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Background: Uterine activity (UA) monitoring is an essential element of pregnancy
management. The gold-standard intrauterine pressure catheter (IUPC) is invasive and
requires ruptured membranes, while the standard-of-care, external tocodynamometry
(TOCO)’s accuracy is hampered by obesity, maternal movements, and belt positioning.
There is an urgent need to develop telehealth tools enabling patients to remotely access
care. Here, we describe and demonstrate a novel algorithm enabling remote, non-invasive
detection and monitoring of UA by analyzing the modulation of the maternal
electrocardiographic and phonocardiographic signals. The algorithm was designed and
implemented as part of a wireless, FDA-cleared device designed for remote pregnancy
monitoring. Two separate prospective, comparative, open-label, multi-center studies were
conducted to test this algorithm.

Methods: In the intrapartum study, 41 laboring women were simultaneously monitored
with IUPC and the remote pregnancy monitoring device. Ten patients were also monitored
with TOCO. In the antepartum study, 147 pregnant women were simultaneously
monitored with TOCO and the remote pregnancy monitoring device.

Results: In the intrapartum study, the remote pregnancy monitoring device and TOCO
had sensitivities of 89.8 and 38.5%, respectively, and false discovery rates (FDRs) of
8.6 and 1.9%, respectively. In the antepartum study, a direct comparison of the remote
pregnancy monitoring device to TOCO yielded a sensitivity of 94% and FDR of 31.1%. This
high FDR is likely related to the low sensitivity of TOCO.

Conclusion: UA monitoring via the new algorithm embedded in the remote pregnancy
monitoring device is accurate and reliable and more precise than TOCO standard of care.
Together with the previously reported remote fetal heart rate monitoring capabilities, this
novel method for UA detection expands the remote pregnancy monitoring device’s
capabilities to include surveillance, such as non-stress tests, greatly benefiting women
and providers seeking telehealth solutions for pregnancy care.
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1 INTRODUCTION

Uterine activity (UA) monitoring is one of the crucial
measurements for antepartum fetal monitoring and
intrapartum labor surveillance as well as for the detection of
preterm labor. Uterine contractions need to be evaluated to
monitor the progress of labor (Ayres-De-Campos et al., 2015).
Additionally, their correlation to the fetal heart rate provides
important information on fetal well-being during both
antepartum and intrapartum stages (Bakker and Van Geijn,
2008; Nageotte, 2015; Warmerdam et al., 2016).

Monitoring UA is performed by several techniques. The gold-
standard intrauterine pressure catheter (IUPC) involves
transvaginal insertion of a catheter into the uterus. This can
only be performed by an experienced obstetrician after the
rupture of membranes and sufficient cervical dilation, limiting
its use to a small percent of laboring patients, with no application
to outpatient antenatal care. Tocodynamometry (TOCO), the
non-invasive standard-of-care method, utilizes an external strain-
gauge transducer positioned on the maternal fundus to measure
deformations of the maternal abdomen due to uterine
contractions (Bakker et al., 2007). Therefore, TOCO is
significantly influenced by the quality of the skin–transducer
interface, which is affected by misalignment of the transducer, the
tension of the belt securing the transducer, maternal movement,
and the BMI of the pregnant woman (Vlemminx et al., 2018).
Failure to overcome these challenges had led to a reduced ability
of TOCO to register uterine contractions, with a sensitivity as low
as 46–74% relative to IUPC (Nguyen et al., 2016)– (Hayes-Gill
et al., 2012).

Electrohysterography (EHG), a promising alternative for
monitoring UA, has been recently evaluated for its increased
sensitivity to uterine contractions (86–95% compared with the
standard (Jacod et al., 2010; Hayes-Gill et al., 2012; Euliano et al.,
2013; Hadar et al., 2015; Nguyen et al., 2016; Vlemminx et al.,
2017)), and for its improved performance in high BMI patients
compared to TOCO (Vlemminx et al., 2018; Euliano et al., 2013).
EHG utilizes multiple electrodes to record the electrical activity of
the uterine muscle, which is assumed to be correlated with uterine
contractions (Steer and Hertsch, 1950). However, EHG was
reported to detect a higher number of contractions, some of
which were considered false, relative to both IUPC and TOCO
(Vlemminx et al., 2017; Hadar et al., 2015; Cohen and Hayes-Gill,
2014). Moreover, several technical challenges, such as electrode
positioning (Alberola-Rubio et al., 2013); Marchon et al., 2018),
interelectrode distance (Rooijakkers et al., 2014), electrical
interference, and skin preparation (Tam and Webster, 1977),
need to be addressed before this method can be widely adopted.

Recently, there is a growing interest in telehealth, especially in
light of the COVID-19 pandemic making in-office visits difficult
(Aziz et al., 2020; Nakagawa et al., 2020). Remote monitoring of
pregnancy is considered beneficial to both the pregnant woman
and healthcare providers. Women who are physically limited
from coming to the clinic will gain improved accessibility to
obstetrical services; and better clinical outcomes are expected,
such as identifying and preventing preterm labors and other
conditions that require early diagnosis and treatments (DeNicola

et al., 2020; Lanssens et al., 2017; Xie et al., 2020). Additional
potential benefits of remote monitoring include cost reduction
through decreased antepartum hospitalization time and
improved neonatal outcomes (Buysee et al., 2008; Barbour
et al., 2017; Lanssens et al., 2018; Butler Tobah et al., 2019).
Specifically, the ability to perform remote non-stress tests (NSTs)
could be of great benefit to women and providers seeking
telehealth solutions for pregnancy care. Conducting remote
NSTs is a challenging task since it requires self-application of
a highly accurate, non-invasive, and reliable device.

To date, all common techniques for externally monitoring UA
are not able to be self-administered, either because they are
designed for use in a healthcare setting under the direct
supervision of medical personnel, or their core technology is
not easily self-administered. Some of these remote monitoring
systems capture uterine activity utilizing TOCO (Van Den
Heuvel et al., 2020;Van Den Heuvel et al., 2019) and others
use EHG (Euliano et al., 2013;Jacod et al., 2010;Devedeux et al.,
1993); however, EHG-based devices often require single-use
adhesive sensors and are currently approved only for term
pregnancies (FDA approved K140862 and K153262). A new
method for monitoring UA could effectively address these
challenges.

INVU™ (Nuvo Group Ltd.) is a physician-prescribed remote
pregnancy monitoring system comprising a sensor band that
houses a set of biopotential sensors, acoustic sensors, and motion
sensors. These sensors, placed on the maternal abdomen,
accurately and continuously acquire the maternal and fetal
cardiovascular signals. We have previously demonstrated the
ability of INVU to remotely obtain accurate fetal and maternal
heart rates (FHR and MHR) (Mhajna et al., 2020).

