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Abstract: Cyanobacteria dynamically relay environmental inputs to intracellular adaptations 

through a coordinated adjustment of photosynthetic efficiency and carbon processing rates. 

The output of such adaptations is reflected through changes in transcriptional patterns  

and metabolic flux distributions that ultimately define growth strategy. To address 

interrelationships between metabolism and regulation, we performed integrative analyses 

of metabolic and gene co-expression networks in a model cyanobacterium, Synechococcus 

sp. PCC 7002. Centrality analyses using the gene co-expression network identified a set of 

key genes, which were defined here as “topologically important.” Parallel in silico gene 

knock-out simulations, using the genome-scale metabolic network, classified what we 

termed as “functionally important” genes, deletion of which affected growth or 

metabolism. A strong positive correlation was observed between topologically and 

functionally important genes. Functionally important genes exhibited variable levels of 

topological centrality; however, the majority of topologically central genes were found to 

be functionally essential for growth. Subsequent functional enrichment analysis revealed 

that both functionally and topologically important genes in Synechococcus sp. PCC 7002 

are predominantly associated with translation and energy metabolism, two cellular 

processes critical for growth. This research demonstrates how synergistic network-level 
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analyses can be used for reconciliation of metabolic and gene expression data to uncover 

fundamental biological principles. 

Keywords: cyanobacteria; Synechococcus 7002; gene co-expression network; genome-scale 

metabolic network; node centrality; gene knock-out simulation; randomization test 

 

1. Introduction 

The regulatory machinery of cyanobacteria, which evolved to provide ecophysiological advantages 

across a dynamic range of conditions, plays a major role in both short- and long-term adaptations. As 

regulatory controls dynamically couple the external inputs to intracellular adaptations, a coordinated 

adjustment of photosynthetic efficiency and carbon processing rates maximizes the organism’s energetic 

and metabolic efficiencies [1–3]. To identify the general principles governing the adaptive response of 

individual cyanobacterial species to environmental perturbations across different scales, from a single 

organism to community, a systems-level analysis requires integration of critical information on key 

genetic and metabolic mechanisms [4]. Such an integrative approach resolves several challenges that 

currently face the functional genomic analysis of model microbes and cyanobacteria, in particular. On 

one hand, it establishes functionality within the context of a genome-scale network and extends 

analysis beyond similarity comparison, which can be misleading or incorrect, due to the complicated 

evolutionary and structure-function relationships [5]. On the other hand, it allows for more facile 

application of comparative genomics tools and knowledge transfer from well-studied eubacterial 

species, which is limited, at best, due significant difference in the genome structure and regulon 

organization of cyanobacteria [6]. 

Genome-scale metabolic networks (GMNs) are becoming available for an increasing number of 

microorganisms through automated reconstruction pipelines and advanced manual curation [7,8]. 

GMNs provide strong stoichiometric constraints for metabolic reactions, by which the correlation 

between gene expression and metabolic fluxes is significantly improved [9]. Thus, GMNs have served 

as a useful tool for deepening our understanding of metabolism and the role of genes through the 

analysis of intracellular flux distributions and the evaluation of gene essentiality [10,11]. In contrast, 

gene co-expression network (GCN) collections are developing at a considerably slower pace due to the 

requirement of large data compendiums that examine the global gene expression patterns across a 

broad range of environmental conditions. These networks are built from several RNA-seq data sets and 

provide a map of gene relationships based on mutual information scores between gene expression 

levels. Related genes, or genes with important biological connections, can be identified through their 

correlation of expression across several RNA-seq data sets and an analysis of whether that correlation 

is statistically significant compared to background correlation between the gene of interest and every 

other gene in the transcriptome. To date, analyses of GCN are focused on network topology [12], 

functional characterization of correlated expression [13], and examination of network robustness [14]. 

The typical robustness analysis of GCNs investigates the effect of gene deletion on the properties of 

network structure, thus evaluating the topological significance of genes [15]. Despite the improved 

understanding of metabolism and gene expression patterns through those respective studies using 
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metabolic and regulatory networks, there are still many fundamental questions that remain 

unanswered, specifically: (i) what is the relationship between topological and functional importance of 

genes in GCN and GMN; (ii) are topologically central genes in GCN also functionally essential in 

GMN; and (iii) if so, what are the characteristics of those genes? Previous studies in this area have 

addressed similar questions, however, using GMNs alone [16–18] or in combination with GMN-derived 

gene connection structures [19]. The present work is, to our knowledge, the first demonstration of 

integrative functional and topological analyses of multiple biological networks built independently 

from disparate data sources.  

