ETEC), and enteroinvasive E. coli (EIEC) [2].

Over the years, STEC strains have been associated with many incidences of foodborne
diseases [3]. While in most people STEC infection results in mild, watery diarrhea, it can
cause bloody diarrhea, and in vulnerable populations (such as the elderly, young, and
immunosuppressed), can lead to more serious consequences such as hemolytic uremic
syndrome (HUS), which can cause kidney failure [4]. STEC infections first rose to promi-
nence in 1982 and again in 1993 with foodborne disease resulting from the ingestion of
beef burgers contaminated with the strain E. coli O157:H7. Since then, more than 470 STEC
strains have been isolated from humans but not all of them are pathogenic. Since 2011,
O157 and six other serogroups O26, O45, O103, O111, O121, and O145 (also referred to as
the “big 6”) have gained regulatory significance by the U.S. Department of Agriculture’s
(USDA) Food Safety and Inspection Service (FSIS) [3].

Although contaminated meat has been frequently linked to STEC outbreaks, leafy
greens, vegetables, and dairy products have also been linked to similar outbreaks [4].
According to the Centre for Disease Control (CDC), between 1973 and 2012, 46% of the
total leafy vegetable outbreaks were caused by STEC strains [5]. In March 2020, the U.S.
Food and Drug Administration (USFDA) released the 2020 Leafy Greens STEC Action Plan
to reduce the number of STEC associated infections linked with leafy greens [6]. As the
infectious dose of STEC is very low (between 10–100 CFU) and because there is a higher
chance of consuming fresh produce in the raw state, it is very important to get a rapid and
timely detection for such pathogens to ensure consumer confidence and safety [7].

According to the current USFDA’s Bacteriological Analytical Manual (BAM), the
detection of STEC’s from leafy greens involves enriching the produce in an enrichment
broth for about 24 h followed by screening for virulence genes and other markers using
molecular techniques such as real-time PCR [5]. As opposed to other pathogens, the mere
detection of E. coli is not enough. The characterization of the strain and its differentiation
from other pathogenic and non-pathogenic E. coli are required. This is often a time-
consuming process. The most recent advancement for the detection and characterization of
pathogens has been whole-genome sequencing; however, in its current form, it also faces
problems around the requirement of sophisticated bioinformatics, specialized laboratory
equipment, data handling, and data ownership issues [2].

Metabolomics offers an approach from which rapid methods may be developed
for screening potential food pathogens in complex food matrices via the discovery of
novel biomarkers. In the last decade, this approach has shown promising progress in
food traceability, composition, and safety [8]. Limited studies have explored the use of
metabolomics to facilitate the rapid detection of pathogens [9–13]. It should be noted that
most of these studies focused on pathogen detection at the species level from protein-rich
matrices such as dairy and meat. The current study aims to investigate the application of
metabolomics to detect STEC strains from fresh produce with “spinach” used as the model
food. First, the metabolite profile of various STEC and non-STEC strains cultured in non-
selective enrichment media (buffered peptone water (BPW)) was undertaken, investigating
the metabolic differences amongst each strain in the supernatant and harvested pellet.
This was expanded to incorporate artificially inoculated, commercially packaged (bagged)
spinach with a cocktail of STEC and non-STEC to investigate the approach applied to a
complex food matrix. The metabolite profile from the spiked spinach was then analyzed
and compared with a suitable control (uninoculated) spinach sample using an untargeted
metabolomics approach via gas chromatography coupled with mass spectrometry. This
proof-of-concept study aims to determine if a metabolomics approach can be used to detect
STEC contamination in fresh produce. Post validation, the potential biomarkers identified
from this study can enable the development of a novel and rapid metabolomics-based
diagnostic assay for detecting STECs from complex food matrices such as fresh produce.
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2. Results and Discussion

Globally, the consumption of fresh produce has increased over the years with a change
in dietary habits and lifestyle choices. Concurrently, the number of foodborne outbreaks as-
sociated with fresh produce has also increased, with STEC being major contributors [4,7,14].
The current study aimed to use an untargeted metabolomics approach to identify potential
biomarkers specific to STEC contamination of fresh produce.

