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In this paper, we introduce various definitions of R-duals, to be called R-duals of type I, II, which leads to a 
generalization of the duality principle in Banach spaces. A basic problem of interest in connection with the study 
of R-duals in Banach spaces is that of characterizing those R-duals which can essentially be regarded as M-basis. 
We give some conditions under which an R-dual sequence to be an M-basis for 𝑋.
1. Introduction

Duality principle [1] and the Wexler-Raz [2] biorthogonality re-

lations play a fundamental role in analyzing Gabor systems. In [3], 
Casazza, Kutyniok, and Lammers raised the question of whether these 
results, which can be regarded as duality principles, can be general-

ized to abstract frame theory. They presented a general approach to 
derive duality principles in abstract frame theory in 2004. Recently, the 
various generalizations of duality principles have been proposed. For 
example, duality principle for g-frames in Hilbert spaces [4, 5, 6], the 
duality principle for p-frames [7], and various R-duals [8, 9]. In [10], 
the authors studied R-duals for the purpose of extending this to general 
sequences in arbitrary Banach spaces. This was referred to as an 𝑋𝑑 -

R-dual. If we would have general duality principles in Banach spaces, 
we could hope to get an abundance of new duality principles for shift-

invariant subspaces of 𝐿𝑝 by using the Banach frame theory.

In the current paper, we introduce certain variations of the R-duals 
(see Definitions 2.1, 2.2) and show that R-duals of type I, II cover the 
duality principle in Banach spaces. Then we characterize exactly the 
properties of the first sequence in terms of its R-dual sequence. For an R-

dual sequence, a natural and important problem is that of determining 
when it is near to M-basis. We give some conditions under which an 
R-dual sequence to be an M-basis for 𝑋.

In the rest of this introduction, we state the key definitions and 
results from the literature concerning the frames and Riesz bases in Ba-

nach spaces. In Sect. 2 we introduce a modified version of the R-duals 
leads to a generalization of the duality principle that keeps all the at-

tractive properties of the R-duals. In Sect. 3 we prove some properties of 
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R-duals and we give some conditions under which an R-dual sequence 
to be an M-basis for 𝑋.

1.1. Review of Banach frames

Banach frames were introduced by Gröchenig [11] as a tool to ex-

press series expansions. An analysis of Banach frames in general Banach 
spaces appeared in [12, 13, 14]. In the following, after briefly recalling 
the basic definitions and notations of frames with respect to a certain 
sequence space 𝑋𝑑 , the notion of a 𝑋𝑑 -Riesz basis and a 𝑋∗

𝑑
-Riesz basis 

is introduced.

Definition 1.1. ([14]) Let 𝑋 be separable Banach space and 𝑋∗ be its 
dual space. Let 𝑋𝑑 be a Banach space of scalar-valued sequences in-

dexed by countable set 𝐼 . Let {𝑓𝑖}𝑖∈𝐼 be a collection of vectors in the 
dual space 𝑋∗ and 𝑆 ∶𝑋𝑑 →𝑋 be given. The pair ({𝑓𝑖}𝑖∈𝐼 , 𝑆) is called 
a Banach frame for 𝑋 w.r.t. 𝑋𝑑 if

(i) {𝑓𝑖(𝑥)}𝑖∈𝐼 ∈𝑋𝑑 , for all 𝑥 ∈𝑋
(ii) the norms ‖𝑥‖𝑋 and ‖{𝑓𝑖(𝑥)}𝑖∈𝐼‖𝑋𝑑 are equivalent, i.e., there exist 

constants 0 <𝐴 ≤ 𝐵 <∞ such that

𝐴‖𝑥‖𝑋 ≤ ‖{𝑓𝑖(𝑥)}𝑖∈𝐼‖𝑋𝑑 ≤𝐵‖𝑥‖𝑋, ∀𝑥 ∈𝑋. (1.1)

(iii) 𝑆 is a bounded linear operator such that 𝑆({𝑓𝑖(𝑥)}) = 𝑥 for all 
𝑥 ∈𝑋.

The positive constants 𝐴 and 𝐵, respectively, are called the lower and 
the upper frame bounds of the Banach frame ({𝑓𝑖}𝑖∈𝐼 , 𝑆). If at least (𝑖)
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and the right-hand inequality in (1.1) are satisfied, {𝑓𝑖}𝑖∈𝐼 is called a 
𝑋𝑑 -Bessel sequence for 𝑋 with Bessel bound 𝐵. The operator 𝑆 ∶𝑋𝑑 →

𝑋 is called the reconstruction operator (or, the pre-frame operator). 
The inequality (1.1) is called the frame inequality. The Banach frame 
({𝑓𝑖}𝑖∈𝐼 , 𝑆) is called tight if 𝐴 = 𝐵 and normalized tight if 𝐴 = 𝐵 = 1.

Definition 1.2. ([14]) Let 𝑋 be Banach space and 𝑋∗ be its dual space. 
Let 𝑋𝑑 be a Banach space of scalar-valued sequences indexed by count-

able set 𝐼 . Let {𝑥𝑖}𝑖∈𝐼 be a collection of vectors in 𝑋 and 𝑇 ∶𝑋∗
𝑑
→𝑋∗

be given. The pair ({𝑥𝑖}𝑖∈𝐼 , 𝑇 ) is called a retro Banach frame for 𝑋∗

w.r.t. 𝑋∗
𝑑

if

(i) {𝑓 (𝑥𝑖)}𝑖∈𝐼 ∈𝑋∗
𝑑
, for all 𝑓 ∈𝑋∗

(ii) the norms ‖𝑓‖𝑋∗ and ‖{𝑓 (𝑥𝑖)}𝑖∈𝐼‖𝑋∗
𝑑

are equivalent, i.e., there ex-

ist constants 0 <𝐴 ≤ 𝐵 <∞ such that

𝐴‖𝑓‖𝑋∗ ≤ ‖{𝑓 (𝑥𝑖)}𝑖∈𝐼‖𝑋∗
𝑑
≤ 𝐵‖𝑓‖𝑋∗ , ∀𝑥 ∈𝑋. (1.2)

(iii) 𝑇 is a bounded linear operator such that 𝑇 ({𝑓 (𝑥𝑖)}) = 𝑓 for all 
𝑓 ∈𝑋∗.

The positive constants 𝐴 and 𝐵, respectively, are called the lower and 
the upper frame bounds of the retro Banach frame ({𝑥𝑖}𝑖∈𝐼 , 𝑇 ). If at 
least (𝑖) and the right-hand inequality in (1.2) are satisfied, {𝑥𝑖}𝑖∈𝐼 is 
called a 𝑋∗

𝑑
-Bessel sequence for 𝑋∗ with Bessel bound 𝐵. The operator 

𝑇 ∶ 𝑋∗
𝑑
→ 𝑋∗ is called the reconstruction operator (or, the pre-frame 

operator). The inequality (1.2) is called the retro frame inequality. The 
retro Banach frame ({𝑥𝑖}𝑖∈𝐼 , 𝑇 ) is called tight if 𝐴 = 𝐵 and is called 
normalized tight if 𝐴 = 𝐵 = 1.