Availability of well-established model systems, in conjunction with high-throughput “omics” data, 

provides the scale and resolution to perform integrative computational analyses of regulation and 

metabolism. In this study, we systematically compared transcript association patterns to metabolic 

capacity and interrogated the topological and functional importance of genes in a unicellular 

cyanobacterium Synechococcus sp. PCC 7002 (hereafter Synechococcus 7002). Synechococcus 7002 is 

a well-characterized microorganism capable of robust growth under a wide range of environmental 

conditions [20–22], in which adaptation to specific conditions is associated with distinct transcriptional 

patterns indicating tight regulation of metabolic and regulatory modules [23,24]. However, the degree 

by which transcriptional topology reflects essentiality of genes participating in central metabolic 

pathways remains unclear due to lack of approaches capable of relating large networked data sets in a 

quantitative fashion. In this study we present a novel computational framework to concurrently assess 

the centrality and functional importance of genes through integrative analysis of the GCN and GMN. 

This approach revealed that topologically central genes with high measures of networked centrality, 

measured over a broad range of distinct growth conditions, predominantly include those that are also 

functionally essential for cyanobacterial growth.  

2. Materials and Methods 

2.1. Experimental Conditions and Measurements 

Expression data for Synechococcus 7002, representing a total of 42 discrete growth conditions, were 

either generated from continuous cultures or sourced from previously reported studies, which 

examined growth of the organism under nutrient limitation, varying irradiance levels, extremes of cell 

density, temperature and salinity, as well as co-cultivation with a heterotrophic partner [23–26]. The 

continuous cultures of Synechococcus 7002, operated in chemostat or turbidostat modes, were grown 

on A+ media in photobioreactor at 30 °C with a dilution rate of 0.1 hr−1 as described previously [27]. 

In carbon-, nitrogen-, or light-limited chemostats, steady-state growth was limited by 7.7 mM 

NaHCO3, 0.9 mM NH4Cl, or 140 µE m−2 s−1, respectively. In turbidostat mode, Synechococcus 7002 

was grown under six irradiance levels ranging from 33–758 µmol photons m−2 s−1 with 2% CO2 

supplementation to gas (N2) sparged at 4 L min−1. Two other conditions consisted of a high light and 

high O2 (up to 60% v/v of sparge gas) adapted strain of Synechococcus 7002 grown under either 7.1% 

or 16.5% dissolved O2. Total RNA was extracted and sequenced as described previously [23,25] using 

a phenol chloroform approach and sequencing was performed using SOLiD 5500XL protocol with a 

read length of 50 bp [25] or with the SOLiD™ 3 or 3Plus protocol [23]. Gene expression levels were 
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analyzed as reads per kilobase per million reads (RPKM) and all transcriptome data sets were 

compiled using the previously described Rockhopper software [28]. 

2.2. Metabolic Network Analysis of Wild-Type and Knock-Out Strains 

Previously developed GMN of Synechococcus 7002 [29] was updated by: (i) changing incorrectly 

assigned gene-reaction association of r_AGPAT_SYN (1-acylglycerol 3-phosphate O-acyltransferase) 

from “SYNPCC7002_A0198” to “SYNPCC7002_A0918”; and (ii) separating glycogen from the 

biomass synthesis equation into the external metabolite pool. As the total number of genes contained in 

the resulting GMN was 706, we renamed the network model to iSyp706.  

In silico flux distributions were calculated for 42 growth conditions using the Expression-Guided 

Flux Minimization (E-Fmin) algorithm that incorporates RNA sequence data into a genome-scale 

metabolic network based on the flux minimization principle [30]. An advantage of E-Fmin is that it 

does not require the specification of a metabolic objective (to maximize or minimize), which is often 

difficult to reconcile with growth phase and condition. Instead, E-Fmin minimizes the sum of weighted 

flux magnitudes where the weight is formulated as a decreasing linear function of gene expression 

levels, ensuring that fluxes associated with genes expressed at low levels are significantly suppressed. 

In silico fluxes were compared through gene knock-out simulations using the Minimization of 

Metabolic Adjustment (MOMA) algorithm, which minimizes the Euclidean distance between two flux 

vectors of parent and mutant strains [31]. While the original formulation of MOMA is a constrained 

nonlinear optimization problem, we recasted it as a linear optimization problem for computational 

convenience. A gene was defined as functionally important (FI) if its inactivation produced changes in 

flux distributions as estimated by both E-Fmin and MOMA (Figure 1).  