Here, the supernatant and pellet samples from the bacterial and spinach enrichments
were investigated for the presence of unique metabolites. As illustrated in Figure 1, a
total of 109 metabolite features were detected across the bacterial enrichment samples, of
which 31 were identified based on mass spectra fragmentation features and retention times.
For the inoculated spinach, a total of 471 metabolite features were detected, out of which
127 were identified. The major metabolite classes identified across all samples, based on
ChemRICH-class classification enrichment were amino acids, saturated fatty acids (FA),
carboxylic acids, sugars, and sugar alcohols.
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Figure 1. A global overview of the metabolic profiling outputs from the pathogenic E. coli experiments in buffered peptone
water (BPW) cultures (n = 36) and inoculated spinach experiments (n = 58). The number of identified metabolites has been
highlighted in green and the number of unidentified metabolites has been highlighted in grey.
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2.1. Bacterial Enrichments

Principal component analysis (PCA) and partial least square-discriminant analysis
(PLS-DA) of the bacterial enrichments comprising the three risk groups (RG1, RG2, and
RG3) with the “Negative” group did not show clear discrimination between the groups
for the pellet (Supplementary Materials Figure S1) or the supernatant (Supplementary
Materials Figure S2) samples. One of the reasons for this could be the higher metabolomic
similarity between the different E. coli isolates. Therefore, a supervised orthogonal PLS-
DA (OPLS-DA) analysis was performed. The pellet samples (Supplementary Materials
Figure S3) and supernatant (Supplementary Materials Figure S4) samples showed clear
discrimination between the different risk groups. As anticipated, RG1 isolates which
include serogroups of regulatory significance were found to be more closely clustered with
RG2 isolates. Isolates in both groups typically harbor eae and stx or possess additional
genetic markers (e.g., pathogenicity islands or stx-associated O-antigen SNPs) consistent
with isolates most likely to cause human disease. While RG3 samples could be separated
from negative samples when bacterial pellets were analyzed, the same differentiation was
not observed when the supernatants were analyzed. The lack of separation between RG3
and the negative groups likely confirms the absence of additional genetic markers in these
samples and most likely reflects shared core biochemistry. As there is always a risk with
overfitting data in supervised models such as OPLS-DA, and the percentage variation
explained in the models being coupled with a predictability quotient (Q2), cross-validation
of the OPLS models was undertaken (Supplementary Materials Tables S1 and S2, Figures
S5 and S6). While the bacterial pellet model was found to be significant (p-value of 0.008),
the data points were found to deviate from the axis origin which is indicative of a model
with a high misclassification potential. As such, an additional model was generated that
grouped RG1 and RG2 (as being of regulatory importance and similar virulence grouping)
against the combined negative and RG3 groups of the pellet (Figure 2) and supernatant
samples (Figure 3). This grouping resulted in the generation of a significantly improved
model that was cross-validated (Figure 4) and were both found to be significant.
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Figure 2. Orthogonal Partial Least Square-Discriminant Analysis (A) scatter plot and (B) loading plot of bacterial pel-
let samples collected from BPW cultures (n = 36; note, the negative group includes Salmonella). R2X (cum) = 0.698,
R2Y (cum) = 0.989, Q2 = 0.879. Note, the ellipse presented in Figure 2A represents Hotelling’s T2 confidence limit (95%).
Note: The colored circles in panel “A” represent each analyzed sample, while the yellow-colored stars in panel “B” indicate
the average group position for each sample cluster, with the white circles representing the distribution of metabolite features
between these groups.
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Figure 3. Orthogonal Partial Least Square-Discriminant Analysis (A) scatter plot and (B) loading plot of bacterial super-
natant samples collected from BPW cultures (n = 36; note, the negative group includes Salmonella). R2X (cum) = 0.744,
R2Y (cum) = 0.987, Q2 = 0.751. Note, the ellipse presented in Figure 3A represents Hotelling’s T2 confidence limit (95%).
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the average group position for each sample cluster, with the white circles representing the distribution of metabolite features
between these groups.
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Figure 4. OPLS-DA Cross-Validation Scores plots for (A) bacterial pellet and (B) bacterial supernatant samples collected
from BPW cultures (n = 36; note, the negative group includes Salmonella). The F-test statistic and p-Value based on a
CV-ANOVA were 18.12 and <0.0001 for the pellet samples, and 5.78 and <0.0002 for the supernatant samples, respectively.
Note: The colored circles in each panel represent each analyzed sample, and any overlap of the deviation of the samples
from the origin (0,0) indicates the potential of the model to misclassify sample groupings.