Definition 1.3. Let 𝑋 be Banach space and 𝑋∗ be its dual space. Let 
𝑋𝑑 be a Banach space of scalar-valued sequences indexed by countable 
set 𝐼 . Let 𝑢𝑖 ∈𝑋, ℎ𝑖 ∈𝑋∗ for all 𝑖 ∈ 𝐼 . Then

(𝑖) {𝑢𝑖}𝑖∈𝐼 is called a 𝑋𝑑 -Riesz basis for 𝑋, if it is complete in 𝑋 and 
there exist constants 0 <𝐴 ≤ 𝐵 <∞ such that

𝐴‖𝛼‖𝑋𝑑 ≤ ‖‖‖∑
𝑖∈𝐼

𝛼𝑖𝑢𝑖
‖‖‖𝑋 ≤𝐵‖𝛼‖𝑋𝑑 , ∀𝛼 ∈𝑋𝑑. (1.3)

(𝑖𝑖) {ℎ𝑖}𝑖∈𝐼 is called a 𝑋𝑑 -Riesz basis for 𝑋∗ if there exist constants 
0 <𝐴 ≤ 𝐵 <∞ such that

𝐴‖𝛼‖𝑋𝑑 ≤ ‖‖‖∑
𝑖∈𝐼

𝛼𝑖ℎ𝑖
‖‖‖𝑋∗ ≤𝐵‖𝛼‖𝑋𝑑 , ∀𝛼 ∈𝑋𝑑. (1.4)

The numbers 𝐴, 𝐵 in (1.3) and (1.4) are called lower and upper 𝑋𝑑 -

Riesz basis bounds. If {𝑢𝑖}𝑖∈𝐼 or {ℎ𝑖}𝑖∈𝐼 are a 𝑋𝑑 -Riesz basis only for its 
closed linear span in 𝑋 or 𝑋∗, we call it a 𝑋𝑑 -Riesz basic sequence in 
𝑋 or 𝑋∗ respectively.

The 𝑋𝑑 -Riesz bases are important in practice and are therefore stud-

ied widely by many authors, e.g., see [15, 16, 17, 18].

Definition 1.4. A Banach space 𝑋𝑑 of scalar-valued sequences indexed 
by 𝐼 is a BK-space if the coordinate linear functionals are continuous 
on 𝑋𝑑 . A CB-space is a BK-space for which the canonical unit vectors 
constitute a Schauder basis. A BK-space is called an RCB-space if it is a 
reflexive CB-space.

By a result in [19], the dual space of a BK-space containing all canon-

ical unit vectors is also a BK-space.

Definition 1.5. Let 𝑥𝑖, 𝑢𝑖 ∈ 𝑋, 𝑓𝑖, ℎ𝑖 ∈ 𝑋∗ for all 𝑖 ∈ 𝐼 and let 𝑋𝑑 be a 
Banach space of scalar-valued sequences indexed by 𝐼 . Then
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(𝑖) {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is called a Bessel system for 𝑋 ×𝑋∗ w.r.t. 𝑋𝑑 if {𝑥𝑖}𝑖∈𝐼
is a 𝑋∗

𝑑
-Bessel sequence for 𝑋∗ and {𝑓𝑖}𝑖∈𝐼 is a 𝑋𝑑 -Bessel sequence 

for 𝑋 respectively.

(𝑖𝑖) {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is called a frame system for 𝑋 × 𝑋∗ w.r.t. 𝑋𝑑 when 
it satisfies only the frame inequality (1.1) and the retro frame in-

equality (1.2).

(𝑖𝑖𝑖) {(𝑢𝑖, ℎ𝑖)}𝑖∈𝐼 is called a Riesz basis system for 𝑋 × 𝑋∗ w.r.t. 𝑋𝑑 if 
{𝑢𝑖}𝑖∈𝐼 is a 𝑋𝑑 -Riesz basis for 𝑋 and {ℎ𝑖}𝑖∈𝐼 is a 𝑋∗

𝑑
-Riesz basis for 

𝑋∗ respectively. If only {𝑢𝑖}𝑖∈𝐼 is a 𝑋𝑑 -Riesz basic sequence in 𝑋
and {ℎ𝑖}𝑖∈𝐼 is a 𝑋∗

𝑑
-Riesz basic sequence in 𝑋∗, we call {(𝑢𝑖, ℎ𝑖)}𝑖∈𝐼

a Riesz basic system for 𝑋 ×𝑋∗ w.r.t. 𝑋𝑑 .

(𝑖𝑣) {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 with 𝑥𝑖 ≠ 0, 𝑓𝑖 ≠ 0 is called a Schauder frame for 𝑋 if 
for every 𝑥 ∈𝑋, 𝑥 =∑

𝑖∈𝐼 𝑓𝑖(𝑥)𝑥𝑖.

Definition 1.6. Let 𝑥𝑖 ∈𝑋, 𝑓𝑖 ∈𝑋∗. Then

(𝑖) {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is called a biorthogonal system for 𝑋×𝑋∗, if 𝑓𝑖(𝑥𝑗 ) = 𝛿𝑖𝑗
for all 𝑖, 𝑗 ∈ 𝐼 .

(𝑖𝑖) A biorthogonal system {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is called fundamental if 𝑋 =
span{𝑥𝑖}𝑖∈𝐼 .

(𝑖𝑖𝑖) A biorthogonal system {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is called total if 𝑋∗ =
span𝑤

∗
{𝑓𝑖}𝑖∈𝐼 .

(𝑖𝑣) A fundamental and total biorthogonal system {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is called 
a Markushevich basis or M-basis for 𝑋.

Example 1.7. Let 𝑋 = 𝑋𝑑 = 𝑐0 be the space of null sequences and 
{𝑒𝑖}𝑖∈ℕ be the standard basis of the unit vectors for 𝑐0. Let {𝜆𝑖}𝑖∈ℕ be 
a sequence of scalars such that 0 < 𝐴 = inf 𝑖∈ℕ |𝜆𝑖| ≤ sup𝑖∈ℕ |𝜆𝑖| = 𝐵 <∞. 
For each 𝑖 ∈ ℕ define 𝑢𝑖 ∈ 𝑐0 by 𝑢𝑖 = 𝜆𝑖𝑒𝑖. Then it is easily checked that 
{𝑢𝑖}𝑖∈ℕ is complete in 𝑋 and

‖‖‖∑
𝑖∈ℕ

𝛼𝑖𝑢𝑖
‖‖‖𝑐0 = sup

𝑘∈ℕ
|𝜆𝑘𝛼𝑘| <∞.

This yields

𝐴‖𝛼‖𝑋𝑑 ≤ ‖‖‖∑
𝑖∈ℕ

𝛼𝑖𝑢𝑖
‖‖‖𝑋 ≤𝐵‖𝛼‖𝑋𝑑 .

Thus {𝑢𝑖}𝑖∈ℕ is a 𝑐0-Riesz basis for 𝑐0 with bounds 𝐴 and 𝐵.

Example 1.8. Let 𝑋 = 𝑋𝑑 = 𝑐0 be the space of null sequences and 
let {𝜆𝑖}𝑖∈ℕ be a sequence of scalars such that 0 < 𝐴 = inf 𝑖∈ℕ |𝜆𝑖| ≤
sup𝑖∈ℕ |𝜆𝑖| = 𝐵 < ∞. For each 𝑖 ∈ ℕ define ℎ𝑖 ∈ 𝑋∗ = 𝓁1 by ℎ𝑖(𝑥) =
𝜆𝑖𝑥𝑖, (𝑥 ∈ 𝑋). Then it is easily checked that ℎ𝑖 = 𝜆𝑖𝑒𝑖, where {𝑒𝑖}𝑖∈ℕ is 
the standard basis of the unit vectors for 𝓁1. With a similar argument of 
Example 1.8, we can show that {ℎ𝑖}𝑖∈ℕ is a 𝓁1-Riesz basis for 𝓁1 with 
bounds 𝐴 and 𝐵.