 

Figure 1. Analysis of the genome-scale metabolic network and identification of 

functionally important (FI) genes. The in silico knock-out simulations were conducted for 

all genes in the network (j = 1 to 706) under 42 expression-guided growth simulations  

(i = 1 to 42) to compare fluxes between the parent and knock-out networks as estimated via 

E-Fmin and MOMA, respectively. 
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2.3. Reconstruction of Gene Co-Expression Network (GCN) 

Initial reconstruction of Synechococcus 7002 co-expression network were carried out at a  

genome-scale using all 3236 transcript-associated genes. To allow for cross-network comparisons, a 

reduced GCN containing only 706 reaction-associated genes included in the genome-scale metabolic 

network was generated. All network reconstructions were developed using Context Likelihood of 

Relatedness (CLR) program as previously described [14] and were based on the RPKM values from 

the 42 experimental conditions. A bootstrapping approach (500 iterations) was used to increase the 

robustness of the data. During each CLR iteration, two experimental conditions were randomly 

removed, and only those gene pairs (nodes) with a Z-score of 4.5 (4.5 standard deviations greater than 

the mean of all mutual information scores of that gene) in at least 375 of the runs were assigned edges 

between them. This served to remove weak edges and increased the quality of the resulting GCN. 

Groups of topologically and functionally important genes were subjected to functional enrichment 

analysis, which calculated the percentage of genes within a given functional category and identified 

those that are significantly higher than the percentage of genes of the same category in the entire 

genome with a p-value of >0.05 according to Fisher’s exact test. 

2.4. Quantification of Gene Centrality 

To evaluate the relative importance of genes in the GCN, we used four different types of centrality 

measures, including (i) degree; (ii) eigenvector; (iii) betweenness; and (iv) closeness (Figure 2). The 
degree ( id ), also known as connectivity, is the most elementary concept of centrality and denotes the 

number of links through which a node is directly connected to its neighbors. Degree centrality of node 

i  is then expressed as:  

1

n

i ij
j

d A


   (1)

where ijA  is the ( ,i j )th element of the adjacency matrix A. The degree of centrality in Figure 2 ranges 

from 0 to 3. 

 

Figure 2. Graphical illustration of centrality concepts using a mock network. The nodes 

and edges, which represent genes and their co-expression relationships, respectively, are 

shown as an adjacency matrix (A). The graph is disconnected and the individual subgraphs 

are referred to as components. As centralities are zeros for isolated genes 7 and 8 (shaded 

in the table on the right), they can be optionally excluded from the adjacency matrix. 
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A more refined connectivity term is eigenvector centrality ( ie ), which accounts not only for the 

number of immediate neighbors, but also for their quality (i.e., centrality). Thus the eigenvector 
centrality of node i  is the summation of eigenvector centrality of its neighbors ( je ’s): 

1

1 n

i ij j
j

e A e
 

   (2)

where   is a constant. Equation (2) can be equivalently represented as a typical form of  

eigenvalue-eigenvector problem, i.e.,  e Ae . In the example graph, while nodes 4 and 5 are 

connected to the same number of neighbors, node 4 is more central than node 5 due to the difference in 

the quality of neighbors.  
The term betweenness ( ib ) defines centrality in terms of a number of shortest (or geodesic) paths 

passing through a given node in a network. Based on the assumption that information in a network 

flows through geodesic paths, betweenness quantitates the amount of information flowing through a 

given node (ni) and can be expressed as: 
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   (3)

where N  is the set of nodes in a network and  ,j k  and  , \j k i  denote the number of geodesic 

paths between nodes j  and k  passing through node i . As shown in Figure 2, only node 2 has a 

nonzero value of betweenness. Note that node 1 is not between nodes 2 and 3 because 2-1-3 is not the 

shortest path between them.  