Here, we present a novel solution for monitoring UA. Figure 1
shows the basic mechanism of action behind the method. During
uterine contractions, the structure of the myometrium at both the
cellular level and the organ level changes significantly, altering the
internal body media. Consequently, the propagation of the

FIGURE 1 | Physiological mechanism of action upon which INVU’s
cardiac-based uterine monitoring (CaBUM) algorithm is built.
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electrical (Figure 1A) and acoustic signals (Figure 1B) generated
by the maternal and fetal hearts are altered, leading to detectable
changes in their mapping on the maternal abdominal surface
(Figure 1C). The mapping of these signals, both electrical
(electrocardiogram [ECG])and acoustic (phonocardiogram
[PCG]), is modulated by the uterine contractions (Figures
1D,E). The recorded raw signals from the abdominal surface
sensors include not only the maternal ECG and PCG signals but
they also include noise sources originating from other maternal
organs such as muscles (EMG), stomach (acoustic), lungs (both
acoustic and electrical noises), or noise originating from the fetus,
fetal ECG, and PCG signals. Moreover, both maternal and fetal
movement may introduce noise to the recorded signals. Other
external noise sources like powerline interference or external
sounds may also impact the recorded raw signals. All these noises
should be treated properly in the pre-processing stage. The study
presents an innovative algorithm for monitoring UA focusing on
the technical aspects of the algorithm while presenting case
studies and statistical results.

The cardiac-based uterine monitoring (CaBUM) algorithm
has been recently FDA cleared (K210025), allowing the INVU
system to fully perform remote NSTs. Moreover, the compromise
of reducing the quality of the aforementioned FHR and MHR
recordings due to the conflicting nature of optimal sensor
positions for UA and FMHR monitoring (Rooijakkers et al.,
2014) is avoided with the INVU by using a single sensor
system for both measurements. The clinical performance of
non-invasively detecting UA with INVU while conducting
remote NSTs has been recently described and validated
(Schwartz et al., 2022).

2 MATERIALS AND METHODS

2.1 Overall Framework of the Wearable
Monitoring Belt
The INVU wearable belt collects sensory data using two types of
sensors: biopotential sensors that acquire the body’s electrical
activities, and acoustic sensors that acquire sounds originating
from within the pregnant woman’s abdomen. The acoustic
sensors are highly sensitive microphones that transduce

sound waves into an analog electrical signal. The biopotential
sensors measure small potential or voltage changes on the skin
that arise from physiological signals, including the cardiac
electrical signals generated during each heartbeat. Details of
the components of the INVU sensor band are illustrated in
Figure 2. Analog data from each sensor are sent to an analog-to-
digital (A/D) conversion module, which samples the analog
signals and sends packets by Bluetooth to a mobile device, which
in turn transmits the signal wirelessly and securely via WiFi to
the cloud for processing. The cloud receives the data from the
application and performs the proprietary signal processing to
identify fetal and maternal cardiac signals and uterine
contractions. The processed data are then sent via a web-
based application to the mobile devices of the pregnant
woman and her healthcare provider. Figure 3 illustrates the
entire system data flow.

2.2 Hardware Circuit and Device Design
The electronic module is the part of the system that acquires the
physiological signals and transmits them to the mobile device.
The general block diagram of the INVU electronic module is
illustrated in Figure 4. The INVU wearable belt includes eight
biopotential sensors (seven sensing sensors and a reference
sensor) and four acoustic sensors. All sensors are connected to
a 32-bit microcontroller running embedded software for data
encapsulation. Physiological signals are acquired using multi-
channel, 24bit, Sigma-Delta ADC, with input reference noise of
1uV RMS (at0–70 Hz) and an RTI noise of less than
1.5uVpp. The theoretical LSB of the ADC is less than 100 nV
(calculated as the dynamic range divided by the number of bits).
However, due to the noise levels, the effective LSB is 1.2uV. This
value was experimentally obtained by grounding all input
terminals and placing the electronics inside a Faraday cage.
Higher LSB values are expected (up to 1.5uV) once the
sensors are connected to the electronic circuit. All analog
signals are sampled at 1 kSPS followed by applying a digital
low-pass antialiasing filter (120 Hz cut-off) to the sampled
signals. The signals are then downsampled by a rate of 1:4,
resulting in a sampling rate of 250 SPS. A motion module is
used in the system to detect maternal physical movement via an
onboard inertial measurement unit (IMU). The motion module
includes a three-axis accelerometer and a three-axis gyroscope
and a built-in ADC which samples all motion signals at 50 SPS.
All physiological and motion signals are encapsulated into data
packets and transmitted via Bluetooth to the mobile device. The
recorded motion signals are processed as described in Mhajna
et al. (2020) to extract the maternal activity level over time.
Additional hardware data are collected to provide battery status
and general hardware functionality status.

2.3 Uterine Activity Algorithm
The CaBUM algorithm performs signal processing to identify
maternal and fetal cardiac signals and uterine contractions by
fusing the information gathered independently from the ECG and
PCG sensors. Uterine contractions lead to conformational
changes in the tissue through which the maternal signals
travel, resulting in a signal modulation that correlates with the

FIGURE 2 | INVU sensor band™ inner-side view (the side facing the
abdominal skin) is shown, detailing the (1 and 5) rear-closing buckle; (2)
electrocardiogram sensors, eight in total; (3) acoustic sensors, four in total;
and (4) textile band (this figure was published in N. Schwartz et al., “Novel
Uterine Contraction Monitoring to Enable Remote, Self-administered Non-
stress Testing,” Am. J. Obstet. Gynecol., 2021)
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mechanical effect of the contraction and can be detected by the
algorithm (Mhajna, 2019).

The algorithm for extracting UA from the ECG and PCG
signals involved three main stages (Figure 5; a more detailed
version of this diagram can be found in Supplementary Figure

S2): 1. Data pre-processing, performed on both ECG and PCG
signals. This stage included filtering, noise detection, integrity
check, and normalization (Figure 5A); 2. Per-channel surrogate-
UA preparation from heartbeat peaks (QRS complexes for ECG
signal and sound-based peaks from the S1–S2 heart sounds of the

FIGURE 3 | System diagram. (A) Biopotential and acoustic signals are acquired by the sensors in the band and are transformed via Bluetooth to a nearby mobile
device that had already been paired with the INVU device. (B) Data are then transmitted wirelessly and securely via WiFi from the mobile device to the Cloud Application.
The signals are processed at the cloud server level, including signal processing to identify fetal and maternal cardiac signals and uterine contractions, and the results are
downloaded in real time to the mobile devices of the pregnant woman and her medical team via a web-based application (C).

FIGURE 4 | INVU electronic module block diagram. MCU–microcontroller unit; ADC–analog-to-digital converter.
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PCG signal) and processing of these data: cleaning, scaling,
correcting for baseline changes and abrupt changes,
smoothing, contraction identification, and signal enhancement
(Figure 5B); and 3. A channel weighting process and fusion of the
per-channel surrogate UA into one finalized UA trace
(Figure 5C). The first stage was performed on every 1-min
section of recorded data, immediately during data collection,
whereas the other two steps were accessed for the first time only
after 10 min of recording, which were held for calibration before
the UA trace was shown to the user for the first time. This allowed
for a robust initial contraction detection, considering the low
occurrence rate of uterine contractions. From that point onward,

all algorithmic steps were performed on every newly acquired 1-
min section of recorded data. These three steps are described in
detail below.