A volcano plot was generated of these groupings to identify the metabolites that were
significantly altered for the pellet (Figure 5A) and supernatant samples (Figure 5B). A
detailed summary of significant metabolites is provided in the Supplementary Materi-
als (Supplementary Materials Tables S3 and S4). The statistically significant metabolites
(p ≤ 0.05 and fold-change (FC) ≥ 2 or ≤0.5) that increased in the combined RG1 and
RG2 pellet samples (as compared to the combined RG3 and negative) were 2-amino-2-
methyl-1,3-propanediol, D-sphingosine, behenic acid, 2,3-dihydroxybiphenyl, acetohy-
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droxamic acid, 3-hydroxyanthranilic acid, pelargonic acid, 4-aminophenol, DL-2-amino-
3-phosphonopropionic acid, glycolic acid, halostachine, lauric acid, 2,6-dihydroxy-4-
methoxytoluene, and 1-hexadecanol. The metabolites that decreased in pellet samples
were pipecolic acid, trimethyllysine, L-methionine, cytidine, and N-acetyl-ornithine. On
the other hand, the metabolites that significantly increased in the RG1 and RG2 super-
natant samples were 2-amino-2-methyl-1,3-propanediol, 2,3-dihydroxybiphenyl, behenic
acid, 2,3-butanediol, pelargonic acid, 4-aminophenol, acetohydroxamic acid, glycolic acid,
3-hydroxyanthranilic acid, halostachine, DL-2-amino-3-phosphonopropionic acid, and
D-sphingosine. Epsilon-caprolactam and N-acetyl-ornithine were found to decrease in
the supernatant samples. Further ANOVA analysis was done to compare various risk
groupings (Tables S5 and S6, Supplementary Materials).
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2.2. Spinach Enrichments

In the spinach experiments, attempts were made to differentiate samples spiked
with RG1 or RG2 isolates from samples spiked with isolates from the negative group
(which contained Salmonella) or uninoculated spinach (control group). Like the bacterial
enrichment samples, both the pellet and the supernatant samples were used for performing
the untargeted metabolomic profiling. PCA and PLS-DA analysis of the two risk groups
(RG1, RG2) with the Negative and the Control groups did not show clear discrimination
between the groups for the pellet (Supplementary Materials Figure S7) or the supernatant
(Supplementary Materials Figure S8) samples. Therefore, a supervised OPLS-DA analysis
was performed. Figures S9 and S10 (Supplementary Materials) represent the OPLS-DA
plots for pellet and supernatant samples, respectively. The control samples (spinach
only) were clearly separated from the spiked samples in both the pellet (R2X = 0.722,
R2Y = 0.914, Q2 = 0.417) and supernatant samples (R2X = 0.635, R2Y = 0.945, Q2 = 0.429).
More importantly, samples spiked with RG1 or RG2 isolates could be differentiated from
both the negative and the control groups; however, the ability to distinguish between RG1-
and RG2-spiked samples was more problematic with only marginal separation which was
more pronounced in supernatant than pellet samples. However, like the bacterial OPLS-DA
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plots, cross-validation of these models indicated a high degree of misclassification potential
(Supplementary Materials Tables S7 and S8, Figures S11 and S12). As such, an additional
model was generated that grouped RG1 and RG2 (as being of regulatory importance and
similar virulence grouping) against the negative and control groups of the pellet (Figure 6)
and supernatant samples (Figure 7).
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Figure 8 illustrates the cross-validated score plots of these OPLS-DA models. As the
focus herein was to putatively identify biomarkers that can distinguish these RG pathogens
from the negative group and the control, this seemed appropriate. As illustrated in Figure 8,
some of the negative group samples were misclassified as belonging to RG1 and RG2. Note
that these samples were the negative E. coli cohort.
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The following sections provide some deeper analyses of the differentially expressed
metabolites relating to the various RG analyzed from inoculated spinach. Moreover, as the
key focus here is to explore putatively identified biomarkers for the identification of RG1
and RG2 pathogens in spinach, a biomarker analysis was completed.

