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The tumor-immune interface has surged to primary relevance in an effort to understand
the hurdles facing immune surveillance and cancer immunotherapy. Reports over the past
decades have indicated a role for the unfolded protein response (UPR) in modulating not
only tumor cell fitness and drug resistance, but also local immunity, with emphasis on the
phenotype and altered function of immune cells such as myeloid cells and T cells.
Emerging evidence also suggests that aneuploidy correlates with local immune
dysregulation. Recently, we reported that the UPR serves as a link between aneuploidy
and immune cell dysregulation in a cell nonautonomous way. These new findings add
considerable complexity to the organization of the tumor microenvironment (TME) and the
origin of its altered function. In this review, we summarize these data and also discuss the
role of aneuploidy as a negative regulator of local immunity.
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INTRODUCTION

The tumor-immune interface is a variable of fundamental relevance to understand what determines
tumor evolution. For a long time the relation between the immune system was considered immune-
centric, meaning the entire focus was on the immune system as a protective measure. This helped
formulate the immune surveillance (1, 2) theory with antigen on tumor cells as its cornerstone.
Burnet defined the problem in a simple way: “Any chemical configuration that is not genetically
proper to the body can provoke a specific immune response. It is axiomatic to scholars interested in the
general pathology of cancer that in most or all cancers the cell membrane differs from normal state. If
these changes are due to somatic mutation, they probably represent either a new peptide configuration
or some protein that is different enough from any normal self-pattern to be potentially antigenic” (3).
This concept served as the nexus to a tumor-centric view where considerations of individuality have
taken the center stage due in great part to the opportunities offered by genomic analysis of cancers
(4). This has lent support to the concept of tumor escape from control by the immune system, which
became the new focus in revisions of the immune surveillance theory renamed immunoediting
theory (5, 6). A tumor fulfills the biological necessity of surviving using conserved mechanisms such
as de-repression of telomerase (7–9) and immune evasion. The tumor-immune interface marks a
more recent interest driven in part to a better understanding of the tumor microenvironment and its
relation with the mutational landscape (10), both motivated by the need to improve the success of
immunotherapy (11). Hence, the proposal to fragment the tumor microenvironment in subclasses
of immune environments (11).
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We believe that beside enormous molecular specificity and
mutational diversity in tumor cells and a parallel diversification
and selection of receptors on immune cells, there exists a more
primitive form of regulation one could equate to a community
effect, a phenomenon based on cell-to-cell cooperation at play in
animal development (12) also proposed to serve as a regulatory
element of tumor evolution (13, 14). A somewhat analogous
system exists in bacteria under the term of quorum sensing (15,
16), a mechanism through which bacteria detect fluctuations in
extracellular cues and transduce sensory information into the cell
to modulate gene expression in response to a changing
environment that leads to the production and release of
chemical messengers. Likewise, a community effect type of cell-
cell communication has been reported in plants (17). And in
slime mold, a single-celled soil-dwelling amoeba, cAMP released
by a few cells causes the more numerous receiver cells to behave
like transmitting cells during aggregation (18). Taken together,
these considerations support the view that cell-cell cooperation is
a fundamental phenomenon of evolution and it applies to cancer
(19, 20).

Our view and the thesis of this review article is that the
tumor-immune interface is a point of encounter and collision
among cells with different origin and trajectories that needs to
conform to a pattern conserved enough to make evolutionary
sense. We and others have identified the response to stress of the
endoplasmic reticulum (ER) or unfolded protein response (UPR)
as one such mechanism. This review article will focus primarily
on the interactions between tumor cells on the one hand, and
myeloid cells (macrophages and dendritic cells) and T cells on
the other. We elected to concentrate on these cell populations for
there exists which more experimental evidence. We will discuss
the implication of this signaling system in modulating the tumor
microenvironment, promoting tumor cell fitness and drug
resistance, and dysregulating immune cells. We will also
discuss recent data showing that aneuploidy is the source of
UPR in cancer cells and this can lead to cell-nonautonomous
dysregulation of immune cells, T cells and macrophages.
THE UPR

The UPR is a conserved physiological mechanism that permits
normal cells to cope with changes of the environment as they
impinge upon the homeostatic state of the cell. This molecular
signaling mechanism is conserved among yeast, fungi, worm, fly,
corals, and vertebrate and mammalian cells even though
mammalian cells are able to cope with ER stress in a more
sophisticated manner (21–24). This is not surprising since a
recent analysis of the proteome landscape of the kingdoms of life
showed, remarkably, that a high fraction of the total proteome
mass in all kingdoms is dedicated to protein homeostasis and
folding (25). Is it also an important mechanism applicable to
cancer in general?

Mammalian cells, and cancer cells in particular, are
constantly subject to a variety of stressors including replication
stress, DNA damage, heat shock, the integrated stress response,
Frontiers in Immunology | www.frontiersin.org 2
the unfolded protein response (UPR), and mitochondrial UPR
(26). Cancer cells adapt to cell-extrinsic, environmental stressors
(nutrient starvation, hypoxia, and acidic pH) and cell-intrinsic
stressors (viruses, protein misfolding, and aneuploidy), to
heighten their survival through the UPR. This signaling system
is under the control of three initiator/sensor molecules, inositol-
requiring enzyme 1 (IRE1a), PKR-like ER kinase (PERK), and
activating transcription factor 6 (ATF6) (27, 28). Each consists of
an ER luminal domain, a single transmembrane domain, and a
cytosolic domain. This organization enables sensing misfolded
proteins within the ER lumen and translates the signals to the
cytosol to activate different downstream molecules. In the
unstressed state, these sensor molecules are maintained
inactive through association with the 78 kDa glucose-regulated
protein (GRP78) (29). Upon ER stress induction, GRP78
disassociates from the three sensors, derepressing them and
allowing downstream signaling to initiate. Both IRE1a and
PERK contain kinase domains that autophosphorylate in trans.
Activated PERK phosphorylates the eukaryotic translation
initiation factor 2a (eIF2a), which acts as a negative regulator
of translation to limit the number of client proteins in the ER.
Unresolvable ER stress, however, activates downstream effector
molecules ATF4 and the C/EBP homologous protein (CHOP) to
induce apoptosis. The cytosolic portion of IRE1a contains both
kinase active sites and the RNase domains. Upon activation
IRE1a endoribonuclease initiates the unconventional splicing of
the mRNA encoding X-box-binding protein 1 (XBP1). Spliced
XBP1 is a potent transcriptional activator that increases
expression of a subset of UPR-related genes involved in
efficient protein folding, maturation, and degradation in the
endoplasmic reticulum (30). An additional function of IRE1a
independent of XBP1 is the endonucleolytic decay of many ER-
localized mRNAs and miRNAs through a phenomenon termed
regulated IRE1a-dependent decay (RIDD) (31). Upon
activation, ATF6 translocates to the Golgi where it is cleaved
into its functional form and acts in parallel with XBP1s to restore
ER homeostasis (32). During unresolvable ER stress
compensatory mechanisms fail and downstream signaling from
PERK, via ATF4 and CHOP, initiates apoptosis (27). The
ensemble of these signaling pathways is shown in Figure 1.