2.3.1 Data Pre-processing
The biopotential signals were filtered with a DC-blocking filter
which subtracted the signal average, followed by an IIR notch
filter to remove power-line noise, with a stopband of 0.5 Hz above
and below the power-line frequency. An additional high-pass-like
inverse, moving average filter was used to eliminate low-
frequency noises. The duration of the filter was set to
201 milliseconds. The filter was applied by calculating a
sliding average of the original signal, which extracted the low-
frequency components of the signal using a convolution with a
hamming window, and subtracting this average from the original
signal, leaving the higher frequency signals. An example of a raw
and filtered biopotential signal is shown in Figure 6A.

The PCG signals were passed through a low-pass IIR filter with
a 50 Hz cut-off frequency. Next, five distinct time series were
created from each acoustic signal by submitting each channel to
IIR high-pass filters with the following five cut-off frequencies: 10,
15, 20, 25, and 30 Hz. This resulted in five sets of acoustic signals
that differed in their spectral content, originating from the same
recording. The goal of this signal replication was to increase
uterine contraction detectability by broadening the search for
maternal PCG signals in data with more diverse characteristics,
ultimately improving the weighting process and ensuring the
selection of the best surrogate-UA activity hereafter. Figure 6B
shows an example of raw and filtered acoustic signals.

Next, an integrity check was performed, in which sensor
contact problems were detected by using a trained support
vector machine classifier that used as features 1) high root
mean square (RMS) of the raw signals, 2) low signal-to-noise

FIGURE 5 | Maternal uterine contraction algorithm (black) and fetal and
maternal heart rate algorithm (blue) components of the wireless, remote
prenatal monitor. Details of the heart rate algorithm have been presented
previously (Mhajna et al., 2020).

FIGURE 6 |Rawmaternal signals recorded by the sensors and their pre-
processed versions. (A) Example of a 6-s raw biopotential signal (blue line) and
the result after applying the filtration stage as described in the text (black line).
(B) Example of a 6-s raw acoustic signal (blue line), and after passing
both a 50 Hz cut-off frequency low-pass IIR filter, and an IIR high-pass filter
with the following five cut-off frequencies (shown from top to bottom in the
figure): 10, 15, 20, 25, and 30 Hz. For better visualization, these five filtered
traces are scaled to the dynamic range of the frequencies in each trace.
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ratio (SNR) of the pre-processed signals, and 3) low heartbeat
peak energy relative to background power in the pre-processed
signals. Importantly, all these processing stages were performed
on both biopotential and PCG signals.

Next, the heartbeat peaks from the current 1-min interval were
processed on both biopotential and acoustic signals. Initial peak
positions and values were received as inputs from prior algorithm
modules and went through a refinement process to update their
precise position and amplitudes, given the filters applied to the
channel data as described above (Mhajna et al., 2020). Heartbeat
peak data were separated to two series of time stamps and
amplitude values: In the “upwards series,” an iterative process
took a segment of data around each R-peak location detected
previously, re-mapped the QRS complex, and extracted the
accurate R-peak position and value as the extremum point in
the segment. In the “downwards series,” the signal was inverted in
order to detect R peaks in leads where the latter might be pointing
downwards. As both upward and downward peaks were marked,
Q, R, and S waves were detected for each QRS complex in the
biopotential signals. Additionally, peaks in the acoustic channels
were based on either the “lub” (S1) or the “dub” (S2) sounds of the
heart (Gupta et al., 2007; Deng and Bentley, 2012; Gomes et al.,
2013). We will therefore use the non-specific modal term
“heartbeat peaks.” Examples of heartbeat peak detection from
different biopotential and acoustic signals are shown in Figure 7.

A routine for fixing noise-corrupted regions operated on the
signals, along with the maternal motion analysis output from
previous algorithm modules (Mhajna et al., 2020). The result of
this process could either be the rejection of a corrupt segment, or
the replacement of noisy heartbeat peaks by values based on the
median of the channel’s heartbeat peaks. A supplementary noise
detection routine was performed at this stage. In this process, the
algorithm correlated each heartbeat complex (QRS complex or

S1–S2 [phonocardiogram sounds]) with an averaged heartbeat
template and marked sub-threshold heartbeat windows as noisy
ones. If no noisy instances were detected, the signal-to-noise ratio
(SNR) was inspected for each heartbeat segment for further
detection of noisy instances. The SNR was calculated for each
heartbeat as the root mean square (RMS) of the QRS complex
divided by the mean RMS between complexes. Channels
containing low SNR segments that lasted more than a
predefined threshold were removed entirely from further
processing. Otherwise, low SNR segments were rejected
specifically (samples were zeroed).

2.3.2 UA-Surrogate Preparation
At this stage, the algorithm extracted and processed the
envelope amplitude of the heartbeat series obtained above,
which would constitute a surrogate measure for UA. Since
the heartbeat peaks were discrete points in time, to process
the peak data as a continuous time series, a cubic spline
interpolation was performed on each channel’s upward peak
and downward peak values to produce a continuous time series
of peak amplitude modulation with a constant sampling rate of
four samples per second. Then, for each channel, an initial
surrogate-UA trace was produced by a simple addition of the
interpolated time series (Figure 8). This heartbeat peak
modulation signal was then smoothed using a moving RMS
filter with a duration of 101 samples that was implemented as a
sliding window filter that calculated the RMS of the samples
inside the window.

The signals were then enhanced to further improve the clarity
of the UA. First, the signal was adaptively shifted above 0 to
include only positive values using a centered-moving minimum
window that computed local minima along the signal and
removed them point-wise. Channel data were then raised to
the power of 2 to enhance local contraction activity. This non-
linear transformation guaranteed a stretch of the transient
contractions, which had a near-Gaussian shape, while keeping
baseline activity between contractions low, without affecting the
contraction time and duration.

Before creating a final UA trace by weighting and fusing the
channel data, a preliminary contraction identification was
performed in each of the channels by the automatic
contraction identifier, and properties were extracted from
these contractions for other uses. For each contraction, three
confidence measures were calculated: 1. Relative energy of the
contraction (area under curve). 2. Peak to range, calculated as the
average of the upper third of a contraction divided by the value
range of a contraction. 3. Contraction value range relative to the
range of the non-contractile signal. These three measures of
confidence were compared against pre-defined thresholds and
were used to eliminate outlier contractions. Moreover, two scores
were extracted for each contraction: 1. The difference between the
UA before and after a contraction, divided by contraction peak
amplitude; and 2. Normalized prominence, calculated as the
difference between contraction peak amplitude and the mean
UA before and after contraction, divided by the peak amplitude.
These scores were used for setting up the initial weights in the
next algorithmic stage.