2.3. Interaction between Spinach and Pathogenic E. coli Metabolomes for Pathway Mapping

Volcano plots (Figure 9) were generated to identify the statistically significant (p ≤ 0.05
and FC ≥ 2 or ≤0.5) metabolites from RG1 and RG2 pellet samples. From the identified
metabolites in the spinach enrichments, a Venn diagram was constructed to identify the
unique metabolites between the two groups (Figure 9).

To identify the metabolic pathways that are most likely induced during enrich-
ment, pathway mapping analysis was performed using these significant metabolites.
The 47 metabolites from RG1 (Supplementary Materials Table S9) and 59 metabolites
from RG2 (Supplementary Materials Table S10) were then used to perform a pathway
impact analysis in MetaboAnalyst (version 4.0) (Xia Lab, McGill University, Montréal,
QC, Canada). Figure 10 indicates the statistically significant pathways (p ≤ 0.05) that were
impacted in RG1 and RG2 strains growing in spinach enrichments. Amino acid tRNA
biosynthesis, arginine biosynthesis, and arginine and proline metabolism were significantly
affected in both the risk groups, whereas valine, isoleucine, and leucine biosynthesis; glu-
tathione metabolism; and purine metabolism were mainly impacted in the RG1 group. The
figure indicates that in both risk groups amino acid metabolism was most affected.
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To get a more holistic understanding of the amino acid pathways impacted, the
identified metabolites (from significantly impacted metabolic pathways) from the pellet
samples were mapped using the KEGG Mapper tool. Figure 11 highlights the metabolites
mapped onto the “amino acid metabolism” pathway of E. coli.
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As observed in Figure 11, several common and some unique amino acids were iden-
tified in both the risk groups; in comparison with the spinach-only sample, a signifi-
cant increase in fold change was observed for the amino acid methionine (RG1-FC = 2.4,
RG2-FC = 3.1), whereas a significant decrease was observed for threonine (RG1-FC = 0.48,
RG2-FC = 0.37), lysine (RG1-FC = 0.21, RG2-FC = 0.14), aspartate (RG1-FC = 0.26, RG2-FC = 0.14),
glutamate (RG1-FC = 0.45, RG2-FC = 0.33), proline (RG1-FC = 0.34, RG2-FC = 0.18), or-
nithine (RG1-FC = 0.23, RG2-F = −0.12), spermidine (RG1-FC = 0.41, RG2-FC = 0.42),
valine (RG1-FC = 0.23, RG2-FC = 0.35), tyrosine (RG1-FC = 0.16, RG2-FC = 0.13), tryp-
tophan (RG1-FC = 0.09, RG2-FC = 0.06), serine (RG2-FC = 0.42), and 2-methylmaleate
(RG1-FC = 0.24).

Previous studies by Cevallos-Cevallos et al. and Li and Xu [11,12] have also identified
changing amino acid levels during the metabolomic analyses of pathogenic E. coli strains.
For instance, similar to the current study, Cevallos-Cevallos et al. [11] also observed a low
level of the amino acid serine in the E. coli containing samples when compared to the control
samples. The same study did not detect a significant amount of serine in the E. coli O157:H7
containing samples which were consistent with the findings in the current study as RG1
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samples which included the E. coli O157:H7 serovar did not show the presence of serine. In
the study by Li and Xu [12], a short enrichment period (4–8 h) was used before performing
a targeted metabolomics study of pathogenic and non-pathogenic E. coli samples. In this
study, lower levels of the amino acids N-acetyl-DL-glutamic acid and N-acetyl putrescine
was observed in the pathogenic E. coli containing samples. Interestingly, the current study
which involved a longer enrichment period (18 h) also detected a lower fold change of
glutamate which is a precursor of N-acetyl-DL-glutamic acid, and L-ornithine which via
decarboxylation produces putrescine [15]. Putrescine is a precursor of spermidine which
was also identified in both the risk groups. Putrescine along with other polyamines such as
spermine and spermidine can be found naturally in various foods or can also be produced
by bacteria belonging to the Enterobacteriaceae family such as E. coli [15]. Detection of
L-ornithine or other polyamines such as putrescine/spermidine could serve as an early
indication of microbial spoilage in foods.