Finally, the term closeness (ci) indicates how close a given node is to the others; for instance, in a 

graph of n  nodes, closeness centrality is measured by summing up the geodesic distances from a node 
to all other ( 1)n   nodes: 

1
i
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(4)

where ijg  is the geodesic distance between nodes i  and j . Note that closeness centrality defined in 

Equation (4) becomes zero for all nodes in a disconnected graph. To avoid this, we used the modified 

form of closeness [32] as given below:  

1
i

j N ij

c
g

   (5)

As shown in Figure 2, nodes contained in the largest component (i.e., component 1) have higher 

closeness values than those in the component 2. We calculated four centrality values of each gene in 

the GCN using the Matlab codes developed by Strategic Engineering Research Group (SERG)  

at MIT [33,34].  
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3. Results and Discussion  

3.1. Reconstruction and Topological Analysis of GCN 

Biological networks often exhibit scale-free properties with inherent robustness to the random 

disruption of genes, but are vulnerable to targeted deletion of the most central gene nodes [35]. As a 

fundamental characteristic, the degree distribution of scale-free networks follows a power-law. This 

principle is shown in Supplementary Figure S1, which compares the 3236-gene (GCN1) and the  

706 gene (GCN2) co-expression networks of Synechococcus 7002. Degree distributions of both networks 

appear as straight lines on log-log plots (Supplementary Figure S1a,b), implying that the developed co-

expression networks of Synechococcus 7002 are robust and scale-free. While not apparent from the 

degree distributions, both GCNs are fragmented and composed of many disconnected subgraphs (or 

components). As a common feature of these two GCNs, the size of the largest component is 

significantly large relative to the other components. That is, the number of nodes of the first and 

second largest components of GCN1 (GCN2) was 985 (52) and 34 (10), respectively with all of the 

topologically central genes identified in our analysis clustering into the first largest components. As 

seen in the size distributions of GCN1 and GCN2 components (Supplementary Figure S1c,d), GCNs 

have a large portion of isolated genes, the number of which was 1842 in GCN1 and 495 in GCN2, 

respectively. As mentioned above (Material and Methods, Section 2.4), we removed these isolated 

genes for convenience of topological analysis and used (truncated) GCN2 throughout this work. 

3.2. Centrality Analyses 

The evaluation of gene centrality within GCN provided distinct distribution patterns across different 

centrality measures (Figure 3). Then, through functional enrichment analysis, we identified three major 

functional roles of genes, that are associated with different centrality measures. In all cases, translation 

and energy metabolism were the most dominant roles, though their relative dominance varied 

depending on the specific centrality measure. The largest fraction of energy metabolism genes that 

showed significant enrichment was those involved with either photosynthesis, electron transport, or 

oxidative phosphorylation, while smaller number encoded putative components of the carbon fixation 

machinery. In the case of translation, the vast majority of genes were part of either the large or small 

ribosomal subunit. Genes with high degree centrality were almost equally associated with energy 

metabolism and translation; eigenvector and betweenness centralities were predominantly associated 

with translation; closeness centralities were also closely associated with translation and energy 

metabolism at different levels. We defined topologically important (TI) genes as those within the top 

50% measure of each centrality. 

3.3. Identification of Functionally Important (FI) Genes 

While gene expression profiles varied with each growth condition, calculated flux distributions 

were relatively similar. Out of the 42 conditions tested, principle component analysis identified only 5 

distinct flux distributions, indicating that the intracellular and exchange fluxes of Synechococcus 7002 

are quite invariable (Figure 4, Supplementary Tables S1 and S2). These 5 sets of conditions are 
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interpreted to have a sufficient level of “environmental variation” to profile the range adaptive 

responses which modulate Synechococcus 7002 metabolism. The limited variability of fluxes across 

the metabolic pathways of Synechococcus 7002 can be indicative of cyanobacterial growth robustness, 

which is somewhat intuitive, due to the relatively limited flexibility for energy and carbon acquisition 

pathways as compared to chemo- and photo-heterotrophs.  

 

Figure 3. Distribution of gene centrality: (a) degree; (b) eigenvector; (c) betweenness;  

(d) closeness. In each panel, genes were sorted out in a descending order of the 

corresponding centrality measure. 
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Figure 4. Principle component analysis (PCA) of estimated flux vectors in Synechococcus 

7002 under 42 growth conditions. PCA identified only five different sets of conditions that 

lead to the difference in flux distribution. The first two principal components (PC1 and 

PC2) accounted for 99.4% of the variance. 

The functional importance of genes was evaluated on the impact of metabolic flux distribution, 

which was predicted in silico by performing comprehensive single-gene knock-out simulations. Within 
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the 706-gene network, we identified three different groups of genes with distinct functional 

importance. Deletion of any gene in Group 1 (362 genes) had no effect on relative flux distribution. 