Evidence implicates ER stress and the UPR in tumorigenesis,
cancer growth, and progression (33, 34). However, the role of the
UPR in cancer can be further distinguished into cell-intrinsic,
through which cells acquire greater fitness and pro-survival, and
cell-extrinsic, which is mediated by soluble messenger molecules
released by cancer cells undergoing a UPR that coopt receiver
cells (35).

Examples of cell-intrinsic effects of the UPR on tumor cells
abound. For instance, breast cancer possesses high levels of
GRP78 (36). In these conditions of GRP78 elevated expression,
translocation to the cell surface can also occur to serve as a
signaling molecule to activate the phosphoinositide-3-kinase
(PI3K) (37, 38) and promote growth and resistance to
chemotherapy [for review see (39)]. XBP1 is activated in triple
negative breast cancers (TNBC) and plays a pivotal role in
tumorigenicity and cancer progression in humans (40). In
February 2022 | Volume 13 | Article 823157
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mice, the conditional homozygous knockout of Grp78 in the
prostate of mice with Pten inactivation protects against cancer
growth (41). The inactivation of PERK or a dominant-negative
PERK in tumor cells, results in tumors that are smaller and less
aggressive than their normal counterparts when implanted into
mice (42). Inactivation of PERK and IRE1a results in impaired
tumor cell survival under hypoxic conditions in vitro, and
decreased tumor growth in vivo (42, 43). Thus, a tumor UPR
initiates a cell-intrinsic signaling program that promotes tumor
cell adaptation to the microenvironment resulting in enhanced
survival and proliferation. However, a cell-intrinsic UPR is not
the only manifestation of the UPR in cancer cells. An aspect of
increasing interest is transcellular UPR and its effects not only on
neighboring tumor cells (44) but also from tumor cells to
immune cells.
TRANSCELLULAR UPR TRANSMISSION
AS A REGULATORY MECHANISM IN THE
TUMOR MICROENVIRONMENT

Immunity has long been regarded as the guardian of tumor
development and growth. However, what type of correlate
distinguishes good vs. poor outcome remains a challenge.
Abundance, density, and quality of T lymphocytes in tumors
correlate with clinical outcome in many cancer types (36, 45–47).
Notwithstanding the fact that only a small fraction (<10%) of
Frontiers in Immunology | www.frontiersin.org 3
intra-tumor T cells are specific for autologous tumor antigens
(48), the ongoing anti-tumor response may require stem-like
CD8 T cells in tumor-draining lymph nodes (49), and the
response to immunotherapy may require pre-existing CD8 T
cells at the invasive tumor margin (50). However difficult this
might be, the potential benefit of tumor-infiltrating T cells is
opposed by T suppressor/regulatory (Treg) cells (51) and by
leukocyte infiltrates - most notably myeloid cells. Myeloid cells in
the TME are of central relevance to understand the dynamics of
tumor progression (52). Among them, macrophages and
dendritic cells often acquire a mixed pro-inflammatory/
immune suppressive phenotype both in the mouse (53, 54)
and in humans (55, 56). Consequently, emphasis has been
placed to identify common mechanisms driving the acquisition
of tumor-promoting properties by macrophages and dendritic
cells (54, 57–61).

Tumor infiltrating myeloid cells produce tumorigenic, pro-
inflammatory cytokines (IL-6, IL-23, TNFa and IL-1) but, oddly
enough, also anti-inflammatory cytokines (IL-10, TGFb) as well
as molecules with immune suppressive functions (Arginase1,
VEGF, peroxinitrite and Indoleamine 2-3 dioxygenase) (62).
What tumor-derived cues might drive this phenotype in
tumor-infiltrating myeloid cells is still poorly understood. Even
more perplexing is the apparent paradox that the tumor
microenvironment is simultaneously pro-inflammatory and
immune suppressive for which a mechanistic explanation
would be of paramount relevance. As tumor-derived factors
promote the transcriptional activation of pro-inflammatory
FIGURE 1 | Architecture of the UPR. The UPR is mediated by three initiator/sensor molecules: inositol-requiring enzyme 1 (IRE1a), PKR-like ER kinase (PERK), and
activating transcription factor 6 (ATF6). These three initiator/sensor molecules are maintained in an inactive state through association with 78 kDa glucose-regulated
protein (GRP78) (29). Upon ER stress induction, PERK phosphorylates the eukaryotic translation initiation factor 2a (eIF2a) to control translation and further signal
through downstream effectors such as the C/EBP homologous protein (CHOP) that modulates apoptosis. ATF6 translocates to the Golgi where it is cleaved into its
functional form, and acts to restore ER homeostasis (32). IRE1a is an endoribonuclease that upon activation initiates the unconventional splicing of the mRNA
encoding X-box-binding protein 1 (XBP1). Spliced XBP1 (XBP1s) is a potent transcriptional activator that increases expression of a subset of UPR-related genes
involved in efficient protein folding, maturation, and degradation in the ER (30). IRE1a also has a kinase function independent of its endonuclease activity through
which it signals downstream through c-JUN and TRAF2. Finally, IRE1a has an additional function that is independent of XBP1, is the endonucleolytic decay of many
ER-localized mRNAs (regulated IRE1-dependent decay (RIDD).
February 2022 | Volume 13 | Article 823157
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cytokines in myeloid cells (63), then it becomes reasonable to ask
whether tumor derived factors are main contributors to the
paradox and what triggers them?