FIGURE 7 | Heartbeat detection. Upward (blue dots) and downward
(gray diamonds) pointing maternal heartbeat peaks, as detected by the
algorithm, of a 19-year-old pregnant woman, at 38 weeks, with BMI =
36.7 kg/m2. Panes A and B show examples of acoustic data, and panes
C and D show examples of biopotential data. Data were extracted after the
pre-processing stage of the algorithm was completed.
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2.3.3 Channel Weighting and Fusion
The continuous envelope of the heartbeat amplitude obtained for
each channel was an indirect surrogate measure for UA activity.
To obtain a single final high-quality UA result, these traces were
enhanced and averaged according to a set of weights based on
channel quality criteria. A multi-start-point gradient descent
(GD) scheme was utilized to obtain the optimal channel
weights. Each start point corresponded to an initial set of
weights. In each set, a subgroup of channels was selected to be
weighted, while all the other channel weights were zeroed. The
subsets that were selected as starting points were as follows: 1. The
biopotential subset that consisted of biophysical channels only; 2.
The acoustic subset that consisted of acoustic channels only; 3.
The combined subset that consisted of all biopotential and
acoustic channels; and 4. The contractions-based subset that
used the previously detected contractions for each channel to
cluster the channels into three groups using a K-Means clustering
algorithm. The input features used were kurtosis, energy,
skewness, rise and fall times, and duration of the contractions.
The best cluster, taken as the one with the largest number of
maximal values across features, was selected as the contractions-
based subset.

For each of the checked sets of weights, the process of weight
construction started with two series of initial weights:

(1) Channel voting and contraction quality. Here, the working
channels (with weights that are not zero) voted, per
sample, on other channels; the possible voting options
for each sample were whether a contraction exists for this
sample or not. Then, for each channel, all votes were
counted and divided by the total number of voting
channels. On top of that, the average reliability of
contractions for each channel was calculated. The
reliability of a contraction is defined as the relative
contraction power (area under curve) compared to the

overall power in the signal for a specific channel. The first
initial weight was then defined as the average of these two
measures. Later on, for processing frames beyond the first
10 min of recording, damping was applied to mitigate
abrupt weight changes between processing frames, using:

w1
0 � 0.6pwprevious + 0.4pwcurrent.

(2) All equal, where all channels were given the same initial
weight that equals:

w2
0 � 1

/N ,

Where N was the number of included channels.
These two weight vectors were then independently optimized

by a GD optimization function which adjusted the weights by
iteratively minimizing a cost function. The weights vector, w, is
updated using the following equation:

wn+1 �
∣∣∣∣wn − γn · J(wn)

∣∣∣∣.
Here, γn denoted the step size in the GD optimization scheme.
The step size was decreased following a sigmoidal function that
was optimized to increase the speed and accuracy of the GD
scheme; J(wn) was the Jacobian matrix at the nth step. When
updating the weights, the absolute value was taken to ensure that
the weights did not become negative.

The cost function that was optimized is defined as:

C(wn) � 1 + 1
2
(Econt

n

Etot
n

+ Acont
n

Rn
) .

At the nth step, a temporary UA signal was calculated using the
current wn, by multiplying this weights vector with the signal’s
matrix (weighted average). The overall energy of this signal was
denoted as Etot

n . After performing contraction detection on this
signal, the overall energy of the contractions Econt

n , the average

FIGURE 8 | Example of an initial maternal uterine activity trace (MUA–black line) that is produced by a simple addition of the interpolated upward-pointing peaks’
time series (orange points after interpolation) and the absolute values of the interpolated downward-pointing peaks’ time series (red points after interpolation).
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amplitude of these contractions Acont
n , and the average range of

these contractions Rn were then calculated.
After optimization, the two weight vectors competed against

each other, and the set of weights selected to “represent” the
channel subset then competed with the weights of the other
channel subsets toward a selection of the final weighting vector.
Several numerical measures were calculated in the selection
process. These measures included: 1) SNR of the resulting UA
trace, 2) the values of the cost function for the weight vector, 3)
the contraction confidence measures, and 4) a difference index
defined as Difference Index � 1 −max{0, ρ(Sprev , Scurrent)}. ρ
was the Spearman correlation coefficient between the
previously extracted UA signal from previous processing
frames, if available, and the current UA signal.

After selection of the final weighting vector for each set, two
further steps were performed to improve the selection process
before the algorithm selected the best set. The first step consisted
of enhancing data in channels with marked contractions. For each
channel, a measure of similarity with the weighted averaged signal

was computed. For this, three metrics were examined: 1. Any
correlation coefficient between the weighted average signal and
the individual channels that exceeded a threshold; 2. The first
parameter of the first-degree polynomial fit between the channel
data and the weighted average; and 3. The estimate error (delta) of
the fit. These three metrics were examined against predefined
fixed thresholds, and the weights associated with any supra-
threshold channels were retained. The rest of the weights were
zeroed. Remaining weights were then scaled to sum up to 1. Then,
an additional iteration of GD optimization was run on the
weights resulting from the previous steps. The second step
considered weights from previous processing frames if they
existed. The current processing frame was assigned a
contribution weight (CW) from 0 to 1, and the previous
weights were assigned the complementary contribution weight
(1 − CW). As more previous segments existed, the current
segment would be assigned a lower CW (i.e., each additional
recording segment added a 1/segment-number bit of
information). Then, weights were adjusted to balance between

FIGURE 9 | Per-channel surrogate MUA traces and weights for 28 channels, and final MUA activity from a representative subject. The first eight channels
(surrounded by a blue frame) are biopotential channels, and the rest (surrounded by an orange frame) are acoustic channels under the different pre-processing
parameters described in this study. Note that each 1-min data segment composing these data has their ownweight distribution. The weights represented here (red bars)
are taken from the last recording segment. Channels with no bars were given the weight of 0.
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current and previous frames according to this weighing method.
The final channel set was selected using the same metrics used for
the selection of weights within each subset and performing a
pairwise comparison of each successive sets. An example for
constructing the final UA segment from the chosen weights of the
chosen channels set is shown in Figure 9. A demonstration of the
evolution of the weights of two representative channels can be
seen in Supplementary Figure S3.

Finally, for processing frames beyond the first 10 min, the
algorithm performed a stitching process in which a new UA
segment was appended to the previous UA segment. An adaptive
baseline correction technique operated on the entire signal to
compute the optimal baseline correction factor but was applied to
the new segment only. As the last step, the current UA trace was
shifted to the correct point where it was appended to the end of
the previous part of the trace.

2.4 Experimental Verification
2.4.1 Recording Protocol
The measurements used in this work were taken from two
separate prospective, comparative, open-label, multi-center
studies (Mhajna et al., 2020) (Schwartz et al., 2022). The
studies were conducted in accordance with the principles set
forth in the Declaration of Helsinki and in compliance with
ICH-GCP standards. For both studies, all patients provided
written informed consent to participate.

1. Study 1 (termed “Intrapartum study”) assessed the agreement
between INVU and IUPC (two-way setup) plus TOCO, if
applicable (three-way setup) (NCT03889405). Females
between the ages of 18 and 50 years were eligible to
participate in this study after they met all inclusion criteria:
a singleton pregnancy with gestational age ≥32 weeks, being in
the first stage of labor and having an IUPC in place. The local
Institutional Review Board at each study site approved the
protocol (University of Arkansas, protocol 229056, approved
3/25/2019; University of Pennsylvania, protocol 832522,
approved 3/6/2019). In the two-way sessions of the
intrapartum study, IUPC and INVU were recorded
simultaneously. In sessions where TOCO was also present,
the CTG transducer was placed after the INVU belt was
positioned on the abdomen, and uterine activity was
recorded simultaneously from all three devices. UA was
measured continuously for a duration of 30–60 min.