This group was found to be enriched for genes involved in processes that are generally known to be 

non-essential for growth and/or facilitated by functionally redundant genes in Synechococcus 7002:  

(i) RNA polymerases (p < 10−2); (ii) folate synthesis (p < 10−5) and genes within the pentose phosphate 

pathway (p < 10−3). Deletion of any gene in Group 2 (55 genes) altered the relative flux distributions. 

Group 2 was functionally enriched for genes involved with processes that are known to have genetic 

redundancy and/or plasticity yet critical, condition specific roles for cyanobacterial growth:  

(i) glyoxylate/dicarboxylate metabolism (p < 10−6); (ii) pyruvate metabolism; (iii) oxidative 

phosphorylation (p < 10−13) and (iv) electron transport (p < 10−3). Any deletion of a gene in Group 3 

(289 genes) resulted in no growth under at least one specific condition; 279 of the 289 Group 3 genes 

were lethal deletions under all conditions. Group 3 was functionally enriched for genes involved in 

critical growth processes such as: (i) photosynthesis (p < 10−14); (ii) carbon fixation (p < 0.05);  

(iii) tRNA synthesis (p < 10−10) and (iv) ribosome synthesis (p < 10−23). Computationally estimated 

flux distributions across conditions were provided in Supplementary Dataset S1. Based on this 

classification, we ranked functional importance of genes as Group 3 > Group 2 > Group 1 and referred 

to Group 2 and Group 3 as FI. It should be noted, that the results above could be affected to a degree 

depending on the accuracy of both E-Fmin and MOMA, methodologies employed for the in silico 

metabolic network analyses. While these methods have proven reliable in several case studies 

conducted in the original papers, direct validation using 13C-MFA data of Synechococcus 7002 has not 

yet been carried out and would be an important future direction for these studies. 

3.4. Integration of Topological and Functional Analyses 

Comparative analysis of topologically and functionally distinct categories (i.e., TI and FI genes) 

revealed positive correlation, albeit qualitative, between gene centralities and functional importance 

(Figure 5). Degree of centrality differentiated Groups 2 and 3 from Group 1 while, eigenvector and 

betweenness centralities separated Group 3 from Group 1 and Groups 2, showing their usefulness in 

identifying FI genes. Among four centrality measures considered in this work, however, closeness had 

the highest correlation with the functional importance of genes, clearly discerning all three groups. 

Such a proportional relationship was also observed when examining a combined centrality score. To 

assess the robustness of this analysis, we performed Monte Carlo simulations by randomly generating 

5000 sets of genes of the same size as each group and comparing the centrality measures. From the 

difference in centrality measures between specific (Group 1 to Group 3) and randomly chosen groups, 

we could infer the same trends displayed in Figure 5 (Supplementary Figure S2). The profile patterns, 

corresponding to each measure of centrality, were considered with their top three biological roles 

(summarized in Figure 3) to identify the association of Group 3 and Group 2 with translation and 

energy metabolism, respectively. Association of Group 1 genes with specific biological functions was 

relatively weak in comparison to other groups. Details on gene functional enrichment of Group 1, 

Group 2, and Group 3 were provided in Supplementary Datasets S2, S3, and S4, respectively.  
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Figure 5. The relationship between topological and functional importance of genes:  

(a) degree; (b) eigenvector; (c) betweenness; (d) closeness; and (e) overall centrality. The 

overall centrality combines four individual centrality values. For normalization, each 

centrality measure was divided by its maximum value. 

The integration of topological and functional analyses provides a basis for the identification of the 

following three groups of genes: (i) TIs but not FI (here, denoted by Tf) genes; (ii) FI but not TI (Ft) 

genes; and (iii) intersection of TI and FI (TF) genes. As addressed earlier, we classified genes within 

the top 50% of the combined centrality scores as TI genes, while isolated genes (centrality values of 0) 

were classified as topologically unimportant (Figure 6). Most of TI genes belonged to the Group 3 

(i.e., essential genes) (thus, identified as TF), and as an exception, one gene belonged to the Group 1 

(thus Tf). Interestingly, an appreciable portion of functionally essential genes (Group 1) were isolated 

nodes in the GCN as represented with zero centrality in Figure 6a. These topologically unimportant 

genes were also found in all other groups. The isolated genes among Group 2 and Group 3 thus belong 

to Ft. Figure 7 summaries the classification of 706 metabolic genes into different categories. 