In 2011 we reported that cancer cells of various origin
undergoing a UPR release a diffusible factor(s) that transmits
ER stress to receiver myeloid cells, macrophages and dendritic
cells, triggering the secretion of pro-inflammatory/tumorigenic
cytokines and the immune suppressive factor Arginase 1 (Arg1)
(64, 65). Similarly, others showed that myeloid cells upregulate
and secrete VEGF (66). The results and implications of these
initial findings have been discussed in several review articles (35,
67, 68) and led to the proposal that a cell-nonautonomous
mechanism of intercellular communication at the tumor/
myeloid cell interface drives the polarization of myeloid cells in
the TME.

While tumor-promoting monocytes/macrophages in renal
cell carcinoma and head and neck patients have been shown to
possess a mixed pro-inflammmatory/immune suppressive
phenotype (55, 69), the role of the UPR in polarizing tumor
myeloid cells to this phenotype has indirect support in a series of
reports. The transition of macrophages from an anti-tumorigenic
to a pro-tumorigenic phenotype was shown to follow signals
emanating from the liver TME, and depend on c-JUN
phosphorylation in a cell-nonautonomous manner (58)
implicating IRE1a, which is known to target the c-JUN N-
terminal kinase through TRAF2-ASK1 signaling (70). Murine
myeloid suppressor cells are also linked to the UPR in a cell-
nonautonomous way through TRAIL receptors (71), suggesting
that Arg1-mediated immune suppression may be UPR-initiated
(72). Monocytes infiltrating renal cell carcinoma have a distinct
transcriptome profile, which includes the upregulation of IRE1a
(55). Finally, the constitutive activation of XBP1 in tumor-
associated DC drives ovarian cancer progression, whereas DC-
specific XBP1 deletion restores their immunostimulatory
activity, hence enabling anti-tumor T cell responses (73).

The IRE1a−XBP1 Pathway Controls the
Phenotype of Tumor -Infiltrating
Macrophages
To elucidate the mechanism(s) through which the UPR affects
immune cells leading to a perturbation of the TME and
ultimately immune evasion we studied macrophage
polarization using (a) pharmacological inhibitors of the IRE1a
and PERK pathway and (b) mice engineered to allow
macrophage-specific conditional knock-out of the IRE1a-XBP1
axis (74). CD11b+/Gr1- macrophages are polarized to the pro-
inflammatory/immune suppressive phenotype during the course
of tumor growth in the mouse, hence representing a logical target
to interrogate the role of the UPR and its branches. These studies
confirmed the IRE1a-dependence of cell-nonautonomous
macrophage polarization and ruled out an involvement of the
PERK pathway. Also, IRE1a but not PERK inhibition
diminished the surface expression of CD86 and PD-L1
suggesting that IRE1a regulates the polarization of
macrophages to a pro-inflammatory/immune suppressive
phenotype (Il23p19, Il6 and Arg1). These results were
Frontiers in Immunology | www.frontiersin.org 4
consistent with reports showing that XBP1 is not only required
for the development and survival of bone marrow derived DC
(75), but also impedes antigen presentation by lymphoid DC (76,
77) and tumor-associated DC (73). Relevantly, using Ern1 (the
gene coding for IRE1a) or Xbp1 macrophage conditional
knockout mice, we determined that IRE1a-XBP1 axis
deficiency in macrophages not only attenuates the
development of the pro-inflammatory/immune suppressive
phenotype in vivo but also reduces PD-L1 expression,
significantly slowing growth of B16.F10 melanoma cells in
vivo, and improving survival of Ern1 (-/-) over Ern1 fl/fl
control mice (74). Notably, tumor-infiltrating macrophages in
tumor-bearing Ern1 (-/-) mice had a marked reduction in spliced
Xbp1, Il-23p19, Arg1 and Cd274 gene expression compared to
their Ern1 fl/fl counterpart. Thus, in tumor-infiltrating
macrophages Ire1a is a key negative regulator of tumor
microenvironment immunodynamics, ultimately facilitating
tumor growth in vivo.

Gene expression analysis using Ern1(-/-) or Xbp1(-/-)
macrophages showed, in addition, that surface PD-L1
expression is subject to two-level control by the IRE1a-XBP1
axis with XBP1-mediated regulation of PD-L1 occurring at the
post-translation level, whereas IRE1a-mediated regulation is a
transcriptional event. Ern1-mediated effects were most likely
dependent on RIDD function. Consistently, when we analyzed
RNA-Seq data generated from tumor-infiltrating macrophages
isolated from thirteen patients with either endometrial or breast
cancer we found a strong correlation between ERN1 and
EIF2AK3 (the gene coding for PERK) (correlation coefficient
0.738; p < 0.003), indicative of UPR activation (74). Since IRE1a
function is a multistep and complex process (28) not necessarily
captured only by ERN1 expression levels, we derived a systemic
representation of pathway activity controlled by IRE1a and by
comparison by PERK. In this model, the IRE1a score predicted
CD274 expression (p-value = 0.040), while the PERK score was
non-significant (p-value = 0.103), suggesting that activation of
CD274 gene expression in tumor-infiltrating macrophages
depends primarily on the IRE1a pathway.