Example 1.9. Let 𝑋 = 𝓁1 and let {𝑒𝑖}𝑖∈ℕ be the sequence of the coeffi-

cient functionals associated to the canonical basis {𝑒𝑖}𝑖∈ℕ in 𝑋. Suppose 
that {𝜆𝑖}𝑖∈ℕ is a sequence of scalars such that ∑𝑖∈ℕ

√|𝜆𝑖| < ∞. For 
𝑛 ∈ℕ, 𝑦 ∈𝑋 define the following vectors 𝑥𝑛 ∈𝑋 and 𝑓𝑛 ∈𝑋∗ by

𝑥𝑛 =
{ √|𝜆𝑖|𝑒1 𝑛 = 2𝑖− 1
𝑒𝑖+1 𝑛 = 2𝑖.

and 𝑓𝑛(𝑦) =

{ √|𝜆𝑖|
𝐾

𝑒1(𝑦) 𝑛 = 2𝑖− 1
𝑒𝑖+1(𝑦) 𝑛 = 2𝑖.

,

where 𝐾 =
∑
𝑖∈ℕ |𝜆𝑖|. Then we have∑

𝑛∈ℕ
𝑓𝑛(𝑦)𝑥𝑛 =

∑
𝑖∈ℕ

𝑓2𝑖−1(𝑦)𝑥2𝑖−1 +
∑
𝑖∈ℕ

𝑓2𝑖(𝑦)𝑥2𝑖

=
( 1
𝐾

∑
𝑖∈ℕ

|𝜆𝑖|)𝑒1(𝑦)𝑒1 +∑
𝑖∈ℕ

𝑒𝑖+1(𝑦)𝑒𝑖+1

=
∑
𝑖∈ℕ

𝑒𝑖(𝑦)𝑒𝑖 = 𝑦.

Therefore, {(𝑥𝑛, 𝑓𝑛)}𝑛∈ℕ is a Schauder frame for 𝑋.
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2. Various Riesz-dual sequences and the duality principles

The notion of R-dual sequences was introduced and studied in [10] 
for the purpose of extending this to the general sequences in arbitrary 
Banach spaces.

Let {(𝑢𝑖, 𝑣𝑖)}𝑖∈𝐼 be a pair of 𝑋𝑑 -Riesz bases for 𝑋, and let {𝑓𝑖}𝑖∈𝐼 ⊂ 𝑋∗

be a 𝑋𝑑 -Bessel sequence for 𝑋. Then a 𝑋∗
𝑑
-R-dual sequence of {𝑓𝑖}𝑖∈𝐼

with respect to {(𝑢𝑖, 𝑣𝑖)}𝑖∈𝐼 for 𝑋 is a collection of vectors {𝜔𝑓
𝑖
}𝑖∈𝐼 in 𝑋

which is defined by

𝜔
𝑓

𝑖
=
∑
𝑗∈𝐼

𝑓𝑗 (𝑢𝑖)𝑣𝑗 , ∀ 𝑖 ∈ 𝐼. (2.1)

Similarly, given a pair of 𝑋∗
𝑑
-Riesz bases {(𝑧𝑖, ℎ𝑖)}𝑖∈𝐼 for 𝑋∗ and a 𝑋∗

𝑑
-

Bessel sequence {𝑥𝑖}𝑖∈𝐼 for 𝑋∗. Then a 𝑋𝑑 -R-dual sequence of {𝑥𝑖}𝑖∈𝐼
with respect to {(𝑧𝑖, ℎ𝑖)}𝑖∈𝐼 is a collection of vectors {𝜓𝑥

𝑖
}𝑖∈𝐼 in 𝑋∗

which is defined by

𝜓𝑥
𝑖
=
∑
𝑗∈𝐼

𝑧𝑖(𝑥𝑗 )ℎ𝑗 , ∀ 𝑖 ∈ 𝐼. (2.2)

In the following, we introduce two types of R-dual sequences that are 
available in the literature.

Definition 2.1. Let {(𝑢𝑖, 𝑣𝑖)}𝑖∈𝐼 be a pair of 𝑋𝑑 -Riesz bases for 𝑋 so 
that the biorthogonal sequences {𝑢̃𝑖}𝑖∈𝐼 , {𝑣̃𝑖}𝑖∈𝐼 ⊂ 𝑋∗ constitute 𝑋∗

𝑑
-

Riesz bases for 𝑋∗. Suppose that {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is a Bessel system for 
𝑋 ×𝑋∗ w.r.t. 𝑋𝑑 . Then a R-dual sequence of type I of {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 w.r.t. 
{(𝑢𝑖, 𝑣𝑖)}𝑖∈𝐼 is a collection of vectors {(𝜔𝑓

𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 , where {𝜔𝑓

𝑖
}𝑖∈𝐼 is the 

𝑋∗
𝑑
-R-dual sequence of {𝑓𝑖}𝑖∈𝐼 w.r.t. {(𝑢𝑖, 𝑣𝑖)}𝑖∈𝐼 and {𝜓𝑥

𝑖
}𝑖∈𝐼 is the 𝑋𝑑 -

R-dual sequence of {𝑥𝑖}𝑖∈𝐼 w.r.t. {(𝑢̃𝑖, ̃𝑣𝑖)}𝑖∈𝐼 .

Definition 2.2. Let {(𝑧𝑖, ℎ𝑖)}𝑖∈𝐼 be a pair of 𝑋∗
𝑑
-Riesz bases for 𝑋∗ so 

that the biorthogonal sequences {𝑧̂𝑖}𝑖∈𝐼 , {ℎ̂𝑖}𝑖∈𝐼 ⊂ 𝑋 ⊆ 𝑋∗∗ constitute 
𝑋𝑑 -Riesz bases for 𝑋. Suppose that {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is a Bessel system for 
𝑋 ×𝑋∗ w.r.t. 𝑋𝑑 . Then a R-dual sequence of type II of {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 w.r.t. 
{(𝑧𝑖, ℎ𝑖)}𝑖∈𝐼 is a collection of vectors {(𝜔𝑓

𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 , where {𝜔𝑓

𝑖
}𝑖∈𝐼 is the 

𝑋∗
𝑑
-R-dual sequence of {𝑓𝑖}𝑖∈𝐼 w.r.t. {(𝑧̂𝑖, ̂ℎ𝑖)}𝑖∈𝐼 and {𝜓𝑥

𝑖
}𝑖∈𝐼 is the 𝑋𝑑 -

R-dual sequence of {𝑥𝑖}𝑖∈𝐼 w.r.t. {(𝑧𝑖, ℎ𝑖)}𝑖∈𝐼 .