 

Figure 6. Distribution of genes with distinct functional importance along the combined 

centrality measure normalized by its maximum: (a) Group 1 (blue); (b) Group 2 (green); 

(c) Group 3 (red). Dashed line in each panel represents top 50% threshold. 
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Figure 7. Classified gene groups by their functional and topological importance. 706 genes 

are divided into FI (i.e., Group 2 and Group 3) and unimportant genes (Group 1). Each 

group contains topologically important (TI) genes and isolated genes. Three sets of 

particular interest include TI but not FI (Tf), FI but not TI (Ft), and intersection of TI and 

FI (TF) genes as highlighted in bold. The numbers in parentheses represent the number of 

genes belonging to each set. 

A relatively large number of Synechococcus 7002 genes were grouped within the Ft category (217), 

enabling a robust functional enrichment analysis. Several categories of genes were enriched when 

examining this list including those corresponding to processes that are required for production of 

biomass such as translation, and energy- and carbohydrate-metabolism (Supplementary Dataset S5).  

In addition, most of the Ft genes (~96%) were included in functionally enriched categories, confirming 

that the GMN model used in this study is well suited to represent the metabolism of Synechococcus 

7002 across the 42 growth conditions considered. In fact, only a few genes on this list were involved in 

metabolic pathways that were not central to biomass production. All of the Ft genes were determined 

to be isolated nodes in the GCN implying that: (i) they are not critical for co-expression of other genes 

(because biomass synthesis belongs to the final process of metabolism); and (ii) the GCN is robust 

against these genes because the effect of their deletions does not propagate through the network).  

In contrast, the same classification criteria generated only one gene (atpA; syn7002_A0734) that 

belonged to the Tf group. The in silico GMN simulations suggested that the deletion of this gene had 

no effect on metabolite flux distributions, since Synechococcus 7002 has a homolog (atpA; 

syn7002_G0151) and that potentially function as ATPase in the absence of the syn7002_A0734 genes. 

Interestingly, genes categorized as TF were almost exclusively functional enriched for translation 

pathways (i.e., 13 out of the 14 TF genes in total). These genes are topologically central, indicating 

that they play a key role in co-expression patterns of other genes.  

4. Concluding Remarks 

Through integrated computational analyses of co-expression and metabolic networks in 

Synechococcus 7002, we interrogated biologically interesting questions related to the role of genes in 

cyanobacteria. The most fundamental result of this research was the interrelationship between the 

topological and functional importance of genes and that genes with high measures of centrality were 

predominantly found to be essential for growth and metabolism. Integrated network analysis revealed 

their overall correlation to be positive. The results from our analysis also suggest that genes with high 

centrality values in the co-expression network may indicate their important roles in metabolism. This 

work provides a bench mark foundation for integrated computational analyses of regulatory and 
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metabolic processes and sets the stage for directed experiments to confirm if this approach will be able 

to provide predictive understandings of cyanobacterial growth, and other model organisms, across an 

even larger dynamic range of conditions.  

Acknowledgments 

This research was supported by the Genomic Science Program (GSP), Office of Biological and 

Environmental Research (OBER), U.S. Department of Energy (DOE), and is a contribution of the 

Pacific Northwest National Laboratory (PNNL) Foundational and the Biofuels Scientific Focus Areas. 

Hans C. Bernstein is grateful for the support given by the Linus Pauling Distinguished Postdoctoral 

Fellowship which is a Laboratory Directed Research and Development Project at PNNL. A significant 

portion of the research was performed using the Environmental Molecular Sciences Laboratory 

(EMSL), a national scientific user facility sponsored by DOE BER and located at PNNL. The authors 

wish to acknowledge PNNL staff who helped to support this work, specifically Lye Meng Markillie 

and Ron Taylor for assistance with the RNA-seq measurements and analysis. PNNL is operated for the 

DOE by Battelle Memorial Institute under Contract DE-AC05-76RLO 1830. 

Author Contributions 

All authors contributed to the design of the paper. Ryan S. McClure and Christopher C. Overall 

constructed the gene co-expression networks. Eric A. Hill contributed to the experimental design, data 

collection and helpful conversations. Hyun-Seob Song performed in silico analyses of gene co-expression 

and metabolic networks. Hyun-Seob Song, Ryan S. McClure, Hans C. Bernstein, and Alexander S. Beliaev 

wrote the manuscript. All authors have read and approved the final manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. Bernstein, H.C.; Konopka, A.; Melnicki, M.R.; Hill, E.A.; Kucek, L.A.; Zhang, S.Y.; Shen, G.Z.; 

Bryant, D.A.; Beliaev, A.S. Effect of mono- and dichromatic light quality on growth rates and 

photosynthetic performance of synechococcus sp pcc 7002. Front. Microbiol. 2014, 5, 

doi:10.3389/fmicb.2014.00488. 