UPR Regulation of Myeloid Cells
Dysregulates T Cells
It is known that once polarized to a tumor-promoting phenotype
(78, 79) myeloid cells restrain anti-tumor T cell responses (80–
84). Concomitant events include the secretion of tumor-
promoting pro-inflammatory cytokines (IL-6, TNFa and IL23)
(63, 85) and the production of immune suppressive factors (e.g.,
Arg1, TGFb, and IDO). This orchestra of factors and cell
interactions synergize with both CD4 (86–88) and CD8 (89–
92) T cells, enhancing their regulatory/suppressive function and
contributing to a negative regulation of competent host anti-
tumor T cells.

Upon transcellular ER stress conditions, bone marrow-
derived DC undergo reduced cell surface display of a high
affinity OVA peptide/MHC I complex, but become severely
defective in their ability to cross-prime naïve CD8 T cells
transgenic for a TCR specific for OVA resulting in significant
February 2022 | Volume 13 | Article 823157
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lack of clonal expansion (65). This proliferative defect is not
restored by exogenous IL-2 arguing against typical T cell anergy.
Defective cross-priming of CD8 T cells also caused protracted
XBP1s upregulation, and CD28 downregulation combined with
Foxp3 upregulation, evoking the phenotype of tumor-infiltrating
CD8 Tregs in humans (93–96). In line with these finding and the
role of the UPR in these regulatory phenomena is the
demonstration that abrogation of Xbp1 signaling improves
both the antigen-presentation capacity of tumor infiltrating DC
and the expansion of naïve CD8 T cells (73).

NK Cells
The tumor-immune interface comprises other cell types. Among
them are natural killer (NK) cells, a specialized population of
innate lymphoid cells that mediates cytotoxic functions against
damaged, malignant, or virus infected cells (97). Notably, it is
estimated that worldwide viruses are linked to ~ 20% of cancers
in humans (American Cancer Society). Beside killing target cells
NK cells may exert regulatory functions, e.g., facilitating the
differentiation of CD4 T cells into Th1 cells, to enhance anti-
tumor responses. A general view posits that NK cells
discriminate between ‘‘normal and altered self’’ through MHC
class I-specific inhibitory receptors and several activating
receptors that recognize ligands associated with cell stress.
However, an inflammatory tumor microenvironment and
tumor-associated cells (macrophages, fibroblasts, myeloid-
derived suppressor cells, and Tregs) can decrease or suppress
NK cell function (98–100). Genotoxic stress signals activate NK
cells via upregulation of NKG2D ligands in the mouse (101, 102)
and in humans (103). While much is known about the influence
of stress on upregulation of NKG2D ligands, little is known on
how the UPR regulates the expression of NKG2D in NK. In
patients with Type 2 diabetes, a disease characterized by UPR
induction in a highly secretory cell environment, NKG2D was
found to be markedly decreased compared to normal controls
(104). A hint at cell-nonautonomous regulation of NK cells has
been provided recently. Tumor-secreted platelet-derived growth
factor (PDGF-DD), a factor promoting cellular proliferation,
epithelial-mesenchymal transition, stromal reaction, and
angiogenesis, was shown to be a ligand for the human
immunoreceptor NKp44 expressed on NK cells (105).
Paradoxically, while cancer cell production of PDGF supports
tumor growth and stromal reaction in a autocrine manner, it
concomitantly induces NKp44 expression in NK cells
contributing to tumor control. In this study a direct link with
the UPR or genotoxic stress was not investigated.
ANEUPLOIDY IN HUMAN CANCER: UPR
FROM WITHIN

Generally, the UPR is considered a reactive phenomenon to
metabolic changes in the extracellular milieu reflecting for
example nutrient deprivation (protein and glucose) or
decreased O2 tension (hypoxia), among others. These
metabolic dysregulations are commonly associated with cancer.
Frontiers in Immunology | www.frontiersin.org 5
However, UPR can have endogenous origin. For instance, a
mutation in the Muc2 gene, which codes for mucin 2, the main
protein in mucus in intestinal “goblet” cells, causes its
accumulation in the endoplasmic reticulum and the UPR with
associated inflammation (106). A mutation in the Sec61a1, a
translocon involved in the transporting newly synthesized
polypeptides into the ER lumen, results in UPR in hepatocytes
and in heightened sensitivity to UPR in murine pancreatic b cells
leading to diabetes (107). Perhaps, these effects can be
interpreted in light of the newly discovered role of the Sec61
translocon in limiting the activation of IRE1a during conditions
of stress (108).

Another and more general source of UPR from within is
aneuploidy. Aneuploidy is the oldest form of chromosomal
abnormality identified (109). It can result from mis-segregation
during anaphase (e.g., spindle assembly, checkpoint defects;
Figure 2A) (110), cell fusion (111) or cell-in-cell formation
(entosis) (112). In cancer, a broader category of genomic
abnormalities called somatic copy-number alterations (SCNA)
contribute to tumor cell aneuploidy. Aneuploidy in this context
can be divided into three categories: whole-chromosome,
chromosome-arm and focal (Figure 2B) (113). Aneuploidy is
present in 90% of solid tumors and 50% of blood cancers (113,
114). Earlier reports showed that one-quarter of the genome of a
typical cancer cell is affected either by whole-arm SCNAs or by
the whole-chromosome SCNAs. Focal SCNAs accounts for only
10% of a cancer cell genome (113). Most of whole-chromosome
SCNAs preferentially associate with gain or loss (but not both)
across cancers (Figure 2). However, since aneuploidy is by
definition associated with tumor evolution, quantitative
estimates are best understood in this dimension. A recent
report compared SCNA burden of clonal, i.e., early, with
subclonal, i.e., late SCNA and found that 26% of the genome is
subject to clonal SCNAs and 18% to subclonal SCNAs. Also, in
45% of tumors, more than 20% of the genome is subject to
subclonal SCNAs (115).