Example 2.3. Let 𝑋 =𝑋𝑑 = 𝑐0 and let {𝑒𝑖}𝑖∈ℕ be the standard basis of 
the canonical unit vectors in 𝑐0. For each 𝑖 ∈ ℕ define the following 
vectors 𝑢𝑖, 𝑣𝑖, 𝑥𝑖 ∈ 𝑐0 and 𝑓𝑖 ∈𝑋∗ = 𝓁1 by

𝑢𝑖 =
𝑖

𝑖+ 1
𝑒𝑖, 𝑣𝑖 =

𝑖

2𝑖+ 1
𝑒𝑖, 𝑥𝑖 =

1
2𝑖
𝑒1 + 𝑒𝑖, 𝑓𝑖 =

1
3𝑖+ 1

(𝑒1 + 𝑖𝑒𝑖),

where {𝑒𝑖}𝑖∈ℕ ⊂ (𝑐0)∗ = 𝓁1 is the dual basic sequence of {𝑒𝑖}𝑖∈ℕ. Then 
it is easily checked that {(𝑢𝑖, 𝑣𝑖)}𝑖∈ℕ is a pair of 𝑋𝑑 -Riesz bases for 𝑋
with bounds 𝐴𝑢 =

1
2 , 𝐵𝑢 = 1 and 𝐴𝑣 =

1
3 , 𝐵𝑣 =

1
2 and {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is a 

frame system for 𝑋 ×𝑋∗ w.r.t. 𝑋𝑑 with frame bounds 𝐴𝑥 =
1
2 , 𝐵𝑥 = 2

and 𝐴𝑓 = 1
6 , 𝐵𝑓 = 7

12 , respectively. Moreover, for every 𝑖 ∈ ℕ we have

𝜔
𝑓

1 =
∑
𝑗∈ℕ

𝑓𝑗 (𝑢1)𝑣𝑗 =
∑
𝑗∈ℕ

1
2
𝑓𝑗 (𝑒1)𝑣𝑗 =

∑
𝑗∈ℕ

𝑗

2(2𝑗 + 1)
𝑓𝑗 (𝑒1)𝑒𝑗

=
∑
𝑗∈ℕ

𝑗

2(2𝑗 + 1)(3𝑗 + 1)
(
𝑒1(𝑒1) + 𝑗𝑒𝑗 (𝑒1)

)
𝑒𝑗

=
∑
𝑗∈ℕ

𝑗

2(2𝑗 + 1)(3𝑗 + 1)
(
1 + 𝑗𝛿1𝑗

)
𝑒𝑗

=
𝑒1
12

+
∞∑
𝑗=2

𝑗𝑒𝑗

2(2𝑗 + 1)(3𝑗 + 1)
,

and for 𝑖 ≥ 2 we obtain

𝜔
𝑓

𝑖
=
∑
𝑗∈ℕ

𝑓𝑗 (𝑢𝑖)𝑣𝑗 =
∑
𝑗∈ℕ

1
3𝑗 + 1

(
(𝑢𝑖)1 + 𝑗(𝑢𝑖)𝑗

)
𝑣𝑗 =

∑
𝑗∈ℕ

𝑗(𝑢𝑖)𝑗
3𝑗 + 1

𝑣𝑗

=
∑
𝑗∈ℕ

𝑗𝑖𝛿𝑖𝑗

(𝑖+ 1)(3𝑗 + 1)
𝑣𝑗 =

𝑖3

(𝑖+ 1)(2𝑖+ 1)(3𝑖+ 1)
𝑒𝑖.
3

We also have

𝜓𝑥1 =
∑
𝑗∈ℕ

𝑢̃1(𝑥𝑗 )𝑣̃𝑗 =
∑
𝑗∈ℕ

2𝑒1(𝑥𝑗 )𝑣̃𝑗 =
∑
𝑗∈ℕ

2𝑗 + 1
𝑗2𝑗−1

𝑒𝑗 ,

and

𝜓𝑥
𝑖
=
∑
𝑗∈ℕ

𝑢̃𝑖(𝑥𝑗 )𝑣̃𝑗 =
∑
𝑗∈ℕ

𝑖+ 1
𝑖
𝑒𝑖(𝑥𝑗 )𝑣̃𝑗 =

∑
𝑗∈ℕ

(𝑖+ 1)(2𝑗 + 1)
𝑖𝑗

𝑒𝑖(𝑥𝑗 )𝑒𝑗

=
∑
𝑗∈ℕ

(𝑖+ 1)(2𝑗 + 1)
𝑖𝑗

𝛿𝑖𝑗𝑒𝑗 =
(𝑖+ 1)(2𝑖+ 1)

𝑖2
𝑒𝑖, 𝑖 ≥ 2.

Therefore, {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈ℕ is a R-dual of type I of {(𝑥𝑖, 𝑓𝑖)}𝑖∈ℕ w.r.t. 

{(𝑢𝑖, 𝑣𝑖)}𝑖∈ℕ.

Example 2.4. Let 𝑋 =𝑋𝑑 = 𝓁1 and let {𝑒𝑖}𝑖∈ℕ be the standard basis of 
the canonical unit vectors in 𝓁1. For each 𝑖 ∈ ℕ define the following 
vectors 𝑥𝑖 ∈ 𝓁1 and 𝑧𝑖, ℎ𝑖, 𝑓𝑖 ∈𝑋∗ = 𝓁∞ by

𝑧𝑖 =
𝑖

𝑖+ 2
𝑒𝑖, ℎ𝑖 =

2𝑖
𝑖+ 2

𝑒𝑖, 𝑥𝑖 = 𝑒1 + 𝑒𝑖, 𝑓𝑖 =
2
3𝑖
𝑒1 + 𝑒𝑖,

where {𝑒𝑖}𝑖∈ℕ ⊂ (𝓁1)∗ = 𝓁∞ is the dual basic sequence of {𝑒𝑖}𝑖∈ℕ. Then 
it is easily checked that {(𝑧𝑖, ℎ𝑖)}𝑖∈ℕ is a pair of 𝑋∗

𝑑
-Riesz bases for 𝑋∗

with bounds 𝐴𝑧 =
1
3 , 𝐵𝑧 = 1 and 𝐴ℎ = 2

3 , 𝐵ℎ = 2 and {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is a 
frame system for 𝑋 ×𝑋∗ w.r.t. 𝑋𝑑 with frame bounds 𝐴𝑥 =

1
2 , 𝐵𝑥 = 2

and 𝐴𝑓 = 1
2 , 𝐵𝑓 = 2, respectively. Moreover, for every 𝑖 ∈ ℕ we have

𝜔
𝑓

1 =
∑
𝑗∈ℕ

𝑓𝑗 (𝑧̂1)ℎ̂𝑗 =
∑
𝑗∈ℕ

3𝑓𝑗 (𝑒1)𝑧̂𝑗 =
∑
𝑗∈ℕ

3(𝑗 + 2)
2𝑗

𝑓𝑗 (𝑒1)𝑒𝑗

=
∑
𝑗∈ℕ

3(𝑗 + 2)
2𝑗

( 2
3𝑗
𝑒1(𝑒1) + 𝑒𝑗 (𝑒1)

)
𝑒𝑗

= 15
2
𝑒1 +

∞∑
𝑗=2

𝑗 + 2
𝑗3𝑗−1

𝑒𝑗 ,

and for 𝑖 ≥ 2 we obtain

𝜔
𝑓

𝑖
=
∑
𝑗∈ℕ

𝑓𝑗 (𝑧̂𝑖)ℎ̂𝑗 =
∑
𝑗∈ℕ

𝑖+ 2
𝑖
𝑓𝑗 (𝑒𝑖)ℎ̂𝑗

=
∑
𝑗∈ℕ

(𝑖+ 2)(𝑗 + 2)
2𝑖𝑗

( 2
3𝑗
𝑒1(𝑒𝑖) + 𝑒𝑗 (𝑒𝑖)

)
𝑒𝑗

=
∑
𝑗∈ℕ

(𝑖+ 2)(𝑗 + 2)
2𝑖𝑗

𝛿𝑖𝑗𝑒𝑗 =
(𝑖+ 2)2

2𝑖2
𝑒𝑖.

