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Background: Colon cancer (CC) remains one of the most common malignancies with a
poor prognosis. Pyroptosis, referred to as cellular inflammatory necrosis, is thought to
influence tumor development. However, the potential effects of pyroptosis-related
regulators (PRRs) on the CC immune microenvironment remain unknown.

Methods: In this study, 27 PRRs reported in the previous study were used to cluster the
1,334 CC samples into three pyroptosis-related molecular patterns. Through subtype
pattern differential analysis and structure network mining using Weighted Gene Co-
expression Network Analysis (WGCNA), 854 signature genes associated with the
PRRs were discovered. Further LASSO-penalized Cox regression of these genes
established an eight-gene assessment model for predicting prognosis.

Results: The CC patients were subtyped based on three distinct pyroptosis-related
molecular patterns. These pyroptosis-related patterns were correlated with different
clinical outcomes and immune cell infiltration characteristics in the tumor
microenvironment. The pyroptosis-related eight-signature model was established and
used to assess the prognosis of CC patients with medium-to-high accuracy by employing
the risk scores, which was named “PRM-scores.”Greater inflammatory cell infiltration was
observed in tumors with low PRM-scores, indicating a potential benefit of immunotherapy
in these patients.

Conclusions: This study suggests that PRRs have a significant effect on the tumor
immune microenvironment and tumor development. Evaluating the pyroptosis-related
patterns and related models will promote our understanding of immune cell infiltration
characteristics in the tumor microenvironment and provide a theoretical basis for future
research targeting pyroptosis in cancer.
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INTRODUCTION

Colon cancer (CC) is one of the most common malignancies of
the digestive system, and it still has a high mortality (Sanoff et al.,
2007). Worryingly, the recurrence and mortality rates of CC are
in fact increasing (Bray et al., 2018). In spite of recent
developments in treatment, the 5-years survival rate has not
been significantly improved. Consequently, it is urgent to find
gene signatures or biomarkers to identify the inherent genetic and
epigenetic heterogeneity of CC and establish prognostic models
for guiding therapy.

Numerous studies have shown that cancer cells can undergo
cell death through pyroptosis, but the function of pyroptosis in
tumor development and the tumor immune microenvironment
are still controversial (Miao et al., 2011; Broz et al., 2020; Petley
et al., 2021). Pyroptosis refers to a distinct form of programmed
cell death, which is characterized by cells swelling with large
ballooning bubbles emerging from the plasma membrane and
releasing inflammatory cellular contents (Zhang et al., 2018;
Frank and Vince, 2019). Unlike apoptosis, pyroptosis
contributes to the activation of a variety of cytokines and
danger-associated signaling molecules, which is accompanied
with immune cell infiltration and inflammatory responses
(Frank and Vince, 2019). During the process of pyroptosis,
mature caspase-1 promotes the production of pro-
inflammatory cytokines of the classical pathway, such as IL-
1β7 and IL-18, which can recruit inflammatory cells and
influence the tumor microenvironment (TME) (Dupaul-
Chicoine et al., 2010; Kolb et al., 2014). Additionally, caspase-
3 can be activated by antitumor drugs and promote the cleavage
of gasdermin E (GSDME) into GSDME-N to switch the cell death
mode from apoptosis to pyroptosis (Kayagaki et al., 2015; Tang
et al., 2020). Pyroptosis can promote a tumor-suppressive
environment by recruiting inflammatory cells and causing
local inflammation, but it can also inhibit antitumor immunity
and promote tumor development in many cancer types
(Martinon et al., 2002; He et al., 2015; Van Gorp and
Lamkanfi, 2019). For instance, it was reported that pyroptosis
in a small fraction of cancer cells in the central hypoxic region of
the tumor induces chronic tumor necrosis, which in turn inhibits
antitumor immunity (Kayagaki et al., 2011). Accordingly, the role
of pyroptosis in the development of CC still requires
further study.

Recent studies have suggested that pyroptosis-related (PR)
regulators would play a significant role in regulating pyroptosis
(Knodler et al., 2014; Viganò et al., 2015; Yang et al., 2018).
Gasdermin D (GSDMD) has been proved to be a direct substrate
of inflammatory caspases and plays the role of the major executor
of pyroptosis in macrophages (Wang et al., 2020). Studies have
also proposed that GSDMDmay be positively correlated with the
migration and invasion of lung cancer (Zanoni et al., 2016).
However, downregulation of GSDMD expression was found to
promote S/G2 cell cycle transition, which indicated that GSDMD
may serve as a tumor suppressor in gastrointestinal cancers
(Zanoni et al., 2016). Furthermore, GSDMA/B/C was proved
to be the substrate of caspases or granzymes, and the
oligomerization of its N-terminal in the membrane was found

to increase pyroptosis (Lee et al., 2018). In most previous studies,
the function of these PR regulators was identified individually
through classical approaches. However, the composition of the
TME is complex, and many tumor regulators can interact in a
highly coordinated manner. Therefore, comprehensively
estimating the immune cell infiltration characteristics of the
TME with multiple PR regulators would increase our
understanding of tumor immunity and the antitumor
inflammatory response.