2.4. Pathogenic E. coli Biomarker Analysis in Spinach

The biomarker analysis was intentionally applied to the inoculated spinach, with
specific focus given to the pelleted samples. This was done to account for the complexity
of the spinach–pathogen–microbiome interaction and variation in the number of measured
metabolites between the bacterial enrichment samples and the spinach samples. The
biomarker analysis was performed using the SIMCA 16.1 Omix skin toolbox and the
Biomarker analysis toolbox of MetaboAnalyst 4.0. The receiver operating characteristic
(ROC) curve based on the area under the curve (AUC) was applied to the OPLS-DA
dataset. A higher area under the curve (within a 95% confidence interval) is defined by the
ratio between sensitivity (true positive rate) and specificity (false positive rate). A higher
sensitivity/specificity ratio indicates greater model predictability. Figure 12 illustrates
the multivariate ROC analysis for the pellet and supernatant samples obtained from the
inoculated spinach experiments.
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Figure 12. The plots represent multivariate ROC under the curve exploratory analysis of (A) pellet and (B) supernatant
samples, for the metabolic profiling of bacterial risk groups (n(RG) = 32 and, n(Negative) = 12) inoculated into spinach
enrichments. The outputs indicate the probability of biomarker predictability to the control (non-inoculated samples, n = 12),
with a high sensitivity reflecting increased predictability of biomarkers. Note: for the biomarker analysis, the RG group
comprises RG1 and RG2 combined.
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However, the multivariate ROC analysis provided only the overall behavior of the
groups. Therefore, to understand the contribution of individual metabolites as potential
biomarkers, univariate ROC analysis was also performed using the “Biomarker analysis”
toolbox of MetaboAnalyst 4.0. It was observed that the predictability of biomarkers
was higher in the pellet (Q2(cum) = 52.1%) with respect to the supernatant (Cumulative
Q2(cum) = 39.7%).

Metabolites such as lysine (AUC = 0.93, Log2FC = −7.27), tyrosine (AUC = 0.95,
Log2FC = −6.59), adenosine (AUC = 0.88, Log2FC = −4.8) cellotetraose (AUC = 0.96,
Log2FC = −2.63), norleucine (AUC = 0.97, Log2FC = −3.82), and serine (AUC = 0.72,
Log2FC = −1.04) showed depletion in the risk groups. Conversely, metabolites such
as L-methionine (AUC = 0.79, Log2FC = 2.21) and 4-hydroxycinnamate (AUC = 0.68,
Log2FC = 2.0) were observed to increase in pellet samples containing risk groups (RG)
(Supplementary Materials Figure S13A).

Similarly, when compared to the negative controls, metabolites such as linoleate (AUC = 1,
Log2FC = 5.81), 4-isopropylbenzoate (AUC = 0.99, Log2FC = 8.48), 3,4-dihydroxymandelate
(AUC = 0.92, Log2FC = 5.09), and stearate (AUC = 0.94, Log2FC = 5.15) showed elevation
in the RG pellet samples. On the other hand, tryptophan (AUC = 0.9, Log2FC = −3.36)
and 3-aminoisobutyrate (AUC = 0.81, Log2FC = −1.62) were predominantly depleted
metabolites in the RG pellet samples (Supplementary Materials Figure S13B).

A few statistically significant metabolites (p ≤ 0.05) were identified in both RG1
and RG2, and therefore we compared the two groups to determine the differences in
their output. Unlike the observations earlier (when compared to the control samples),
this comparison yielded fewer metabolites with high AUC (>0.9). The major metabo-
lites were 4-2-hydroxyethylphenol (AUC = 0.94, Log2FC = 2.08) 4-hydroxyphenylacetate
(AUC = 0.78, Log2FC = 1.27), inosine (AUC = 0.75, Log2FC = 1.19), and serine (AUC = 0.72,
Log2FC = 1.34) showing increased levels in RG 1 (Supplementary Materials Figure S13C).