We also have

𝜓𝑥1 =
∑
𝑗∈ℕ

𝑧1(𝑥𝑗 )ℎ𝑗 =
∑
𝑗∈ℕ

1
3
𝑒1(𝑥𝑗 )ℎ𝑗

=
∑
𝑗∈ℕ

2𝑗
3(𝑗 + 2)

(
𝑒1(𝑒1) + 𝑒1(𝑒𝑗 )

)
𝑒𝑗

= 4
9
𝑒1 +

∞∑
𝑗=2

2𝑗
3(𝑗 + 2)

𝑒𝑗 ,

and

𝜓𝑥
𝑖
=
∑
𝑗∈ℕ

𝑧𝑖(𝑥𝑗 )ℎ𝑗 =
∑
𝑗∈ℕ

𝑖

𝑖+ 2
𝑒𝑖(𝑥𝑗 )ℎ𝑗 =

∑
𝑗∈ℕ

2𝑖𝑗
(𝑖+ 2)(𝑗 + 2)

𝑒𝑖(𝑥𝑗 )𝑒𝑗

=
∑
𝑗∈ℕ

2𝑖𝑗
(𝑖+ 2)(𝑗 + 2)

𝛿𝑖𝑗𝑒𝑗 =
2𝑖2

(𝑖+ 2)2
𝑒𝑖, 𝑖 ≥ 2.

Therefore, {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈ℕ is a R-dual of type II of {(𝑥𝑖, 𝑓𝑖)}𝑖∈ℕ w.r.t. 

{(𝑧𝑖, ℎ𝑖)}𝑖∈ℕ.

To provide an algorithm for the purpose to reverse these processes, 
we present the following result that is a slight variation of [10, Theo-

rems 4.3, 4.4].
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Proposition 2.5. Let 𝑋𝑑 be a RCB-space. Then the following hold:

(𝑖) {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 is the R-dual of type I of {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 w.r.t. {(𝑢𝑖, 𝑣𝑖)}𝑖∈𝐼

if and only if {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is the R-dual of type I of {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 w.r.t. 

{(𝑣𝑖, 𝑢𝑖)}𝑖∈𝐼 .

(𝑖𝑖) {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 is the R-dual of type II of {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 w.r.t. {(𝑧𝑖, ℎ𝑖)}𝑖∈𝐼

if and only if {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is the R-dual of type II of {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 w.r.t. 

{(ℎ𝑖, 𝑧𝑖)}𝑖∈𝐼 .

Proof. (𝑖) By [10, Theorems 4.3, 4.4], {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 is the R-dual of 

type I of {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 w.r.t. {(𝑢𝑖, 𝑣𝑖)}𝑖∈𝐼 if and only if

𝑥𝑖 =
∑
𝑗∈𝐼

𝜓𝑥
𝑗
(𝑣𝑖)𝑢𝑗 , and 𝑓𝑖 =

∑
𝑗∈𝐼

𝑣̃𝑖(𝜔
𝑓

𝑗
)𝑢̃𝑗 ,

for all 𝑖 ∈ 𝐼 . Hence {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is the R-dual of type I of {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼

w.r.t. {(𝑣𝑖, 𝑢𝑖)}𝑖∈𝐼 .

(𝑖𝑖) Again, {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 is the R-dual of type II of {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 w.r.t. 

{(𝑧𝑖, ℎ𝑖)}𝑖∈𝐼 if and only if for any 𝑖 ∈ 𝐼

𝑓𝑖 =
∑
𝑗∈𝐼

ℎ𝑖(𝜔
𝑓

𝑗
)𝑧𝑗 , and 𝑥𝑖 =

∑
𝑗∈𝐼

𝜓𝑥
𝑗
(ℎ̂𝑖)𝑧̂𝑗 .

Therefore {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is the R-dual of type II of {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 w.r.t. 

{(ℎ𝑖, 𝑧𝑖)}𝑖∈𝐼 . □

In order to provide the frame properties and the duality principle 
for the R-dual of type I, we present the following result that is a slight 
variation of [10, Theorems 4.5, 4.6].

Proposition 2.6. Let 𝑋𝑑 be a RCB-space and let {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 be the 

R-dual of type I of {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 w.r.t. {(𝑢𝑖, 𝑣𝑖)}𝑖∈𝐼 . Then the following state-

ments hold.

(𝑖) for any 𝛽 ∈𝑋∗
𝑑

with 𝑔 =∑
𝑗∈𝐼 𝛽𝑗 𝑢̃𝑗

𝐵−1‖{𝑔(𝑥𝑖)}𝑖∈𝐼‖𝑋∗
𝑑
≤
‖‖‖∑
𝑗∈𝐼

𝛽𝑗𝜓
𝑥
𝑗

‖‖‖𝑋∗ ≤𝐴
−1‖{𝑔(𝑥𝑖)}𝑖∈𝐼‖𝑋∗

𝑑
,

(𝑖𝑖) for any 𝛼 ∈𝑋𝑑 with 𝑦 =∑
𝑗∈𝐼 𝛼𝑗𝑢𝑗

𝐴‖{𝑓𝑖(𝑦)}𝑖∈𝐼‖𝑋𝑑 ≤ ‖‖‖∑
𝑗∈𝐼

𝛼𝑗𝜔
𝑓

𝑗

‖‖‖𝑋 ≤ 𝐵‖{𝑓𝑖(𝑦)}𝑖∈𝐼‖𝑋𝑑 ,
where 𝐴, 𝐵 are the 𝑋𝑑 -Riesz basis bounds for {𝑣𝑖}𝑖∈𝐼 .

(𝑖𝑖𝑖) for any 𝛽 ∈𝑋∗
𝑑

with 𝑔 =∑
𝑗∈𝐼 𝛽𝑗 𝑣̃𝑗

𝐷−1‖{𝑔(𝜔𝑓
𝑖
)}𝑖∈𝐼‖𝑋∗

𝑑
≤
‖‖‖∑
𝑗∈𝐼

𝛽𝑗𝑓𝑗
‖‖‖𝑋∗ ≤ 𝐶

−1‖{𝑔(𝜔𝑓
𝑖
)}𝑖∈𝐼‖𝑋∗

𝑑
,

(𝑖𝑣) for any 𝛼 ∈𝑋𝑑 with 𝑦 =∑
𝑗∈𝐼 𝛼𝑗𝑣𝑗

𝐶‖{𝜓𝑥
𝑖
(𝑦)}𝑖∈𝐼‖𝑋𝑑 ≤ ‖‖‖∑

𝑗∈𝐼
𝛼𝑗𝑥𝑗

‖‖‖𝑋 ≤𝐷‖{𝜓𝑥
𝑖
(𝑦)}𝑖∈𝐼‖𝑋𝑑 ,

where 𝐶, 𝐷 are the 𝑋𝑑 -Riesz basis bounds for {𝑢𝑖}𝑖∈𝐼 .

Proof. (𝑖) By the definition of 𝜓𝑥
𝑗
, we have 𝜓𝑥

𝑗
= 𝑇𝑣̃

(
{𝑢̃𝑗 (𝑥𝑖)}𝑖∈𝐼

)
, where 

𝑇𝑣̃ is the synthesis operator of {𝑣̃𝑖}𝑖∈𝐼 and by [20, Proposition 3.4], 𝑇𝑣̃
is an isomorphism of 𝑋∗

𝑑
onto 𝑋∗. Hence∑

𝑗∈𝐼
𝛽𝑗𝜓

𝑥
𝑗
=
∑
𝑗∈𝐼

𝛽𝑗𝑇𝑣̃
(
{𝑢̃𝑗 (𝑥𝑖)}𝑖∈𝐼

)
= 𝑇𝑣̃

({∑
𝑗∈𝐼

𝛽𝑗 𝑢̃𝑗 (𝑥𝑖)
}
𝑖∈𝐼

)
= 𝑇𝑣̃

(
{𝑔(𝑥𝑖)}𝑖∈𝐼

)
=
∑
𝑗∈𝐼

𝑔(𝑥𝑗 )𝑣̃𝑗 .