2. Study 2 (termed “Antepartum study”) compared simultaneous
recordings of INVU andTOCO in pregnant women aged
18–50 years, with singleton pregnancies and a gestational
ageof ≥32 weeks (NCT03504189). The local Institutional
Review Board at each study site approved the protocol
(Hadassah-Hebrew University Medical Center: EC # HMO-
0116-17, MoH# 20174697; approved 1/17/2018; Heidelberg
University: CIV-17-05-019406; approved 3/26/2018;
University of Pennsylvania IRB: PROTOCOL#: 828202;
approved 10/26/2017; EVMS: Chesapeake IRB
Pro00022598; approved 11/10/2017). In this study, the
authorized study personnel applied both INVU and TOCO
transducers, and a 30-min session was initiated recording

from both systems simultaneously. An example of the
outputs of INVU are shown in Figure 10 which depicts a
recording of the FHR and MHR, together with a UA trace.

2.4.2 Evaluating Results
For the antepartum study, TOCO traces and contractions
were used as the reference dataset, while for the
intrapartum study, IUPC traces and contractions served as
a reference.

An automatic contraction identification algorithm (described
in Supplementary Section A) was used for detecting contractions
on the recorded INVU and TOCO traces. The detection process
was run in the same manner for all three device types. To
compare the contractions detected in the intrapartum study,
each contraction identified from the INVU (or TOCO) trace
was compared andmatched to a single corresponding contraction
in the IUPC trace. Additionally, it was confirmed that each
contraction in the IUPC trace was matched to a single
contraction in the other methods under investigation. To
define a contraction as a match (i.e., true positive), the
temporal overlap of the two contractions under investigation
needed to be either at least 30 s or 50% of the total contraction
duration, whichever was shorter. In case multiple contractions in
the method under investigation matched a single contraction in
the IUPC trace, the contraction with the maximal temporal
overlap was taken as the matched contraction. In the
antepartum study, TOCO was defined as the reference device,
and each contraction identified from the INVU trace was
compared and matched to a single corresponding contraction
in the TOCO trace, in the same way as above. As the goal of this
analysis was to demonstrate the performance of the CaBUM
algorithm in evaluating UA, only sessions where the automatic
detector identified at least one significant contraction
(amplitude ≥15 mmHg above the baseline) on the TOCO trace
were included in the analysis.

As measures of sensitivity, we determined the positive percent
agreement (PPA) for both external devices (INVU and TOCO)
relative to the comparator(s). The PPA indicated the percentage
of true contractions detected by the external device, from the total
number of contractions detected by the reference method. Since
each patient could have a different number of contractions, the
PPA was calculated for each patient separately, and then a
weighted average was performed, with weights calculated as
the number of contractions in the corresponding IUPC trace
divided by the total number of IUPC contractions for all relevant
patients. The standard deviation (SD) was calculated in a similar
manner. To assess the false-positive rate, we calculated the
percentage of falsely identified contractions by the external
device (false discovery rate [FDR]) from the total number of
contractions detected by this device. Differences in the
sensitivities of INVU and TOCO among all patients were
evaluated using the non-parametric Mann–Whitney U test. A
two-tailed Pearson correlation analysis was performed to test the
correspondence between the waveforms of the INVU and TOCO
traces to the IUPC traces. The correlation was calculated
separately for each waveform trace, and the result coefficients
were then averaged.
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3 RESULTS

To objectively evaluate the diagnostic value of INVU, we
evaluated its performance in comparison to the standard-of-
care TOCO and the gold-standard IUPC. Since IUPC can only
be used when the membranes are ruptured, this study required an
intrapartum cohort. Additionally, as INVU is indicated for use on
women who are ≥32 gestational weeks, it was also tested in an
antepartum population.

3.1 Intrapartum Dataset
3.1.1 Dataset
Demographic characteristics of the subjects who participated in
the intrapartum study are listed in Supplementary Table S1.
Overall, for the total of 41 subjects, the average (±SD) gestational
age was 38.8 ± 1.5 weeks, the average maternal age was 26.7 ±
5.2 years, and the average pre-pregnancy BMI was 29.6 ± 7.7 kg/
m2. The two-way subset included a total of 31 subjects, and the
three-way subset included a total of 10 subjects. The demographic
characteristics of the patients were similar across the two setups.
Figure 11A shows the results of a 30-min session with one
participant. The automatic contraction identification algorithm
was used to detect contractions on all three methods. The
contractions detected on the external methods (INVU and
TOCO) were then compared with the contractions detected on
the IUPC trace. Figure 11B shows traces from another subject in
which INVU closely followed IUPC, while TOCOmissed most of
the contractions.

3.1.2 Experiment and Results
A total of 1,412 recording minutes of uterine activity data were
collected: 1,046 min in the two-way, and 366 min in the three-way
setups. A total of 557 contractions were detected on the IUPC
traces, with 500 of them detected on INVU traces. Thus, the
overall PPA was 89.8 ± 14.5% (mean ± SD). Moreover, 47 surplus
contractions were identified on INVU traces and were not

detected on IUPC, yielding an FDR of 8.6 ± 12.1%. Analyzing
the three-way sessions revealed a significantly higher percentage
of true contractions detected on the INVU traces: of the
135 contractions detected on IUPC, 126 were detected on
INVU traces yielding a PPA of 93.3 ± 12.6%. This result is
significantly greater than for TOCO, where only 52 contractions
were detected of the 135 detected on the IUPC traces, resulting in
PPA of 38.5 ± 45.5% (p-value = 0.0054). For the FDR in the three-
way setup, of the total 138 contractions detected on INVU,
12 were not detected on IUPC resulting in an FDR of 9.1 ±
11.8%, while for TOCO, of the 53 total detected contractions, only
one contraction was not detected on IUPC, resulting in FDR of
1.9% (Table 1).

Finally, to quantify the similarity of the waveforms in the
three-way setup, the correlation of INVU and TOCO traces with
the corresponding IUPC traces was calculated and found to be
0.76 (95% CI 0.65–0.87) for INVU and 0.35 (95% CI 0.13–0.57)
for TOCO, a significantly higher value for INVU compared to
TOCO (-value <0.005).

As a secondary analysis, we assessed the influence of obesity on
the performance of INVU and TOCO. The performance of
TOCO significantly decreased in the case of higher BMI.
INVU on the other hand had a considerably better
performance (higher sensitivity and lower FDR) for patients
with higher BMI (Table 2).