4-Hydroxyphenylacetic acid is primarily a plant-based metabolite and is generated
as the downstream product of phenylalanine and tyrosine metabolism. Some E. coli
strains have the gene functions for translation of tyrosine aminotransferase, aspartate
aminotransferase, histidinol-phosphate aminotransferase, and 4-hydroxyphenylacetate
3-monooxygenase enzymes, which facilitate this metabolism [16]. The depletion of tyrosine
and tryptophan in the RG samples in our study indicated this activity. Inosine is one
of the important intermediates of nucleotide metabolism. In a recent study [17], the
effect of E. coli O157:H7 infection in Caenorhabditis elegans (nematode) indicated the role
of increased inosine levels in pathways related to nucleotide salvaging and, to some
extent, lipid oxidation. This increase was observed to alleviate the cellular damage in the
nematode caused by E. coli O157:H7. The importance of inosine was also shown in a recent
study which indicated inosine-containing alleles in the E. coli O157:H7 genes which code
for heat-stable enterotoxin type I [18]. The increased levels of serine and methionine in
C. elegans infected with E. coli O157:H7 has been indicative of increased toxicity, caused
by upregulated methionine and homocysteine pathways [17,19]. Our observations align
well with these studies. However, a proteomics-based approach will further establish the
outputs of this study, and the metabolic behavior and virulence expressions of various
E. coli strains.

3. Materials and Methods
3.1. Bacterial Strains and Culture Media

A total of 20 E. coli isolates from the CSIRO STEC culture collection, harboring various
combinations of genes encoding Shiga toxin (stx) and intimin (eae) and belonging to a range
of serogroups, were selected for inclusion in the study. The isolates were assigned to risk
groupings 1 to 3 which were based on their regulatory importance or pathogenic potential.
Risk Group 1 (RG1) contains STEC of regulatory importance known as Top7 STEC which
includes O157 and the Big6 serogroups (O26, O45, O103, O111, O121, and O145). Risk
Group 2 (RG2) contains non-Top7 STEC, potential enterohaemorrhagic E. coli (pEHEC)
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and atypical enteropathogenic E. coli (aEPEC), and risk group 3 (RG3) is comprised of
eae-negative STEC. A fourth grouping, designated as “negative”, included five generic E.
coli and five Salmonella enterica isolates. A summary of the isolate information is shown
in Table 1. All isolates were recovered from freezer stocks (−80 ◦C) using tryptic soya
agar (Oxoid, Basingstoke, UK) incubated overnight at 37 ◦C. The resulting cultures were
sub-cultured to confirm purity and were subsequently tested for stx and eae by conventional
multiplex PCR [20].

Table 1. Category, serogroup, virulence profile, and risk groupings of isolates included in the study. Note: The column
“Isolates” refer to ID of individual strains from CSIRO the CSIRO STEC culture collection.

Category Isolates Serogroups Virulence Profiles Risk Grouping (RG)

Top7 STEC
EC 1543, 2941, 2996a, 2997a,
4399a, 4400a, 4412a, 4419a,

4433a, and 5054a

O157, O26, O45, O103,
O111, O121, and O145

stx1, stx2 and eae; stx1
and eae; stx2 and eae 1

Non-Top7 STEC EC 3633a, 3639a, and 3683a O84, O177, and O182 stx1, stx2 and eae; stx1
and eae 2

pEHEC/aEPEC EC 801, 1646a, 3989a,
and 4560a O26, O103 and O145 Eae only 2

Eae-negative STEC EC 4742a, 4819c, and 4852b Unknown stx1 and stx2; stx1 only 3

Generic E. coli Five cattle isolates Unknown NA Negative

Salmonella Five cattle isolates Unknown NA Negative

3.2. Sample Preparation
3.2.1. Bacterial Enrichments

Bacterial enrichments were prepared by first enriching each isolate (Table 1) in 10
mL of buffered peptone water (BPW; Oxoid, Basingstoke, UK) overnight at 37 ◦C. The
resulting enrichments were then diluted 1 in 1000 using BPW and a 30 µL aliquot was
subsequently used to inoculate 30 mL of BPW which was then incubated at 37 ◦C for 18 ±
2 h. A minimum of four replicates was prepared for each risk grouping with a maximum
of five isolates included in any one enrichment. As risk grouping 1 comprised 10 isolates,
enrichments were prepared such that they contained a maximum of two serogroups (e.g.,
O26 and O111). Sterile, uninoculated BPW was enriched and used as negative growth
control.