Now, the conclusion follows from [20, Proposition 4.9].

(𝑖𝑖) Similarly, the definition of 𝜔𝑓
𝑗

implies that ∑
𝑗∈𝐼 𝛼𝑗𝜔

𝑓

𝑗
=∑

𝑗∈𝐼 𝑓𝑗 (𝑦)𝑣𝑗 . From this the result follows by the equation (1.4).
4

(𝑖𝑖𝑖), (𝑖𝑣) These are a consequence of Proposition 2.5 and [20, Propo-

sition 4.9]. □

From the definitions, we immediately see that R-dual of type II has 
a similar characterization. The following are immediate consequences. 
We leave the proofs to interested readers.

Proposition 2.7. Let 𝑋𝑑 be a RCB-space and let {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 be the 

R-dual of type II of {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 w.r.t. {(𝑧𝑖, ℎ𝑖)}𝑖∈𝐼 . Then the following state-

ments hold.

(𝑖) for any 𝛽 ∈𝑋∗
𝑑

with 𝑔 =∑
𝑗∈𝐼 𝛽𝑗𝑧𝑗

𝐴‖{𝑔(𝑥𝑖)}𝑖∈𝐼‖𝑋∗
𝑑
≤
‖‖‖∑
𝑗∈𝐼

𝛽𝑗𝜓
𝑥
𝑗

‖‖‖𝑋∗ ≤𝐵‖{𝑔(𝑥𝑖)}𝑖∈𝐼‖𝑋∗
𝑑
,

(𝑖𝑖) for any 𝛼 ∈𝑋𝑑 with 𝑦 =∑
𝑗∈𝐼 𝛼𝑗 𝑧̂𝑗

𝐵−1‖{𝑓𝑖(𝑦)}𝑖∈𝐼‖𝑋𝑑 ≤ ‖‖‖∑
𝑗∈𝐼

𝛼𝑗𝜔
𝑓

𝑗

‖‖‖𝑋 ≤𝐴−1‖{𝑓𝑖(𝑦)}𝑖∈𝐼‖𝑋𝑑 ,
where 𝐴, 𝐵 are the 𝑋∗

𝑑
-Riesz basis bounds for {ℎ𝑖}𝑖∈𝐼 .

(𝑖𝑖𝑖) for any 𝛽 ∈𝑋∗
𝑑

with 𝑔 =∑
𝑗∈𝐼 𝛽𝑗ℎ𝑗

𝐶‖{𝑔(𝜔𝑓
𝑖
)}𝑖∈𝐼‖𝑋∗

𝑑
≤
‖‖‖∑
𝑗∈𝐼

𝛽𝑗𝑓𝑗
‖‖‖𝑋∗ ≤𝐷‖{𝑔(𝜔𝑓

𝑖
)}𝑖∈𝐼‖𝑋∗

𝑑
,

(𝑖𝑣) for any 𝛼 ∈𝑋𝑑 with 𝑦 =∑
𝑗∈𝐼 𝛼𝑗 ℎ̂𝑗

𝐷−1‖{𝜓𝑥
𝑖
(𝑦)}𝑖∈𝐼‖𝑋𝑑 ≤ ‖‖‖∑

𝑗∈𝐼
𝛼𝑗𝑥𝑗

‖‖‖𝑋 ≤ 𝐶−1‖{𝜓𝑥
𝑖
(𝑦)}𝑖∈𝐼‖𝑋𝑑 ,

where 𝐶, 𝐷 are the 𝑋∗
𝑑
-Riesz basis bounds for {𝑧𝑖}𝑖∈𝐼 .

The next results show a kind of equilibrium between a sequence and 
its R-dual sequence. These can be viewed as a general version of the 
duality principle.

Corollary 2.8. Let 𝑋𝑑 be a RCB-space and let {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 be the R-dual 

of type I of {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 w.r.t. {(𝑢𝑖, 𝑣𝑖)}𝑖∈𝐼 . Then the following statements 
hold.

(𝑖) {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is a frame system for 𝑋 × 𝑋∗ w.r.t. 𝑋𝑑 if and only if 
{(𝜔𝑓

𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 is a Riesz basic system for 𝑋 ×𝑋∗ w.r.t. 𝑋𝑑 .

(𝑖𝑖) {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 is a frame system for 𝑋 × 𝑋∗ w.r.t. 𝑋𝑑 if and only if 

{(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is a Riesz basic system for 𝑋 ×𝑋∗ w.r.t. 𝑋𝑑 .

Proof. The proof follows immediately from Proposition 2.6. □

A similar result holds for the R-dual of type II.

Corollary 2.9. Let 𝑋𝑑 be a RCB-space and let {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 be the R-dual 

of type II of {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 w.r.t. {(𝑧𝑖, ℎ𝑖)}𝑖∈𝐼 . Then the following statements 
hold.

(𝑖) {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is a frame system for 𝑋 × 𝑋∗ w.r.t. 𝑋𝑑 if and only if 
{(𝜔𝑓

𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 is a Riesz basic system for 𝑋 ×𝑋∗ w.r.t. 𝑋𝑑 .

(𝑖𝑖) {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 is a frame system for 𝑋 × 𝑋∗ w.r.t. 𝑋𝑑 if and only if 

{(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is a Riesz basic system for 𝑋 ×𝑋∗ w.r.t. 𝑋𝑑 .

Proof. The proof follows immediately from Proposition 2.7. □

3. Duality properties for Riesz-dual sequences

In this section, we study some properties for Riesz-dual sequences 
associated to Schauder frames. The first result is a slight variation of 
[10, Theorems 4.17]. Throughout this section 𝑋𝑑 is an RCB-space
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Proposition 3.1. Let {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 be the R-dual of type I or II of 

{(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 . Then the following statements hold:

(𝑖) {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is a Schauder frame for 𝑋, if and only if {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 is 

a biorthogonal system for 𝑋.

(𝑖𝑖) {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 is a Schauder frame for 𝑋, if and only if {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is 

a biorthogonal system for 𝑋.

Proposition 3.2. Let {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 and {(𝜔𝑄

∗𝑓
𝑖

, 𝜓𝑄
−1𝑥

𝑖
)}𝑖∈𝐼 be the R-duals 

of type I or II of {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 and {(𝑄−1(𝑥𝑖), 𝑄∗(𝑓𝑖))}𝑖∈𝐼 , respectively. Sup-

pose that 𝑄 ∶ 𝑋 → 𝑋 is an invertible operator on 𝑋. Then the following 
statements hold:

(𝑖) {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 is a Schauder frame for 𝑋, if and only if {(𝜔𝑄

∗𝑓
𝑖

,

𝜓
𝑄−1𝑥
𝑖

)}𝑖∈𝐼 is a Schauder frame for 𝑋.

(𝑖𝑖) {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 is a biorthogonal system for 𝑋, if and only if {(𝜔𝑄

∗𝑓
𝑖

,

𝜓
𝑄−1𝑥
𝑖

)}𝑖∈𝐼 is a biorthogonal system for 𝑋.

Proof. This claim follows immediately from the fact that for each 𝑖, 𝑗 ∈
𝐼 we have

𝑄∗(𝑓𝑖)
(
𝑄−1(𝑥𝑗 )

)
= 𝑓𝑖

(
𝑄𝑄−1(𝑥𝑗 )

)
= 𝑓𝑖(𝑥𝑗 ).

From this the result follows at once by Proposition 3.1. □

Definition 3.3. ([19]) A biorthogonal system {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 for 𝑋 is called 
regular if the sequence {𝑥𝑖}𝑖∈𝐼 is a Schauder basis of the space 𝑋, oth-

erwise {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is said to be irregular.