2. Grossman, A.R.; Schaefer, M.R.; Chiang, G.G.; Collier, J.L. The phycobilisome, a light-harvesting 

complex responsive to environmental-conditions. Microbiol. Rev. 1993, 57, 725–749. 

3. Grossman, A.R.; Schaefer, M.R.; Chiang, G.G.; Collier, J.L. The responses of cyanobacteria to 

environmental conditions: Light and nutrients. In The Molecular Biology of Cyanobacteria; 

Springer: Berlin/Heidelberg, Germany, 2004; pp. 641–675. 

4. Hernández-Prieto, M.A.; Semeniuk, T.A.; Futschik, M.E. Toward a systems-level understanding 

of gene regulatory, protein interaction, and metabolic networks in cyanobacteria. Front. Genet. 

2014, 5, doi:10.3389/fgene.2014.00191. 

5. Strauss, E.J.; Falkow, S. Microbial pathogenesis: Genomics and beyond. Science 1997, 276, 707–712. 



Life 2015, 5 1139 

 

 

6. Itoh, T.; Takemoto, K.; Mori, H.; Gojobori, T. Evolutionary instability of operon structures disclosed 

by sequence comparisons of complete microbial genomes. Mol. Biol. Evol. 1999, 16, 332–346. 

7. Henry, C.S.; DeJongh, M.; Best, A.A.; Frybarger, P.M.; Linsay, B.; Stevens, R.L. High-throughput 

generation, optimization and analysis of genome-scale metabolic models. Nat. Biotechnol. 2010, 

28, 977–922. 

8. Thiele, I.; Palsson, B.O. A protocol for generating a high-quality genome-scale metabolic 

reconstruction. Nat. Protocols 2010, 5, 93–121. 

9. Moxley, J.F.; Jewett, M.C.; Antoniewicz, M.R.; Villas-Boas, S.G.; Alper, H.; Wheeler, R.T.; 

Tong, L.; Hinnebusch, A.G.; Ideker, T.; Nielsen, J.; et al. Linking high-resolution metabolic flux 

phenotypes and transcriptional regulation in yeast modulated by the global regulator gcn4p.  

Proc. Natl. Acad. Sci. USA 2009, 106, 6477–6482. 

10. Feist, A.M.; Palsson, B.O. The growing scope of applications of genome-scale metabolic 

reconstructions using escherichia coli. Nat. Biotechnol. 2008, 26, 659–667. 

11. Oberhardt, M.A.; Palsson, B.O.; Papin, J.A. Applications of genome-scale metabolic 

reconstructions. Mol. Syst. Biol. 2009, 5, doi:10.1038/msb.2009.77. 

12. McDermott, J.E.; Taylor, R.C.; Yoon, H.J.; Heffron, F. Bottlenecks and hubs in inferred networks 

are important for virulence in salmonella typhimurium. J. Comput. Biol. 2009, 16, 169–180. 

13. Ishchukov, I.; Wu, Y.; Van Puyvelde, S.; Vanderleyden, J.; Marchal, K. Inferring the relation 

between transcriptional and posttranscriptional regulation from expression compendia.  

BMC Microbiol. 2014, 14, doi:10.1186/1471-2180-14-14. 

14. Faith, J.J.; Hayete, B.; Thaden, J.T.; Mogno, I.; Wierzbowski, J.; Cottarel, G.; Kasif, S.;  

Collins, J.J.; Gardner, T.S. Large-scale mapping and validation of escherichia coli transcriptional 

regulation from a compendium of expression profiles. PLoS Biol. 2007, 5, 54–66. 

15. Gibson, S.M.; Ficklin, S.P.; Isaacson, S.; Luo, F.; Feltus, F.A.; Smith, M.C. Massive-scale gene 

co-expression network construction and robustness testing using random matrix theory. PLoS One 

2013, 8, doi:10.1371/journal.pone.0055871. 

16. Wunderlich, Z.; Mimy, L.A. Using the topology of metabolic networks to predict viability of 

mutant strains. Biophys. J. 2006, 91, 2304–2311. 

17. Palumbo, M.C.; Colosimo, A.; Giuliani, A.; Farina, L. Functional essentiality from topology 

features in metabolic networks: A case study in yeast. Febs Lett. 2005, 579, 4642–4646. 