3.2.2. Spinach Enrichments

Spinach samples were acquired from three separate supermarkets located in South
East Queensland, Australia. Spinach samples were prepared by combining 25 g of spinach
with 250 mL of BPW. All spinach samples were stomached for 60 s at four strokes per second
(Interscience, St Nom La Breteche, France) before the addition of a bacterial inoculum.
Bacterial inoculums were prepared for each risk grouping using the following approach.
Each isolate was initially enriched in BPW overnight at 37 ◦C before being diluted 1 in 1000
using BPW. A cocktail inoculum for each risk grouping was then prepared by combining
equal volumes of the isolates and subsequently diluting it 1 in 10 in BPW. A 1 mL aliquot
of the resulting cocktail was then added to each sample, as required, to obtain an overall
inoculum of between 100 and 1000 CFU/g. Samples were incubated overnight at 37 ◦C for
18 ± 2 h before being processed further. Four replicates were prepared for all spinach/risk
grouping combinations and uninoculated spinach samples were included as controls.

3.3. Metabolomic Analysis
3.3.1. Preparation of Cell Pellet for Metabolomic Analysis

Following enrichment, a sample aliquot (1 mL) was transferred to a 10 mL centrifuge
tube for quenching of metabolism. Quenching solution (4 mL) comprising of 60:40 (v/v)
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methanol:water containing ammonium hydrogen carbonate to a final concentration of
0.85% (w/v) was added to the aliquot. The cellular mass was pelleted in a centrifuge (Sigma
4K-15; Sigma, London, UK) for 10 min at 4800× g and −8 ◦C. The cell pellet was stored at
−80 ◦C until further analysis.

3.3.2. Preparation of Cell Media for Metabolomic Analysis

A small volume of sample (1 mL) was transferred to a microcentrifuge and subjected
to centrifugation at 13,500× g for 5 min to remove any cell debris and suspended cells. The
supernatant (1.5 mL) was then transferred into fresh microfuge tubes, lyophilized at a low
temperature, and stored at −80 ◦C until further analysis.

3.3.3. Metabolite Extraction

The lyophilized samples were reconstituted in 1 mL methanol consisting of 100 µL
internal standard (IS1) solution (20 mg mL−1 each of glycine-d5 and L-alanine-d4 in
methanol) was added to each labeled 2 mL centrifuge tubes. The mixture was thoroughly
vortexed for 2 min followed by centrifugation at 573× g at 4 ◦C for 15 min. A 50 µL aliquot
of the supernatant was then transferred into 2 mL vials and evaporated to dryness in a
vacuum concentrator (CentriVap Concentrator, Kansas City, MO, USA) at 40 ◦C. Myristic
acid-d27 was added (0.2 mg mL−1; 10 µg after drying) as a secondary internal standard
(IS2) and, the samples were re-dried.

3.3.4. GC-MS Analysis

The dried extracts were derivatized “in time”, followed by a 1-h holding time, before
injection into a GC-MS as per previously reported [21], with some modifications. Briefly,
trimethylsilyl (TMS) derivatives were formed by adding 20 µL of methoxyamine hydrochlo-
ride (MOX, 20 mg mL−1 in pyridine) and 40 µL of N, O-bis(trimethylsilyl)trifluoroacetamide
(BSTFA) containing 1% trimethylchlorosilane (TMCS) following a two-step derivatization
protocol implemented in-time using a Gerstel MPS autosampler (Gerstel GmbH & Co. KG,
Deutschland, Germany). The derivatized samples were then analyzed using an Agilent
6890B GC oven coupled with a 5973A MS detector (Agilent Technologies, Mulgrave, VIC,
Australia). The GC-MS system was equipped with a 30 m DB-5MS column (0.25 mm ID,
0.25 µm film thickness). The splitless method was used with 1 µL volume; the oven was
held at an initial temperature of 70 ◦C for 2 min before increasing to 325 ◦C at 7.5 ◦C min−1;
the final temperature was held for 4.5 min. Data acquisition and spectral analysis were
performed using MassHunter. Qualitative identification of the compounds was performed
according to the Metabolomics Standard Initiative Chemical Analysis Workgroup using
the Agilent Fiehn Metabolomics Library (G166766A, Agilent Technologies, Santa Clara,
CA, USA). For peak integration, a 5-point detection filtering (default settings) was set with
a start threshold of 0.2 and a stop threshold of 0.0 for 10 scans per sample.