In the current study, we established a molecular subtype
classification pattern by integrating the genomic information
of 1,023 CC samples based on 27 PR regulators. The CC
samples were classified into three distinct PR patterns, which
were associated with the tumor immune microenvironment and
prognosis. Additionally, we developed a risk assessment tool
related to PR regulators and defined the PR risk assessment
model (PRM) scores using LASSO regression analysis and
machine learning, which could be used to assess the prognosis,
immune infiltration, and potential treatment targets of CC.

MATERIALS AND METHODS

Colon Cancer Dataset Source
The workflow chart is shown in the Supplementary Data
(Supplementary Figure S1). The public gene-expression data
for transcriptome profiling and the corresponding clinical
annotation were obtained from Gene Expression Omnibus
(GEO) and The Cancer Genome Atlas (TCGA) database on
May 1, 2021. There were four eligible CC cohorts of gene-
expression data (GSE39582, GSE33113, and TCGA–Colon
Adenocarcinoma [TCGA-COAD) (discovery data) and
GSE17538 (independent validation data)]. We downloaded the
raw microarray data form the Affymetrix Human Genome U133
Plus 2.0 Array of GEO database and the RNA sequencing data
(fragments per kilobase of transcript million mapped reads
(FPKM) value) of TCGA. We employed the “ComBat”
algorithm in “SVA” package to adjust the batch effects from
nonbiological technical biases among different CC RNA-seq
data. And all of the RNA-seq data were adjusted for
background adjustment and quantile normalization with robust
multiarray averaging method in “affy” and “simpleaffy” packages.
And theDNA sequencing of annotated somatic mutation of single-
nucleotide polymorphisms (SNPs) and copy number variation
(CNV) data for CC were also downloaded from TCGA. All CC
samples were coded according to the third Edition of International
Classification of Diseases for Oncology (ICD-O-3). And the
exclusion criteria included patients with incomplete survival
information and missing data on neoplasm histologic type.

Identification of Pyroptosis-Related
Regulators
From previous research, we identified a total of 27 PR genes
presented in the Supplementary Data (Supplementary Table S1).
All of PR genes were gathered from previous study and MSigDB
database (Latz et al., 2013; Shi et al., 2015; Orning et al., 2018;
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Karki and Kanneganti, 2019; Li et al., 2021). For example, the
previous study suggested that the caspase (CASP) family (CASP1,
CASP3, CASP4, CASP5, CASP6, CASP8, and CASP9) was related
to GSDMD, GSDMB, GSDMA, and GSDMC, which were
significant for cancer cell pyroptosis (Shi et al., 2015; Li et al.,
2021). And study showed that CASP3 and Granzyme B (GZMB)
could help to convert cell apoptosis into pyroptosis (Orning et al.,
2018). A protein–protein interaction (PPI) network for the
differentially expressed genes (DEGs) was constructed with
Search Tool for the Retrieval of Interacting Genes (STRING),
version 11.0 (https://string-db.org/).

Unsupervised Clustering for Colon Cancer
Molecular Subtypes
We built a novel PRmolecular subtype based on the level of 27 PR
genes identified from three CC cohorts. The unsupervised
clustering analysis clustering algorithm was performed to
estimate the patterns of pyroptosis regulation and classify the
CC samples for further analysis. The stability and patterns of
molecular clusters were adjusted by the consensus clustering
algorithm (Wong, 1979). The “ConsensuClusterPlus” package
was employed to cluster, and the process was performed
1,000 times (Wilkerson and Hayes, 2010).

Identification of Differentially Expressed
Genes Among Subtypes
To identify PR regulators genes, we need to estimate the
expression level of different genes for studying the molecular
feature among PR subtypes. We identified the DEGs with the
empirical Bayesian approach in “limma” package, and we set the
|log2-fold change| > 1 and false discovery rate (FDR) < 0.05 as
the significance criteria.