3.2 Antepartum Dataset
3.2.1 Dataset
A total of 147 recording sessions from 147 different subjects
were collected. Of these sessions, 10.9% (16 of 147) were
detected to have at least one significant contraction on the
TOCO trace by the automatic contraction identification
algorithm and were included in the analysis. Demographic
characteristics of these 16 subjects in the antepartum study
are listed in Supplementary Table S2. The average gestational
age of the subjects was 37.2 ± 2.2 weeks, comparable to that of

FIGURE 10 | Example of the output of the INVU system. The fetal and maternal heart rates (in beats per minute [BPM]) are shown in the upper plot (green line is the
MHR and blue line is the FHR), and the maternal uterine activity (MUA) is shown in the lower plot. The MUA trace is unitless and displays the % change in activity from
baseline.
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FIGURE 11 | Uterine contraction monitoring sessions showing recordings from IUPC, TOCO, and INVU. (A) Both INVU and TOCO recordings followed the IUPC
recording closely. (B) In some monitoring sessions, the TOCO tracing, which is more sensitive to positioning, motion, and placement, failed to show some of the IUPC
contractions that were correctly identified by the INVU (this figure was published in N. Schwartz et al., “Novel Uterine Contraction Monitoring to Enable Remote, Self-
administered Non-stress Testing,” Am. J. Obstet. Gynecol., 2021).
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the intrapartum data. The average age was 33.18 ± 7.06 years,
and the average pre-pregnancy BMI was 23.3 ± 3.5 kg/m2, both
slightly different for the antepartum compared with that of the
intrapartum subjects, however, still comparable.

3.2.2 Experiment and Results
Antepartum UA data were collected for a total of 456 min.
Examples of such UA are shown in Figure 12. In this figure,
the contractions detected by INVU and TOCO are displayed
along with the mother’s reports of noticeable contractions. In
Figure 12A, the INVU trace closely followed the TOCO trace and
performed, in terms of sensitivity, at least as good as TOCO. In
other cases, the INVU trace captured all contractions present on
both the TOCO trace and the mother’s perception, and additional
contractions that were neither identifiable by TOCO nor
perceivable by the mother (Figure 12B). An interesting
phenomenon in this example is the negative deflection
appearing on TOCO trace, concurrently with the last
contraction in INVU’s trace.

Since IUPC was not available in the antepartum stage, there
was no comparable gold standard for evaluating which of the two
external methods had performed better; hence, TOCO was
defined as the reference device, and the sensitivity of INVU
for detecting TOCO-defined contractions was examined. A
direct comparison of INVU to TOCO in the antepartum study
showed that of the 95 contractions detected by TOCO, 89 of them
were also detected on the compatible INVU traces, resulting in a
PPA of 94 ± 8.7% (95% CI 89.7%–98.3%). Additionally, of the
total 129 contractions detected on INVU, 40 were not detected on
TOCO, resulting in an FDR of 31.1 ± 25.8% (95% CI
17.5%–42.7%).

4 DISCUSSION

In this study, we have introduced a novel approach for
monitoring UA. The proposed CaBUM algorithm is a
promising new way of tracking uterine contractions. Our
study was based on recordings of UA taken directly from
human subjects from both intrapartum and antepartum stages
and was intended to compare INVU’s detection of UA with that
of the gold-standard IUPC and the prevailing standard of
care, TOCO.

A central finding of this study is that the performance of the
CaBUM algorithm for monitoring UA outperforms the
performance of TOCO. INVU correctly identified
500 contractions of the 557 reference (IUPC) contractions
detected by an automatic marking algorithm, yielding a
sensitivity of 89.8%, while the sensitivity of TOCO was 38.5%.
Results from blinded, human assessors reviewing the same
dataset (Mhajna et al., 2021) comparing INVU to IUPC are
also promising, showing a similar sensitivity of 87.7%. A high
sensitivity of 94% was also observed for INVU in the antepartum
study, with TOCO as reference. Importantly, the high “false”
detection rate of INVU in the antepartum study (31.1%) is likely
largely explained by the low sensitivity demonstrated for TOCO
in the intrapartum study. As INVU was shown to have a
significantly higher sensitivity than TOCO, it is expected to
capture more IUPC-detected contractions compared to TOCO,
resulting in a high FDR when directly comparing INVU to
TOCO. Indeed, TOCO has been shown to be less accurate
when compared with IUPC (Hayes-Gill et al., 2012; Euliano
et al., 2013; Hadar et al., 2015; Nguyen et al., 2016; Vlemminx
et al., 2017; Cohen and Hayes-Gill, 2014), since its sensitivity is

TABLE 1 | PPA, FDR (both values are mean ± SD), and correlation to IUPC for TOCO and INVU devices in the intrapartum study.

Group INVU TOCO

PPA (%) FDR (%) R (correlation
to IUPC)

PPA (%) FDR (%) R (correlation
to IUPC)

All sessions 89.8 ± 14.5 8.6 ± 12.1 0.79 (95% CI 0.73-0.84) NA NA 0.35 (95% CI 0.13-0.57)
Two-way only (n = 31) 88.6 ± 15.2 8.4 ± 12.4 NA NA
Three-way only (n = 10) 93.3 ± 12.6 9.1 ± 11.8 38.5 ± 45.5 1.9 ± NA

TABLE 2 | PPA and FDR (mean ± SD) by BMI prior to pregnancy in the intrapartum study, for total INVU data, and the mean for both devices (INVU and TOCO) in the three-
way study. Total INVU data.

BMI group PPA (%) mean ± SD FDR (%) mean ± SD

Normal (BMI<25, n = 14) 85.9 ± 17.9 11.7 ± 15.0
Overweight (25 ≤ BMI<30, n = 9) 95.7 ± 05.8 08.9 ± 12.6
Obese (BMI≥30, n = 18) 89.8 ± 14.2 06.1 ± 09.3

BMI group INVU TOCO

PPA (%) FDR (%) PPA (%) FDR (%)

Normal (BMI<25, n = 4) 90.4 7.8 53.8 0.0
Overweight (25 ≤ BMI<30, n = 2) 96.0 17.2 20.0 0.0
Obese (BMI≥30, n = 4) 94.8 5.2 32.8 5.0
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hampered by obesity and maternal movements (Bakker et al.,
2007; Vlemminx et al., 2018; Euliano et al., 2013; Euliano et al.,
2007; Ray et al., 2008). The consistency in INVU’s sensitivity with
different references in the two studies further strengthens the
assumption that INVU performs similarly in both the
intrapartum and antepartum settings. In this context, it should
be noted that the selection of TOCO traces that demonstrated
contractions in the antepartum studymay impact the FDR results
reported here. However, the lack of an accurate reference such as
IUPC in the antepartum stage does not allow for the estimation of

the true FDR of the INVU device, leaving the TOCO sessions with
clear contractions as an efficient compromise.

The INVU system uses an innovative technology to extract
ongoing UA, based on the sensitivity of the amplitude
modulation of the cardiac signals to UA, such that a trace of
contractions can be obtained by processing the maternal ECG
and PCG signals. We hypothesize that when a contraction occurs,
three distinct mechanisms modulate the ECG and PCG signals
that are propagating through the body: 1) displacement of the
heart; 2) changes in skin impedance, both electrical and acoustic;

FIGURE 12 | UA monitoring sessions showing recordings from TOCO and INVU during antepartum stage. Contractions detected by INVU and TOCO displayed
along with the mother’s reports of contractions she felt. (A) INVU trace closely follows TOCO trace. The blue vertical lines represent contractions felt by the mother. (B)
INVU trace shows all contractions presented on both TOCO trace and the mother’s perceptions and additional contractions that are neither identifiable by TOCO nor
perceived by the mother (false-positives). The red circle denotes a negative deflection at the TOCO trace that appeared concurrently with a contraction identified by
INVU.
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and 3) changes in the body media. Supportive evidence for this
hypothesis can be found in the reported behavior of specific
resistance parameters of the uterus, such as the medium stiffness,
its permittivity, and permeability. These parameters are known to
affect biopotential and acoustic signals and were shown to change
in response to uterine contractions (Moslem et al., 2011;
Alamedine et al., 2013; Gennisson et al., 2015; Liu et al.,
2017), thus affirming the effect of contractions on the ECG
and PCG signals.