18. Mahadevan, R.; Palsson, B.O. Properties of metabolic networks: Structure versus function. 

Biophys. J. 2005, 88, L7–L9. 

19. Del Rio, G.; Koschutzki, D.; Coello, G. How to identify essential genes from molecular networks? 

BMC Syst. Biol. 2009, 3, doi:10.1186/1752-0509-3-102. 

20. Liu, H.B.; Jing, H.M.; Wong, T.H.C.; Chen, B.Z. Co-occurrence of phycocyanin- and 

phycoerythrin-rich Synechococcus in subtropical estuarine and coastal waters of Hong Kong. 

Environ. Microbiol. Rep. 2014, 6, 90–99. 

21. Wang, K.; Wommack, K.E.; Chen, F. Abundance and distribution of Synechococcus spp. And 

cyanophages in the chesapeake bay. Appl. Environ. Microbiol. 2011, 77, 7459–7468. 

22. Van Baalen, C. Studies on marine blue-green algae. Bot. Mar. 1962, 4, 129–139. 



Life 2015, 5 1140 

 

 

23. Ludwig, M.; Bryant, D.A. Transcription profiling of the model cyanobacterium Synechococcus 

sp. strain pcc 7002 by next-gen (SOLiDTM) sequencing of cDNA. Front. Microbiol. 2011, 2, 

doi:10.3389/fmicb.2011.00041. 

24. Ludwig, M.; Bryant, D.A. Synechococcus sp strain pcc 7002 transcriptome: Acclimation to 

temperature, salinity, oxidative stress, and mixotrophic growth conditions. Front. Microbiol.  

2012, 3, doi:10.3389/fmicb.2012.00354. 

25. Beliaev, A.S.; Romine, M.F.; Serres, M.; Bernstein, H.C.; Linggi, B.E.; Markillie, L.M.; Isern, N.G.; 

Chrisler, W.B.; Kucek, L.A.; Hill, E.A.; et al. Inference of interactions in cyanobacterial-heterotrophic 

co-cultures via transcriptome sequencing. ISME J. 2014, 8, 2243–2255. 

26. Ludwig, M.; Bryant, D.A. Acclimation of the global transcriptome of the cyanobacterium 

Synechococcus sp strain pcc 7002 to nutrient limitations and different nitrogen sources. Front. 

Microbiol. 2012, 3, doi:10.3389/fmicb.2012.00145. 

27. Melnicki, M.R.; Pinchuk, G.E.; Hill, E.A.; Kucek, L.A.; Stolyar, S.M.; Fredrickson, J.K.; 

Konopka, A.E.; Beliaev, A.S. Feedback-controlled led photobioreactor for photophysiological 

studies of cyanobacteria. Bioresource Technol. 2013, 134, 127–133. 

28. McClure, R.; Balasubramanian, D.; Sun, Y.; Bobrovskyy, M.; Sumby, P.; Genco, C.A.; 

Vanderpool, C.K.; Tjaden, B. Computational analysis of bacterial rna-seq data. Nucleic Acids Res. 

2013, 41, doi:10.1093/nar/gkt444. 

29. Hamilton, J.J.; Reed, J.L. Identification of functional differences in metabolic networks using 

comparative genomics and constraint-based models. PLoS One 2012, 7, doi:10.1371/ 

journal.pone.0034670. 

30. Song, H.S.; Reifman, J.; Wallqvist, A. Prediction of metabolic flux distribution from gene 

expression data based on the flux minimization principle. PLoS One 2014, 9, doi:10.1371/ 

journal.pone.0112524. 

31. Segre, D.; Vitkup, D.; Church, G.M. Analysis of optimality in natural and perturbed metabolic 

networks. Proc. Natl. Acad. Sci. USA 2002, 99, 15112–15117. 

32. Opsahl, T.; Agneessens, F.; Skvoretz, J. Node centrality in weighted networks: Generalizing 

degree and shortest paths. Soc. Netw. 2010, 32, 245–251. 

33. Bounova, G.; de Weck, O. Overview of metrics and their correlation patterns for multiple- metric 

topology analysis on heterogeneous graph ensembles. Phys. Rev. E 2012, 85, doi:10.1103/ 

PhysRevE.85.016117. 

34. Octave Networks Toolbox First Release. Available online: https://zenodo.Org/record/10778 

(accessed on 18 March 2015). 

35. Albert, R.; Jeong, H.; Barabasi, A.L. Error and attack tolerance of complex networks. Nature 

2000, 406, 378–382. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