To check the regularity of a biorthogonal system, we derive the fol-

lowing useful characterization.

Proposition 3.4. Let 𝑋 be Banach space and 𝑋∗ be its dual space. Let 
𝑥𝑖 ∈ 𝑋, 𝑓𝑖 ∈ 𝑋∗ with 𝑥𝑖 ≠ 0, 𝑓𝑖 ≠ 0 for all 𝑖 ∈ 𝐼 . Let {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 be a 
biorthogonal system for 𝑋. Then the following conditions are equivalent.

(1) {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is regular.

(2) {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is a Schauder frame for 𝑋.

Proof. The implication (1) ⇒ (2) is obvious. To prove (2) ⇒ (1) suppose 
that {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is a Schauder frame for 𝑋. If ∑𝑖∈𝐼 𝑐𝑖𝑥𝑖 = 0 with 𝑐𝑖 ∈ ℂ, 
then by biorthogonality of {(𝑥𝑖, 𝑓𝑖)} we have 𝑐𝑖 = 0 for all 𝑖 ∈ 𝐼 and so 
{𝑥𝑖} is a Schauder basis for 𝑋. Thus {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 is regular. □

Proposition 3.5. Let {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈ℤ be the R-dual of type I or II of the 

regular biorthogonal system {(𝑥𝑖, 𝑓𝑖)}𝑖∈ℤ. Then {(𝑋𝑖, 𝐹𝑖)}𝑖∈ℤ defined by

𝑋𝑖 =
{

(𝑥𝑘,0) 𝑖 = 2𝑘− 1
(0,𝜔𝑓

𝑘
) 𝑖 = 2𝑘,

and 𝐹𝑖(𝑠, 𝑡) =
{
𝑓𝑘(𝑠) 𝑖 = 2𝑘− 1
𝜓𝑥
𝑘
(𝑡) 𝑖 = 2𝑘, ∀𝑠, 𝑡 ∈𝑋,

is a regular biorthogonal system for 𝑋 ×𝑋.

Proof. Since {(𝑥𝑖, 𝑓𝑖)}𝑖∈ℤ is a regular biorthogonal system for 𝑋. By 
Propositions 3.1 and 3.4, {(𝜔𝑓

𝑖
, 𝜓𝑥

𝑖
)}𝑖∈ℤ is a regular biorthogonal system 

for 𝑋. Thus for each 𝑠, 𝑡 ∈𝑋 we have∑
𝑖∈ℤ

𝐹𝑖(𝑠, 𝑡)𝑋𝑖 =
∑
𝑘∈ℤ

𝐹2𝑘−1(𝑠, 𝑡)𝑋2𝑘−1 +
∑
𝑘∈ℤ

𝐹2𝑘(𝑠, 𝑡)𝑋2𝑘

=
∑
𝑘∈ℤ

𝑓𝑘(𝑠)(𝑥𝑘,0) +
∑
𝑘∈ℤ

𝜓𝑥
𝑘
(𝑡)(0,𝜔𝑓

𝑘
)

=
(∑
𝑘∈ℤ

𝑓𝑘(𝑠)𝑥𝑘,
∑
𝑘∈ℤ

𝜓𝑥
𝑘
(𝑡)𝜔𝑓

𝑘

)
= (𝑠, 𝑡),

which implies that {(𝑋𝑛, 𝐹𝑛)}𝑛∈ℤ is a Schauder frame for 𝑋 × 𝑋. Ob-

viously the condition 𝐹𝑖(𝑋𝑗 ) = 𝛿𝑖𝑗 for all 𝑖, 𝑗 ∈ ℤ is satisfied. Therefore, 
{(𝑋𝑖, 𝐹𝑖)}𝑖∈ℤ is a regular biorthogonal system for 𝑋 ×𝑋. □

𝑁
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⟂𝑁

Th

{(𝜔
no

(𝑖
(𝑖𝑖

Pr

th

𝑦−

Th

𝑦 ∈

th

𝑦 ∈

⟂{

wh

⟂{

he

Th

{(𝜔
low

(
(𝑖

(𝑖𝑖

M

𝐽

Pr

Pr

sp

Fo

th

𝐼 .

(𝑖)
sp

Th

im

se
5

Recall that the annihilators 𝑀⟂ and ⟂𝑁 from the subsets 𝑀 ⊂ 𝑋, 
⊂𝑋∗ are defined as follows:

⟂ =
{
𝑓 ∈𝑋∗ ∶ 𝑓 (𝑥) = 0 for all 𝑥 ∈𝑀

}
=
{
𝑥 ∈𝑋 ∶ 𝑓 (𝑥) = 0 for all 𝑓 ∈𝑁

}
.

eorem 3.6. Let {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 be a Schauder frame for 𝑋 and let 
𝑓

𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 be the R-dual of type I or II of {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 . Then for any 

nempty finite subset 𝐽 ⊂ 𝐼

) 𝑋 = span{𝜔𝑓
𝑗
}𝑗∈𝐽 ⊕ ⟂{𝜓𝑥

𝑗
}𝑗∈𝐽 .

) ⟂{𝜓𝑥
𝑗
}𝑗∈𝐽𝑐 = span{𝜔𝑓

𝑗
}𝑗∈𝐽 ⊕ ⟂{𝜓𝑥

𝑖
}𝑖∈𝐼 .

oof. Using Proposition 3.1 𝜓𝑥
𝑖
(𝜔𝑓

𝑗
) = 𝛿𝑖𝑗 , for all 𝑖, 𝑗 ∈ 𝐼 . Thus, if 𝑦 ∈𝑋, 

en∑
𝑗∈𝐽

𝜓𝑥
𝑗
(𝑦)𝜔𝑓

𝑗
∈ ⟂{𝜓𝑥

𝑘
}𝑘∈𝐽 .

is immediately implies 𝑋 = span{𝜔𝑓
𝑗
}𝑗∈𝐽 + ⟂{𝜓𝑥

𝑗
}𝑗∈𝐽 . Also, if

⟂{𝜓𝑥
𝑗
}𝑗∈𝐽 ∩ span{𝜔𝑓

𝑗
}𝑗∈𝐽 ,

en 𝑦 =∑
𝑗∈𝐽 𝜓

𝑥
𝑗
(𝑦)𝜔𝑓

𝑗
= 0, hence (𝑖) follows. To prove (𝑖𝑖) suppose that 

⟂{𝜓𝑥
𝑗
}𝑗∈𝐽𝑐 . Then 𝑦 −∑

𝑗∈𝐽 𝜓
𝑥
𝑗
(𝑦)𝜔𝑓

𝑗
∈ ⟂{𝜓𝑥

𝑖
}𝑖∈𝐼 . This yields

𝜓𝑥
𝑗
}𝑗∈𝐽𝑐 ⊆ span{𝜔𝑓

𝑗
}𝑗∈𝐽 + ⟂{𝜓𝑥

𝑖
}𝑖∈𝐼 ⊆ ⟂{𝜓𝑥

𝑗
}𝑗∈𝐽𝑐 ,

ich implies that ⟂{𝜓𝑥
𝑗
}𝑗∈𝐽𝑐 = span{𝜔𝑓

𝑗
}𝑗∈𝐽 + ⟂{𝜓𝑥

𝑖
}𝑖∈𝐼 . Since we have

𝜓𝑥
𝑖
}𝑖∈𝐼 ∩ span{𝜔𝑓

𝑗
}𝑗∈𝐽 = {0},

nce (𝑖𝑖) follows. □

eorem 3.7. Let {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 be a Schauder frame for 𝑋 and let 
𝑓

𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 be the R-dual of type I or II of {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 . Then the fol-

ing are equivalent:

𝑖) {𝜔𝑓
𝑖
}𝑖∈𝐼 is complete in 𝑋.