Gene Set Variation Analysis and Gene Set
Enrichment Analysis
To investigate the molecular feature among PR subtypes, we
established gene set variation analysis (GSVA) enrichment
analysis with “GSVA” R packages (Hänzelmann et al., 2013).
The gene set of “c2. cp.kegg.v6.2. symbols” and “c5. all.v6.2.
symbols.gmt” were gathered from the MSigDB database to be
used in GSVA. H: Hallmark gene sets; C2: curated gene sets
[including Kyoto Encyclopedia of Genes and Genomes (KEGG)]
were downloaded from the MSigDB database to be used in gene
set enrichment analysis (GSEA) with the software gsea 3.0. And
we set the adjusted p < 0.05, nominal (NOM) p < 0.05, and FDR q
< 0.05 as the statistically significance to identify the difference on
biological process.

Estimation of Infiltrating Immune Cells and
Immune Microenvironment Characteristics
The Estimation of STromal and Immune cells in MAlignant
Tumor tissues using Expression data (ESTIMATE) was used to
calculate the stromal score, immune-score, tumor-purity, and

ESTIMATE-score for CC (Song et al., 2017). The enrichment
levels of the 29 immune signatures were established based on the
genes set fromMSigDB database (Supplementary Table S1) with
the single-sample GSEA (ssGSEA) (Ritchie et al., 2015; Bu et al.,
2021). And the infection of 22 human immune cells in TME was
established with cell-type identification by estimating relative
subsets of RNA transcripts (CIBERSORT) web portal (https://
cibersortx.stanford.edu/) and 1,000 permutations (Chai et al.,
2019). The deconvolution algorithm output had a p-value <0.05
was set as successful and accurate deconvolution, which would be
normalized to make their direct interpretation as cell fractions for
comparison across different groups.

Weighted Gene Co-Expression Network
Analysis
The Weighted Gene Co-expression Network Analysis
(“WGCNA”) R package was employed to build the co-
expression network of DEGs (van Houwelingen et al., 2006).
The co-expression similarity matrix, Pearson’s correlation
matrices, and average linkage method were involved in
evaluating the correlations among the included genes. The
Amn � |Cmn|β (Amn is theadjacency between gene m and
gene n; Cmn, Pearson’s correlation between gene-m and gene-
n; and β, soft thresholding parameter) could show that the
strength of correlations contributes to the weighted adjacency
matrix with a scale-free co-expression network. The topological
overlap matrix (TOM) was used to identify the connectivity and
dissimilarity of the co-expression network established with an
appropriate β value.

Statistical Analysis
The log-rank test and the Kaplan–Meier survival analysis were
used to evaluate the difference in overall survival (OS) among
different groups. We used the package “caret” to allocate all the
CC patients in inner-training and inner-testing groups randomly
through the 8:2 ratio, which contributed to enhance the
generalization ability of model. The LASSO-penalized Cox
regression model was used to evaluate the role of genes to
identify signatures significantly associated with the patients’
OS. And the 10-fold cross validation was employed to prevent
overfitting with the penalty parameter lambda.1se (Heagerty
et al., 2000). The univariable and multivariate Cox regression
analyses were used to identify the independent prognostic factors
and to establish eight PR signatures and nomogram based on the
forward and backward elimination methods. The area under the
curve (AUC) and the time-dependent receiver operating
characteristic (ROC) curve were used to evaluate the
prognostic accuracy of the eight PR signatures model in inner-
training and inner-testing groups with the package “survival
ROC” (Pei et al., 2020). The PRM-scores were established
based on the eight PR signatures model, and the median of
PRM-scores was set as the cutoff value to the separate patients
into high- and low-PRM-score groups. Bootstrap method was
performed to validate the Cox model internally and externally.
Bootstrap-corrected OS rates were calculated by averaging the
Kaplan–Meier estimates based on 2,000 bootstrap samples.
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FIGURE 1 | Landscape of genetic and expression variation of pyroptosis-related regulators in colon cancer. (A, B) The mutation frequency and classification of
27 pyroptosis-related regulators in colon cancer based on The Cancer Genome Atlas—Colon Adenocarcinoma (TCGA-COAD). (C) The expression of 27 pyroptosis-
related regulators in colon cancer and normal tissues: tumor, blue; and normal, red. The upper and lower ends of the boxes represent the interquartile range of values.
The lines in the boxes represent median value, and black dots show the outliers. The asterisks represent the statistical p-value. Mann–Whitney U test. *p < 0.05;
**p < 0.01; ***p < 0.001; p ≥ 0.05, not significant. (D) Heatmap showing the correlation of genetic variation and expression variations of pyroptosis-related regulators.
Left: genetic variation; right: expression variations. p < 0.05. (E) The correlation network of the pyroptosis-related genes (red line, positive correlation; blue line, negative
correlation; the depth of the colors reflects the strength of the relevance).
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RESULTS