3.4. Data Analysis

The data were imported and log-transformed using SIMCA 16 (MKS Data Analytics
Solutions, Uméa, Sweden). Partial Least Square-Discriminant Analysis (PLS-DA) was
performed by finding successive orthogonal components from the two or more datasets
with maximum squared covariance and was subsequently used to identify the common
relationships among the multiple datasets. All supervised models were cross-validated
using a default 7-fold cross-validation method and CV-ANOVA statistic as indicated
previously [22].

MetaboAnalyst 4.0 [23] and KEGG Mapper [24] were used for metabolic pathway
analysis [25], and metabolites with a Benjamini–Hochberg-adjusted p-value of ≤ 0.05
and Fold Changes (FC) of <0.5 (downward regulation) or >2.0 (upward regulation) were
considered to be statistically significant. Biochemical pathway enrichment analysis was
performed using ChemRICH (http://chemrich.fiehnlab.ucdavis.edu/), a novel statistical
approach based on chemical similarity [26]. Enrichment p-values and FC were obtained
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using SIMCA. A Venn diagram was drawn using an online web tool (http://bioinformatics.
psb.ugent.be/webtools/Venn/). Sankey diagrams were created using the SankeyMATIC
online web tool (http://sankeymatic.com/), respectively.

4. Conclusions

STEC are an important cause of foodborne disease globally, with many outbreaks
linked to the consumption of contaminated foods such as leafy greens and red meat. STEC
is considered an adulterant in raw, non-intact beef products in the USA. Consideration
is being given to microbiological surveys and enhanced sampling protocols for STEC
in leafy greens; however, methods remain laborious and provide little opportunity for
supply chains to assess and mitigate food safety risks, with the emphasis remaining on
end-product testing. The use of untargeted metabolomics may yield alternative pathogen
detection tools that overcome these limitations and lead to the development of in-line
risk mitigation strategies. This proof-of-concept study has shown that the use of such an
approach does enable STEC, of human and regulatory significance, to be differentiated from
other STEC and Enterobacteriaceae. Furthermore, it enabled the identification of specific
biomarkers for which rapid detection tools and biosensors can be subsequently developed
that facilitate potentially cheaper and quicker detection systems that may be utilized in a
biosensor-based risk mitigation approach to food production and processing and suggests
that it could be extended to other pathogens/food combinations (i.e., red meat).
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collected from buffered peptone water cultures, Figure S5: Cross-validation scores plots of the OPLS-
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supernatant model, Figure S7: Principal component analysis and partial least square-discriminant
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component analysis and partial least square-discriminant analysis of bacterial supernatant samples
collected from inoculated spinach samples, Figure S9: Orthogonal partial least square-discriminant
analysis of bacterial pellet samples collected from inoculated spinach samples, Figure S10: Orthogonal
partial least square-discriminant analysis of bacterial supernatant samples collected from inoculated
spinach samples, Figure S11: Cross-Validation (CV) Scores plots of the OPLS-DA bacterial super-
natant model, Figure S12: Cross-Validation (CV) Scores plots of the OPLS-DA inoculated spinach
supernatant model, Figure S13: The plots indicate the top 15 validated biomarkers, as analyzed by
PLS-DA classification and feature ranking through a Monte-Carlo cross-validation method, Table
S1: Cross-validation (CV)-ANOVA of the OPLS-DA bacterial pellet model (Figure S3), Table S2:
Cross-validation (CV)-ANOVA of the OPLS-DA bacterial supernatant model (Figure S4), Table S3:
Significant metabolites in bacterial pellet samples collected from buffered peptone water cultures,
Table S4: Significant metabolites in bacterial supernatant samples collected from buffered peptone
water cultures, Table S5: ANOVA analysis of bacterial pellet samples collected from buffered peptone
water cultures, Table S6: ANOVA analysis of bacterial supernatant samples collected from buffered
peptone water cultures, Table S7: Cross-validation (CV)-ANOVA of the OPLS-DA inoculated spinach
pellet model, Table S8: Cross-validation (CV)-ANOVA of the OPLS-DA inoculated spinach super-
natant model, Table S9: Significant metabolites identified in bacterial pellet from RG1-inoculated
spinach samples, Table S10: Significant metabolites identified in bacterial pellet from RG2-inoculated
spinach samples.
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