The idea of measuring modulations in ECG to get a robust
physiological signal was already successfully implemented for
obtaining respiratory signals (Ruangsuwana et al., 2010; Al-
Khalidi et al., 2011; Chan et al., 2013; Helfenbein et al., 2014).
The respiration cycle consists of many simultaneous processes
affecting the ECG: the heart rotates in multiple dimensions, the
heart-to-electrode distances change during thoracic expansion,
and changes in thoracic impedance occur as air fills spaces in the
lungs. All these factors create a modulating effect on the ECG,
from which the respiratory signal can be extracted. In addition, it
is widely reported that the respiratory modulations of signals such
as ECG and photoplethysmography (PPG) are manifested
through several modulation mechanisms such as amplitude
modulation (AM), baseline wandering (BW), and frequency
modulation (FM), whose strengths and weights depend on the
breathing patterns and measurement sites (Charlton et al., 2018;
Liu et al., 2020). As in the CaBUM algorithm, here too, the focus
on modulations of the ECG signal sets the ground for a highly
accurate signal and strengthens robustness against noise.
However, there are two main differences between the UA- and
respiratory-related modulations of the ECG and PCG signals:
speed and periodicity. Respiration is a fast signal while UA is a
very slow signal. On average, for every three heartbeats, the
respiration signal finishes a cycle, while a contraction signal
could span over 120 heartbeats. Also, the respiration signal is
semi-periodic while the UA and contractions signal is non-
periodic or event driven, thus the main modulation of the UA
signal is mainly AM. In some pregnant women, uterine activity
may also be associated with periodic changes in MHR (FM
mechanism) (Odendaal et al., 2018) (Ibrahim et al., 2015),
however, the AM mechanism is the one most commonly
observed.

Modulations in the abdominally recorded ECG signal might
originate from sources other than uterine contractions. For
example, change in the mother’s heart activity due to exercise
(Plews et al., 2013; Shaffer and Ginsberg, 2017), stress (Kim et al.,
2018), or other normal and abnormal physiological conditions
(Baselli et al., 1987; Taralov et al., 2016; Agliari et al., 2020).
Analyzing and verifying the exact source of these modulations is
critical to determining the false-positive rate of the proposed
method. An effective way to overcome this issue is to trace the
contractions in several physical modalities. The INVU sensor
band records signals from two different types of sensors:
biopotential and acoustic sensors. In addition to serving as a
mechanism for increasing detectability, this dual modality also
serves as an internal validation mechanism, verifying that the
R-wave modulations originate from uterine contractions and not
from changes in the mother’s heart activity as mentioned above.

One of the major sources of false positives in external monitoring
devices is maternal movements. To overcome it, the CaBUM
algorithm uses the maternal motion analysis output from
previous algorithm modules (Mhajna et al., 2020) as a filter
for contractions-like motion artifacts.

In the last few decades, several techniques have been adopted
for uterine activity monitoring during pregnancy and labor. The
IUPC is currently the gold standard for measuring changes in the
amniotic fluid pressure induced by uterine contractions.
Unfortunately, this invasive method requires ruptured
membranes and can only be performed by an experienced
obstetrician. The most widespread alternative is TOCO, which
non-invasively measures changes in the abdominal shape
induced by uterine contractions. However, the accuracy of
TOCO is low and highly dependent on proper positioning on
the maternal abdomen, and its sensitivity is adversely influenced
by maternal obesity (Hayes-Gill et al., 2012; Euliano et al., 2013;
Hadar et al., 2015; Nguyen et al., 2016; Vlemminx et al., 2017).
EHG uses electrodes placed on the maternal abdomen to evaluate
the myometrium activity by measurement of biopotentials
underlying uterine contractions. EHG has recently become
available as a non-invasive alternative, but its signal quality
depends on good skin preparation and correct position of the
electrodes on the abdomen of the pregnant woman (Alberola-
Rubio et al., 2013; Marchon et al., 2018; Rooijakkers et al., 2014;
Tam and Webster, 1977).

The abovementioned monitoring methods, together with the
remote non-invasive INVUmonitor, utilize different levels of the
physiological contractile process for measuring the UA. Figure 13
sheds light on the stages involved in the physiological contractile
mechanism and associates each stage with the device that extracts
UA according to the information generated from that stage: The
cascade of events that leads to a contraction originates with
electrical activity in the myometrium (Figure 13A). This
electrical activity may be captured by EHG-based methods
which capture the overall significant electrical activity of the
myometrium. Depending on the connectivity level of the
myometrial myocytes, this electrical activity may consist of
local asynchronous foci, or alternatively, the myocytes may
behave as coupled oscillators and generate a more coordinated
electrical activity (Figure 13B). In some cases, the cell activity of
the smooth muscle remains focal and dissipates without creating
structural changes to the myometrium, hence not identifiable by
INVU. As the pregnancy progresses, several events such as
increase in gap junctional surface area and their permeability
combine to dramatically increase the connectivity of myometrial
myocytes, making them more likely to concurrently depolarize
and remain depolarized for longer (Hertelendy and Zakar, 2004).
The stronger the connectivity between the myometrial myocytes,
the larger the likelihood that they will behave as coupled
oscillators and generate coordinated contractions leading to a
structural change in the myometrium that may be identifiable by
INVU. One of several scenarios may follow the myometrial
electrical activity-induced mechanical changes: In some cases,
the myometrial activation may lead to the generation of an
isobaric contraction (Dobrin, 1973) that does not increase
intrauterine pressure (Banney et al., 2015; Young and
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Barendse, 2014) (Figure 13C). However, in this case, a structural
change in the myometrium does take place and as a result, alters
the propagation of electrical and acoustic signals through the
body tissue (Moslem et al., 2011; Alamedine et al., 2013;
Gennisson et al., 2015; Liu et al., 2017). This change in
propagation is ultimately reflected as a modulation of the ECG
and PCG signals captured by INVU’s abdominal sensors.
Nonetheless, as these structural changes in the uterus do not
induce pressure changes, this activity would be reported as a false
positive because it would not be detected by IUPC. When the
contraction of the myometrium induces pressure variation of the
amniotic fluid, this effect may be measured by IUPC device
(Figure 13D). Finally, when the change in the intrauterine
pressure is strong enough to induce changes to the maternal
abdominal wall, these changes may be detected by an external
strain-gauge transducer positioned on the maternal abdomen
(Figure 13E). Understanding the mechanisms of action of the
different UA monitoring devices, therefore, enriches our
understanding of the physiological steps in the process of

contraction generation, and may improve the computational
models (Xu et al., 2022).