About a decade ago, two reports suggested a connection
between abnormal ploidy and immune surveillance (116, 117).
The two studies, one on breast cancer and the other on colon
cancer, showed that the immune response of the host controlled
hyperploid neoplastic cells, suggesting that hyperploid cells are
subject to “hardwired” immune surveillance. In both studies the
proposed mechanism was the upregulation of cell surface
expression of calreticulin, an endoplasmic reticulum resident
molecule that once translocated to the cell surface serves as an
“eat-me” signal for macrophages and dendritic cells. A
subsequent independent study suggested that aneuploid cells
are selectively eliminated by natural killer (NK) cells (118).
However, the claim that NK cells kill aneuploid cells remained
unsubstantiated because the IL-2 dependent NK92 cell line, the
only NK cell used in the study, yielded no target cell lysis after
effector-target cells were incubated for 4 hours, the canonical
time of NK assays. Based on these reports one was led to
conclude that hyperploid cancer cells incite their selective
elimination via the initiation of a specific cellular (cytolytic)
immune response. Arguably, the studies failed to explain why
February 2022 | Volume 13 | Article 823157
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increased protein content in a hyperploid cancer cell would
ostensibly lead to the selective elimination of hyperploid cancer
cells (119). If cancer cells are “better” targets for cytotoxic T cells
than neighboring non-hyperploid cancer cells, is there immune
surveillance of cancer cells without ploidy abnormalities? Beyond
the academic aspect of the question, the fact remains that
aneuploidy is a progressive process during tumor evolution
and is associated with poor prognosis (120–123). Paradoxically,
aneuploidy is well tolerated in cancer cells (124–126) and
chromosomally unstable cancer cells have increased multidrug
resistance (127). Taken together, these facts argue against
immune surveillance to selectively eliminate established or
emerging aneuploid cells, at least not effectively. Perhaps,
cGAS-STING signaling in this context may mediate clearance
of aneuploid cells (128).

A different conclusion to the same question was reached by a
subsequent study showing that tumor aneuploidy correlates with
markers of immune evasion and reduced number of tumor-
infiltrating leukocytes (129). This study suggested a connection
between aneuploidy and immune surveillance pointing to the
potential negative impact aneuploidy plays on local immunity.
Does this represent a new important variable in the interplay
between cancer and immune cells in the tumormicroenvironment?

Several considerations suggest that this may be the case. One
is that tumor aneuploidy as a source of genetic variation drives
evolutionary selection and advantage (130). The other is that
aneuploidy has the potential to trigger the UPR. Studies in yeast
and in mammalian cells had previously shown that aneuploidy
leads to gene and protein dosage change generating excess client
proteins in the endoplasmic reticulum beyond the capacity of
quality control/refolding mechanisms (131–133). For instance,
in yeast, quantitative changes in the proteome leads to excess
Frontiers in Immunology | www.frontiersin.org 6
misfolded proteins causing the UPR (134). Furthermore,
misfolded proteins representing 0.1% of the total proteome are
sufficient to elicit the UPR (134). These considerations led to the
hypothesis that proteotoxic stress and the UPR in cancer cells
could link aneuploidy to dysregulation of immune
surveillance (135).

An Inverse Correlation With Local Immune
Cell-Mediated Cytotoxicity
The aforementioned study showed that lower expression level of
the immune signature was primarily predicted by high levels of
arm and whole-chromosome SCNAs, and that SCNA levels were
a stronger predictor of markers of cytotoxic immune cell
infiltration than tumor mutational load (129). These
conclusions prompted us to develop a standardized and unique
aneuploidy score in much the same way a tumor mutational
burden (TMB) accounts for the number of non-inherited,
nonsynonymous mutations in an individual tumor, an index
that is used clinically to assess for example the potential for
immune check point blockade (136, 137). Based on this
reasoning we first used a pairwise correlation to evaluate the
relationship between whole-chromosome, arm and focal SCNA
categories and found a positive inter-category correlation
(Spearman r= 0.548-0.627) (138). We then derived aggregate
scores for each category separately and compared them to a
single combined SCNA score and showed that a combined
SCNA score had consistently high correlation with all three
categories considered independently (Spearman r= 0.735-0.866)
with focal SCNA being the least correlated (Spearman r = 0.735).
This made it possible to use a single SCNA score (aneuploidy
score) to interrogate disease progression and local immune
function. A pan-cancer analysis of tumors (n = 6298 and 25
BA

FIGURE 2 | Schematic of somatic copy-number alterations (SCNA). (A) Mis-segregation during cell division leads to the production of aneuploidy cells. (B) Three
broad categories of SCNA, with red color showing regions of copy-number gain and blue color showing regions of copy-number loss. The top-left panel represents
a healthy (diploid) chromosome. The top-right panel is a chromosome with focal level SCNA events. The bottom-left panel represents chromosome-arm level SCNA
events. The bottom right panel is whole-chromosome level SCNA events.
February 2022 | Volume 13 | Article 823157

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zanetti et al. UPR Based Immune Dysregulation in Cancer
tumor types) for which stage information was available revealed
that the single combined SCNA score increased as tumor stage
increased with significant positive coefficients (p= 1.39e-09, p=
3.77e-10, p= 2.01e-11) for each tumor stage (138).

By measuring perforin (PRF1) and granzyme A (GZMA) gene
expression as representative of cytolytic activity (CYT) in tumors
(47) we also found that CYT was inversely correlated with tumor
stages across all cancer types. For CYT, we observed almost
significant negative coefficients for Stage II (p = 0.075) and a
significant negative coefficient for Stage IV (p = 9.74e-5) relative
to the levels observed in Stage I tumors. We observed a
significant inverse correlation between SCNA score and CYT
across all stages pan-cancer, and in most of the tumor types
evaluated (138). This finding supports the existence of negative
correlation between aneuploidy and immune infiltrate by cells
with cytolytic potential (T cells and NK cells). It also shows that
as tumors progress SCNA score increases but so does immune
evasion (Figure 3).