𝑖) There exists a nonempty finite subset 𝐽 ⊂ 𝐼 such that

{𝜔𝑓
𝑗
}⟂
𝑗∈𝐽𝑐 = span{𝜓𝑥

𝑗
}𝑗∈𝐽 .

𝑖) There exists a nonempty finite subset 𝐽 ⊂ 𝐼 such that

𝑋 = span{𝜔𝑓
𝑗
}𝑗∈𝐽 ⊕ span{𝜔𝑓

𝑗
}𝑗∈𝐽𝑐 .

oreover, if (𝑖) holds, then (𝑖𝑖) and (𝑖𝑖𝑖) hold for every nonempty finite subset 
⊂ 𝐼 .

oof. (𝑖) ⇒ (𝑖𝑖) Let 𝐽 ⊂ 𝐼 be an arbitrary nonempty finite subset. By 
oposition 3.1, for all 𝑖, 𝑗 ∈ 𝐼 , we have 𝜓𝑥

𝑖
(𝜔𝑓

𝑗
) = 𝛿𝑖𝑗 , which implies

an{𝜓𝑥
𝑗
}𝑗∈𝐽 ⊆ {𝜔𝑓

𝑗
}⟂
𝑗∈𝐽𝑐 .

r the opposite subset, we first show that {𝜔𝑓
𝑗
}⟂
𝑗∈𝐽 ∩{𝜔𝑓

𝑗
}⟂
𝑖∈𝐽𝑐 = {0}. To 

is end, let 𝑓 ∈ {𝜔𝑓
𝑗
}⟂
𝑗∈𝐽 ∩{𝜔𝑓

𝑗
}⟂
𝑖∈𝐽𝑐 . Then we have 𝑓 (𝜔𝑓

𝑖
) = 0, for all 𝑖 ∈

 Since 𝑋 = span{𝜔𝑓
𝑖
}𝑖∈𝐼 , it follows that 𝑓 = 0. Now, using Theorem 3.6

, we have 𝑋∗ = span{𝜓𝑥
𝑗
}𝑗∈𝐽 ⊕{𝜔𝑓

𝑗
}⟂
𝑗∈𝐽 , which implies that {𝜔𝑓

𝑗
}⟂
𝑗∈𝐽𝑐 ⊆

an{𝜓𝑥
𝑗
}𝑗∈𝐽 , so (𝑖𝑖) follows.

(𝑖𝑖) ⇒ (𝑖𝑖𝑖) If (𝑖𝑖) is satisfied, then ⟂
(
{𝜔𝑓

𝑗
}⟂
𝑗∈𝐽𝑐

)
= ⟂( span{𝜓𝑥

𝑗
}𝑗∈𝐽

)
. 

is immediately implies span{𝜔𝑓
𝑗
}𝑗∈𝐽𝑐 = ⟂{𝜓𝑥

𝑗
}𝑗∈𝐽 . Now (𝑖𝑖𝑖) follows 

mediately from Theorem 3.6(𝑖).
(𝑖𝑖𝑖) ⇒ (𝑖) is obvious.

For the moreover part, (𝑖) ⇒ (𝑖𝑖) holds for every nonempty finite sub-

t 𝐽 and (𝑖𝑖) for the same 𝐽 implies (𝑖𝑖𝑖). Thus last statement holds. □
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Theorem 3.8. Let {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 be a Schauder frame for 𝑋 and let 
{(𝜔𝑓

𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 be the R-dual of type I or II of {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 . Suppose that ⋂

𝑗∈𝐽 𝜎𝑗 = ∅ and {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 is a M-basis for 𝑋. Then⋂

𝑗∈𝐽
span{𝜔𝑓

𝑖
∶ 𝑖 ∈ 𝜎𝑗} = {0}.

Proof. Let 𝑦 ∈⋂
𝑗∈𝐽 span{𝜔

𝑓

𝑖
∶ 𝑖 ∈ 𝜎𝑗}. Choose an arbitrary 𝑖0 ∈ 𝐼 , then 

there exists 𝑘 ∈ 𝐽 such that 𝑖0 ∉ 𝜎𝑘 and 𝑦 ∈ span{𝜔𝑓
𝑖
∶ 𝑖 ∈ 𝜎𝑘}. Since 

{(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 is a biorthogonal system for 𝑋 × 𝑋∗ by Proposition 3.1, 

we get 𝜓𝑥
𝑖0
(𝑦) = 0. This happens for every 𝑖0 ∈ 𝐼 . As {(𝜔𝑓

𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 is a 

M-basis for 𝑋, then we have 𝑦 = 0. □

Recall that a sequence {𝑓𝑗}𝑗∈𝐼 in 𝑋∗ is said to be 𝜔-independent 
w.r.t. 𝑋∗

𝑑
, if whenever the series ∑𝑗∈𝐼 𝑑𝑗𝑓𝑗 converges and equal to zero 

for some scalar coefficients 𝑑 ∈ 𝑋∗
𝑑

implies 𝑑 = 0. The following result 
presents some conditions on a R-dual sequence to be a M-basis for 𝑋.

Theorem 3.9. Let {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 be a Schauder frame for 𝑋 and let {𝑓𝑖}𝑖∈𝐼
be 𝜔-independent w.r.t. 𝑋∗

𝑑
. Further, let {(𝜔𝑓

𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 be the R-dual of type 

I or II of {(𝑥𝑖, 𝑓𝑖)}𝑖∈𝐼 . Suppose that {𝜎𝑗}𝑗∈𝐽 is a family of subsets of 𝐼 so 
that 𝜏𝑗 = 𝐼 ⧵ 𝜎𝑗 is finite for all 𝑗 ∈ 𝐽 and ⋂𝑗∈𝐽 span{𝜔

𝑓

𝑖
∶ 𝑖 ∈ 𝜎𝑗} = {0}. 

Then {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 is an M-basis for 𝑋.

Proof. Using Proposition 3.1 and Theorems 4.7 in [10] {(𝜔𝑓
𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼

is a fundamental biorthogonal system for 𝑋 ×𝑋∗. Choose an arbitrary 
nonzero element 𝑥 ∈𝑋, then there exists 𝑗 ∈ 𝐽 such that 𝑥 ∉ span{𝜔𝑓

𝑖
∶

𝑖 ∈ 𝜎𝑗}. Now, using the part (𝑖𝑖𝑖) obtained in Theorem 3.7 we have 𝑋 =
span{𝜔𝑓

𝑖
∶ 𝑖 ∈ 𝜏𝑗} ⊕span{𝜔𝑓

𝑖
∶ 𝑖 ∈ 𝜎𝑗}. Thus we can write 𝑥 = 𝑦 +𝑧, where 

0 ≠ 𝑦 ∈ span{𝜔𝑓
𝑖
∶ 𝑖 ∈ 𝜏𝑗} and 𝑧 ∈ span{𝜔𝑓

𝑖
∶ 𝑖 ∈ 𝜎𝑗}. So, we can find 

𝑘 ∈ 𝜏𝑗 such that 𝜓𝑥
𝑘
(𝑥) = 𝜓𝑥

𝑘
(𝑦) ≠ 0. Hence {(𝜔𝑓

𝑖
, 𝜓𝑥

𝑖
)}𝑖∈𝐼 is an M-basis 

for 𝑋. □
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