In the two-way setup of the intrapartum study, INVU
exhibited an FDR of 8.4% (Table 1). As described above, it is
possible that some of these surplus contractions detected by
INVU may be derived from myometrial activation leading to
the generation of an isobaric contraction that does not alter the
intrauterine pressure, but still results in a structural change that
can alter the propagation of electrical and acoustic signals
through the tissue. Such a contraction can still be detected by
INVU’s abdominal sensors; however, as these mechanical
changes do not induce pressure changes, this activity would
not be detected by IUPC or by TOCO and could therefore be
reported as a false positive (Schwartz et al., 2022). A similar
phenomenon is also relevant to explain the reported FDR in
EHG-based devices (up to 21.4% (Vlemminx et al., 2017; Hadar
et al., 2015; Cohen and Hayes-Gill, 2014)), which are triggered by
the myometrial electrical signal, even if no significant muscle
contraction ensues (Jacod et al., 2010).

FIGURE 13 | Relationship between physiological processes involved in uterine contractions and measurement methods used to identify contractions.
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Analyzing the intrapartum data also revealed a significant
decrease in the performance of TOCO in overweight and obese
subjects. It should be noted that due to the small sample size, clear
conclusions cannot be drawn here, yet a trend is noticeable. These
results replicated our previous finding (Schwartz et al., 2022),
showing a significant reduction in TOCO’s positive agreement for
obese group compared to normal weight group, whereas the
positive agreement of INVU did not vary across different BMI
groups.

EHG is a promising non-invasive technology which is
currently being investigated to improve external uterine
monitoring. This technique reveals a high sensitivity for
contraction detection during term labor, similar to the
sensitivity obtained by INVU. However, the CaBUM algorithm
presented here offers several advantages over the utilization of
EHG. First and foremost, INVU uses both biopotential and
acoustic sensors, contrary to the unimodal data extracted by
the EHG. The use of multi-modal data increases the accuracy and
reliability of the extracted UA signal, and was also shown to
improve FHR signal loss (Mhajna et al., 2020), especially in the
26th to 32nd weeks of gestation when the vernix caseosa masks
the electrical fetal signals (Verdurmen et al., 2016). Moreover,
INVU’s CaBUM algorithm is based on the ability to capture the
maternal ECG and PCG signals, a relatively easy task, making it
less prone to “false” contractions. The EHG, on the other hand,
assumes low interference in the frequency domain of the EHG
signal. This assumption is not always met, especially in a home
environment.

EHG struggles to overcome the interference of
electromyography (EMG) from other abdominal muscles,
especially during the second stage of labor when the pregnant
woman is actively pushing. It was reported previously that there is
a decrease in the diagnostic value of EHG from the first to the
second stage of labor (Vlemminx et al., 2017;Hayes-Gill et al.,
2012). The CaBUM algorithm on the other hand is less prone to
these interferences due to its ability to filter out motion-induced
signal artifacts.

Many of the devices that utilize the EHG signal for monitoring
UA also aim to capture the FHR from the fetal ECG signal using
the same set of electrodes. The literature suggests that this could
be a challenge (Rooijakkers et al., 2014) as there exists a tradeoff
between the optimal sensor position for UA and FHR
monitoring. Technically, to improve the SNR of the fetal ECG
recording, the sensors need to be placed as far apart as possible to
maximize the spatial filtering of electrical noises (Rooijakkers
et al., 2014). On the contrary, to capture the EHG signal with
sufficient quality, the electrical sensors should be positioned
closer together (Alberola-Rubio et al., 2013; Gao et al., 2017).
This conflict is mitigated in INVU by refraining from utilizing the
EHG signal and rather focusing on improving the capturability of
the fetal and maternal ECG signals, an essential element
specifically for NST recording, in the antepartum stage where
the FHR signal is less prominent.

There are a number of study limitations worth mentioning. A
limitation of the intrapartum study is that participants had an
IUPC in place for clinical reasons, associating themwith a specific
clinical group. The relieving presence of the IUPC might have

caused the medical staff to reduce their efforts to carefully find the
optimal location to position the TOCO transducer, therefore
producing sub-optimal TOCO traces. This is evident when
observing the decreased sensitivity of TOCO in our study
compared to the literature (Hayes-Gill et al., 2012; Euliano
et al., 2013; Hadar et al., 2015; Nguyen et al., 2016; Vlemminx
et al., 2017). It is also possible that the placement of (either or
both) TOCO and INVU devices was affected by the presence of
the other external device. Such restriction may have also
contributed to the low sensitivity of TOCO in this study.
Furthermore, the inclusion of many participants undergoing
labor induction with epidural analgesia is known to reduce
patients’ restlessness, may lower the risk for mechanical
artifacts, and could have improved both the sensitivity and the
FDR of INVU. In the antepartum study, the main limitation was
the inability to compare results to the IUPC gold standard.

The potential clinical applications of the proposed method for
monitoring UA in pregnancy and labor are extensive. As INVU’s
self-administered sensor band can operate remotely from the
clinic or hospital, this platform could address several current
limitations in pregnancy healthcare, such as remote monitoring
during the early stages of labor, allowing the pregnant woman to
remain at a supportive, relaxing, and homey environment while
being monitored by the healthcare provider should any issue
arise. Additionally, women with high-risk pregnancies, who
require frequent fetal surveillance in the final months of
pregnancy (Holness, 2018), could also reduce their travel and
time burden with the use of the remote INVU platform. A further
important implication relates to the useful and complementary
diagnostic information that might be provided by the INVU
device. On top of the physiological data extracted by INVU, a
collection of rich measurements and indices calculated by the
CaBUM algorithm is also available. Such features can be
combined using a machine learning framework to gain a
wireless remote classification of uterine behavior under
different maternal conditions, similar to the effective
predictions of maternal and fetal risks that are generated by
the EHG method (Garcia-Casado et al., 2018; Asmi et al., 2019).

5 CONCLUSION

Uterine activity monitoring is an essential diagnostic tool during
both antepartum and intrapartum periods. The current methods
for monitoring UA need constant bedside presence, which
increases the burden of work on healthcare providers. TOCO
is affected by low accuracy and high dependency on proper
positioning; IUPC is invasive and requires ruptured
membranes; EHG is a promising method, however, it presents
an interpretation challenge, given the interference of EMG from
other abdominal muscles and the sensitivity to the electrodes’
position.

There is a pressing need for telehealth solutions in pregnancy
monitoring, underscored by the current COVID-19 pandemic.
This study has introduced a new method for measuring UA,
based on uterine-induced bimodal modulations of the maternal
ECG and PCG signals. This novel method has been demonstrated
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to show high sensitivity for detecting uterine contractions when
compared with IUPC and exceeds that of the current standard-of-
care-TOCO, staging it as a possible alternative to the current
standard of care. Taken together with the existing remote FHR
monitoring capabilities of INVU, the remote availability of the
INVU non-invasive alternative for UA monitoring paves the way
to a much-needed telehealth solution for pregnancy monitoring
and has many promising possibilities in the field of diagnostic
biomarkers based on its various calculated features.
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