TCGA Analysis Reveals a Correlation
Between UPR Gene Expression and
Aneuploidy Score
The UPR is an adaptive survival mechanism used by mammalian
cells in response to environmental perturbations, cell-
autonomous and cell-nonautonomous, to alleviate the burden
of excess client proteins in the ER (27). However, while
aneuploid cells are subject to negative selection in healthy
tissues usually detrimental to the viability of a healthy cell or
organism, it is frequent in cancer and correlates with poor
prognosis, suggesting that cancer cells tolerate chromosomal
Frontiers in Immunology | www.frontiersin.org 7
aberrations (126). A potential explanation of this paradox is
that telomerase, which is overexpressed in cancer cells,
suppresses aneuploidy-induced telomere replication stress,
blocking senescence/apoptosis and enabling cell survival (139).

Is there something unique to aneuploidy in cancer cells and
what is its relation to the UPR? Of twenty-three tumor types with
available matched normal samples in TCGA, all except three
(THCA, KICH, and KIRP) showed greater expression of HSPA5
(the gene coding for GRP78 the master regulator of the UPR)
(39), which is also a predictor of resistance to chemotherapy in
breast cancer (140). Across all thirty-two tumor types a
correlation between the aneuploidy score and parent genes for
the three branches of the UPR (IRE1a, PERK and ATF6) was
found mainly for three genes from the PERK pathway (EIF2S1,
EIF2AK3, and DDIT3), but not for ATF6 or ERN1 (the gene
coding for IRE1a) or XBP1. This primary ER sensor genes
analysis suggests that SCNA levels correlate mainly with the
PERK pathway. Previous reports showed that PERK is the main
branch of the UPR involved in tumor cell adaptation to hypoxic
stress in malignant progression, suggesting the importance of
translation regulation in these conditions (42). This is also
consistent with the observation that transcellular transmission
of ER stress between cancer cells is also prevalently regulated by
PERK in receiving cells enhancing their survival potential and
resilience to chemotherapy (44).

Given that the UPR is a complex signaling system involving
many downstream genes, and that aspects of UPR function,
IRE1a activity in particular, are regulated by post-translational
modifications, we explored the possibility of a correlation
between aneuploidy score and downstream effector genes of
the three main branches of the UPR, beyond that of parent
sensor UPR genes. Over half of the thirty-two tumor types in
which an analysis was possible showed significant correlation
between SCNA score and the expression of the majority of
downstream genes in all three UPR branch pathways. In the
same analysis we found that the IRE1a-dependent RIDD activity
correlates positively with SCNA and negatively with CYT in
several tumor types (138).

Interestingly, we found a differential co-expression of
multiple UPR genes in low (30th percentile) and high (70th

percentile) SCNA groups across tumor types. Almost
universally we found distinct co-expression patterns of UPR
genes, with most tumor types showing less co-expression in the
SCNAhigh compared to the SCNAlow group, consistent with
general perturbation of the transcriptome by SCNAs
(Figure 4). UPR branch pathway activities themselves are
directly or indirectly affected by SCNAs, and this is related to
the magnitude of SCNA (aneuploidy score). This is in line with
the principle that in a given process there exists extensive
coordination within regulatory levels, e.g., the organization of
transcription factors into regulatory motifs, often leading to
patterns of gene co-expression (141, 142).

An analysis of consistently differentially co-expressed UPR
gene pairs, showed patterns of co-expression changes
predominately negative, suggesting loss of coordination (138)
(Figure 4). Among highly perturbed gene pairs across multiple
tumor types are HSPA5, CXXC1, SERP1, SCH1, and PDIA6,
FIGURE 3 | Aneuploidy and cytolytic activity in tumor progression.
Aneuploidy, as a measure of chromosomal abnormality, accumulates as
tumor stage increases. In contrast, cytolytic activity, a representation of local
immune-mediated cytotoxicity, decreases as tumor stage increases.
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which encode proteins that confer resistance to various forms of
stress. On the other hand, co-expression of some gene pairs was
preserved across all tumor types despite an increased SCNA
score. Ontology analysis of genes with preserved co-expression
revealed that these genes are associated with negative regulation
of apoptosis. The relationship between ATF4 and DDIT3 (the
gene coding for CHOP), was often but not always perturbed. In
selected instances, DDIT3 co-expression with GOSR2 (protein
transport) and ASNS (asparagine synthetase) remained
coordinated, suggesting that some less-known aspects of
DDIT3 activity may benefit tumor cells. For instance, CHOP
(the major executioner of apoptosis downstream of irrecoverable
UPR) may be required for other functions such as the induction
of the proinflammatory/tumorigenic cytokine IL-23 (143).
ANEUPLOIDY AS A SOURCE OF
TRANSCELLULAR EFFECTS ON
IMMUNE CELLS

As discussed above a cancer cell UPR promoted by cell-extrinsic
noxae is the source of cell-nonautonomous regulation of immune
Frontiers in Immunology | www.frontiersin.org 8
cells. Can aneuploidy, a cell-intrinsic source of UPR do the same?
We used two model systems to validate the conclusions of the
extensive TCGA analysis. One made use of “quasi-diploid” human
cancer cells treated with Reversine (Rv), a small molecule known
to induce aneuploidy through inhibition of the mitotic spindle
(118, 144). The other utilized clonal murine cell lines resulting
from cell-in-cell fusion between B16 melanoma cells and mouse
embryonic fibroblasts (MEF) that carry a large number of extra
chromosomes (range 72-131) (145). Rv treatment and cell-in-cell
fusion both resulted in XBP1 splicing, a proxy for UPR induction.
An analysis of the three branches of the UPR by PCR andWestern
blotting in human cancer cells treated with Rv showed that
aneuploidy triggers a global UPR including the upregulation of
GRP78, and an overall activation of both PERK and IRE1a
branches, with phosphorylation of eIF2a downstream of PERK
being the hallmark of PERK involvement. Thus, two independent
models of experimental aneuploidy both pointed to a mechanistic
link between aneuploidy and UPR induction consistent with
TCGA analysis. Phosphorylation of eIF2a at Ser51, a convergent
regulatory hub of both the UPR and the integrated stress response
(ISR), raised the possibility that eIF2a phosphorylation could be
driven by the double-stranded RNA-dependent protein kinase
(PKR), the general control non-repressible 2 (GCN2), or the
B

A

FIGURE 4 | SCNA level associates with perturbation of coordinated UPR gene expression. (A) UPR genes are differentially expressed in tumors with high levels of
aneuploidy relative to those with low levels of aneuploidy. The right side depicts a heatmap exemplifying gene expression (in rows) differences between high and low
aneuploid tumors across 32 different tumor types (in columns) from TCGA. (B) UPR gene coordination is altered in high aneuploid tumors relative to low aneuploid
tumors. UPR genes in high aneuploid tumors are overall less co-expressed (loss of connection) compared to low aneuploid tumors, with some gene pairs showing
unexpected levels of preservation across tumors.
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heme-regulated eIF2a kinase (HRI) in addition to PERK (146). All
four eIF2a kinases share extensive homology in their kinase
catalytic domains, and each responds to distinct environmental
and physiological stresses to reflect their unique regulatory
mechanisms (146). No other kinase was phosphorylated in Rv-
treated cells suggesting that aneuploidy induced by Rv treatment
mainly drives eIF2a phosphorylation via canonical UPR.

The TCGA analysis showed an inverse correlation between
single SCNA score and CYT across disease stages making plausible
to ask “Do tumor cells with experimentally-induced aneuploidy
also dysregulate T cells through a cell-nonautonomous
mechanism?” This possibility was tested focusing on two key
functional parameters, IFNg and Granzyme B, and their
production by human T cells activated by anti-CD3/anti-CD28
antibodies. Activation in the presence of conditioned medium
from Rv-treated human cancer cells showed marked reduction of
both IFNg (80%) and Granzyme B (60%) relative to control
conditioned medium, an effect not due to Rv carry-over.
Similarly, conditioned medium of fused B16 cells (aneuploid
cells) caused a reduction of IFNg (55%) and Granzyme B (30%)
(138) (Figure 5). These results complement those on cross-
priming of CD8 T cells by dendritic cells treated with the
conditioned medium of ER stressed tumor cells in which
defective T cell activation and clonal expansion was observed (65).

The conditioned medium of aneuploid cells collected at the
time of maximal XBP1 splicing also caused Xbp1 splicing and the
expression of Il6 and Arg1 in murine bone marrow-derived
macrophages. Notably, Il6 gene expression was induced by the
conditioned medium of both Rv-treated human cancer cells or
fused murine B16 cells, suggesting that the phenomenon is not
Frontiers in Immunology | www.frontiersin.org 9
species restricted. Arg1 gene expression was induced by the
conditioned medium of Rv-treated human cancer cells only
(Figure 5). Collectively, these new results suggest that aneuploid
cells can affect immune cells in a cell-nonautonomous way, adding
aneuploidy as a new player in the dysregulation of local immune
cells with the UPR serving as the mechanistic link.
CONCLUSIONS AND PERSPECTIVE

It has been merely a decade since we and others started to
characterize the tumor-immune interface from a completely new
angle, focusing on the role of the UPR as driver of a dynamic
interface that points relentlessly to immune dysregulation. There
is little doubt that the tumor-immune interface is a battlefield
that is relevant to, and is intricately involved in, tumor
progression and immune evasion.

Beyond the cell-autonomous effects of the UPR on cancer
cells (33, 34) the influence of cancer cell UPR as a source of cell-
nonautonomous effects is more recent and may be considered
still in its infancy (35). However, its impact on intercellular
communication with macrophages (64), dendritic cells (65, 73),
and tumor cells themselves (44) is already evident. In myeloid
cells (macrophages and dendritic cells) the effects are directly
linked to the production of pro-tumorigenic inflammatory
cytokines, immunosuppressive enzymes, and possibly
lymphangiogenic factors (147), suggesting that a main function
of transcellular UPR is to adapt the phenotype of these cells to a
pro-tumorigenic status (67). These cell-nonautonomous effects
complement those observed in B cells in which programmed
FIGURE 5 | UPR links aneuploidy to immune cell dysregulation in the tumor immune microenvironment. Aneuploidy and UPR activation in tumor cells induces the
secretion of factors which inhibit the production of IFN-g and Granzyme B by activated T cells and promotes expression of IL-6 and Arg-1 by macrophages
contributing to local pro-inflammation and immune suppression.
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retention of antigen in the endoplasmic reticulum resulted in
cell-intrinsic UPR induction with expression of proinflammatory
cytokines, negative modulation of the surface expression of
MHCII molecules in vivo, and decreased expression of OX40L
(148), a molecule involved in the generation of memory T cell
responses (149–152). The effects of cell-nonautonomous UPR on
T cells are equally dramatic, and include inhibition of clonal
expansion, reduced activation following cross-priming and
reduced tumor infiltration by CD8 T cells (65). Whether or
not cell-nonautonomous UPR upregulates PD1 expression on T
cells has not been firmly established but the effects of
transcellular UPR on T cells are of sufficient relevance to
account for local dysregulation of T cell immunity. This needs
therefore, to be factored in with other mechanisms of local
dysregulation of T cell immunity such as intra-tumor clonal
deletion (153), tolerance (154), and exhaustion (155, 156). This
emerging scenario should not surprise as examples of cell-
nonautonomous signaling through the UPR have been
documented in C. elegans, increasing longevity and establishing
neuroimmune axis communication (157–160).

An additional form of UPR-based, cell-nonautomous immune
regulation is immunogenic cell death (ICD) (161). Early mouse
experiments testing the anti-tumor effect of classes of
chemotherapeutic agents routinely used in the clinic revealed
that anthracyclines were unique in causing ICD (162). Today,
mouse studies show that anthracyclines, radiotherapy, oncolytic
viruses, and photodynamic therapies, can all accentuate the
immunogenic potential of dying cancer cells. ICD induction is
associated with sustained induction of ROS and ER stress (163). Is
ICD a source of transcellular stress at the tumor-immune
interface? Anticancer treatments that trigger ICD induce the
release (or surface exposure) of immunostimulatory factors or
damage-associated molecular patterns (DAMPs). DAMPs
immunomodulatory functions behave as a danger signal for
immune cells (164). Detailed information on ICD and DAMPs
and their relation with the UPR is covered in an recent
comprehensive review article (165). DAMPs include the ER
chaperone calreticulin (CRT) (“eat me” signal), the heat shock
protein (HSP)-70/90 (“eat me” signal), secreted ATP (“find-me”
signal), the high mobility group box 1 (HMGB1), a nuclear
protein that binds to DNA and activates TLR2 and TLR4 in
dendritic cells, and double-stranded DNA that activates
endosomal TLR7, TLR8, and TLR9. ICD is linked with PERK
signaling (165). However, even though ICD has clear connection
with the UPR and triggers the release of immunomodulatory
molecules, it is presently unknown if it can also be a source of
factors that transmit UPR and pro-inflammation transcellularly.
This is relevant since numerous clinical trials are currently testing
the ICD paradigm (166). Based on the arguments presented in this
review article, cell-nonautonomous UPR as a result of ICD could
paradoxically ignite dysregulation of local immunity.

An important new finding is that the UPR links aneuploidy to
dysregulation of immune cells. As discussed, aneuploidy is a
generator of the UPR from within the cancer cell. Its effects
mimic those generated by extrinsic manipulations of the cancer
cell UPR (64, 65), spontaneous UPR during tumor growth in vivo
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(74), and genetic manipulation of UPR branches (73, 74). Of
paramount relevance aneuploid cells impart changes to activated
T cells such as decreased IFNg and Granzyme B production that
are similar to changes reported for CD4 T cells in ascites of
ovarian cancer patients (167), or changes in gene expression
noted in head & neck and urothelial cancers with an aneuploid
switch based on chromosome 9p arm loss or homozygous
deletion of 9p21.3 (9p21) (168, 169). Aneuploidy also has the
potential to fuel inflammation at the tumor-immune interface
through the mechanism illustrated herein. However, aneuploidy
is not the only mechanism generating inflammation in the tumor
microenvironment, contributing to intratumoral immune
dysregulation. In a circular process chronic inflammation
could even generate chromosomal instability (170), perhaps
through miRNAs that are abundant during inflammation (e.g.,
miR-155), which was shown to down-regulate WEE1, a kinase
that blocks cell-cycle progression and the DNA mismatch repair
system (171). It has been postulated that this could lead to loss of
heterozygosity (LOH) and aneuploidy (172).

The principle of transcellular communication in cancer is
new and contrasts current views on manipulation of the cancer
immune response based on precision immunotherapy, e.g., the
induction of T cells against neoantigens and immune checkpoint
blockade. However, it has also become apparent that there exist
numerous hurdles to targeted immunotherapies by neoantigens
(173) and immune checkpoint inhibitors (174, 175). A possible
explanation is that tumor is far from being a static element.
Notwithstanding the impact of genomic evolution, tumors also
evolve in symbiosis with their microenvironment. Intercellular
communication mechanisms create homogeneity in a mixed cell
population in spite of genomic alterations, which remain poor
predictors of response to immunotherapy except perhaps for
clonal mutational tumor burden (176), which faces the challenge
of being progressively ignored by the MHC of the host (177,
178). We believe that cell-nonautonomous regulation likely
operates independently of genomic alterations to coordinate
community behavior and survival in the natural habitat,
leveraging a cooperative behavior among subclones that
can influence disease progression (179). In solid tumors
cell cooperation generates a fitter population of cells as
demonstrated by clonal repopulation dynamics experiments
where breast cancer cells with identical genetic mutations
acquired different clonal behavior in vivo and malignant
phenotypes contributed by a sub-population of cells stimulated
the growth of all other cells (180, 181). It should, therefore, not
surprise that cell-nonautonomous regulation of clonal evolution
and tumor growth (182) and tumor cell heterogeneity (183) may
also be the product of local interactions among cells. Current
understanding indicates that UPR-based cell-nonautonomous
effects in the TME play a major role in remodeling the
function of infiltrating immune cells, dysregulating their
protective function while creating an immune suppressive
environment. As shown, aneuploidy represents a source of
UPR from within that adds an extra layer of complexity to
understand and correct immune dysregulation of the tumor-
immune interface.
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Whereas cancer comprises in excess of 100 different disease
entities with diverse risk factors and epidemiology, the new view
provides for an evolutionarily conserved mechanism, common to
tumors of different tissue origins and irrespective of the initiating
mechanism, which appears to be more conserved in human
cancers than some common driver mutations (e.g., p53, K-Ras
and Pten). From an evolutionary biology standpoint, principles of
cell-nonautonomous regulation conform to criteria of selection for
cell fitness. In multicellular organisms this requires the
suppression of cell-level fitness to the advantage of organism-
level fitness (184). Although intercellular communication is the
byproduct of mutualism driven by resource sharing (20), cancer
cells represent the exception and a breakdown of this this principle
if one considers that the cell-nonautonomous effects of cancer
UPR are not based on resource sharing but rather to generate
tumors with greater fitness while effectively impeding control by
the immune system. We believe that this forms the basis of what
can be termed environmental selection.

The gain in knowledge of the past decade has implication for
therapy. As discussed, the available data suggest a paradox where
a cell-autonomous UPR is primarily driven by the PERK branch
whereas immune cells recipient of a transcellular UPR appear to
be regulated at the level of the IRE1a branch. Exception to this
emerging rule is a report showing that dysregulation of T cells by
the UPR is primarily mediate by PERK-eIF2a phosphorylation
through attenuation of protein synthesis (185). In our opinion
this provides the opportunity to intervene selectively at the
cancer or the immune cell level to either regulate cancer cell
survival and reverse resistance to therapy, or block immune cell
Frontiers in Immunology | www.frontiersin.org 11
dysregulation to potentiate immunotherapies but also restore
autochthonous immunosurveillance. The ideas discussed herein
warrant future studies to more precisely understand how
manipulation of the UPR in the tumor microenvironment can
lead to a greater immunological control of cancer.
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