TheGenetic and ExpressionCharacteristics
of Pyroptosis-Related Regulators in Colon
Cancer
A total of 27 PR regulators were identified in CC in this study with
three eligible CC cohorts. We dissect the incidence of somatic
mutations and molecular signatures of PR regulators in CC from
TCGA-COAD (Figure 1A). The result showed that 109 of 590 CC
samples experienced mutations of PR regulators, with frequency of
23.33%. It was found that themissensemutation exhibited the highest
frequency variant classification. Both C>T ranked and SNPs were the
most frequent alternatives in single-nucleotide variant (SNV) class
and variant type. The NLRP7 exhibited the highest alteration
frequency followed by SCAF11, while the PRKACA, CASP6,
PYCARD, and TNF showed extremely low alteration frequency in
CC samples (Figure 1B). To ascertain whether the above genetic
variations influenced the expression of PR regulators in CC patients,
we investigated the mRNA expression levels of regulators between
normal and CC samples (Mann–Whitney U test; *p < 0.05; **p <
0.01; ***p < 0.001; p ≥ 0.05, not significant) (Figure 1C). The
expression of CASP4, GASP8, GPX4, GSDMC, GZMB, IL1B,
NOD1, NOD2, and PLCG1 was increased; while the expression of
AIM2, CASP1, CASP3, CASP5, CASP6, CASP9, GSDMB, GZMB,
IL18, NLRP1, and NLRP7 was decreased in CC samples compared
with normal tissues. Correlation analysis was performed with genetic
variation and expression variations of PR regulators in CC to further
investigate the relationship among these regulators (left: genetic
variation; right: expression variations) (Figure 1D). The
correlation network containing all PR genes is presented in
Figure 1E (red: positive correlations; blue: negative correlations).

Construction of a Molecular Subtype
Classification Pattern for Colon Cancer
Mediated by 27 Pyroptosis-Related
Regulators
To explore the potential biological molecular of PR regulators, we
established a PRmolecular subtype using consensus clustering analysis
for CCpatients. ThreeCCdatasets with available clinical and follow-up
information (GSE39582, GSE33113, and TCGA-COAD) were

FIGURE 2 | Subgroups of colon cancer related by pyroptosis-related
regulators. (A) The consensus score matrix of all colon cancer patients when k �
3 in three cohorts based on the three eligible colon cancer (CC) cohorts of gene-
expression data (GSE39582, GSE33113, and The Cancer Genome
Atlas—Colon Adenocarcinoma (TCGA-COAD)). Two samples were more likely
to be grouped into the same cluster when there was a higher consensus score

(Continued )

FIGURE 2 | between them in different iterations. (B) OS curves for the three
pyroptosis-related (PR) clusters based on colon cancer patients from three
cohorts (log-rank test, p < 0.01). OS, overall survival. (C) The expression of
27 pyroptosis-related regulators in three PR clusters: PR-A, red; PR-B, green;
and PR-C, blue. The upper and lower ends of the boxes represent the
interquartile range of values. The lines in the boxes represent median value,
and black dots show outliers. The asterisks represent the statistical p-value.
ANOVA test. *p < 0.05; **p < 0.01; ***p < 0.001; p ≥ 0.05, not significant. (D)
These heatmaps were employed to visualize Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyzed by gene set variation
analysis (GSVA), which presented the enrichment biological pathways in
distinct three PR clusters (Bayes moderation, pp < 0.05; ppp < 0.01; pppp <
0.001).
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incorporated into one meta-cohort and clustered into three molecular
subtypes (PR-A, PR-B, and PR-C) based on the expression of 27 PR
regulators (Figure 2A). There are high intragroup correlations and low
intergroup correlations in this classification pattern. There was also a
significant difference in the survival among three subtypes (Figure 2B).
The results of survival analysis proved that theOS of the PR-B and PR-
Cgroupswas significantly lower than that of thePR-Agroup according
to the Kaplan–Meier curves of the CC cohorts (log-rank test, p < 0.01,
Figure 2B). The expression of 27 PR regulators was different in three
subtypes (ANOVA test, *p< 0.05; **p< 0.01; ***p< 0.001; p≥ 0.05, not
significant) (Figure 2C). In order to further portray the biological
characteristics of these distinct molecular subtypes, we established

GSVA enrichment analysis, including the KEGG and Gene
Ontology (GO). The PR-A showed enrichment in terms of
pathways associated with immune activation, including IL-17
production, T cell-mediated cytotoxicity, T cell-mediated, T-cell
chemotaxis, and T-cell migration and differentiation. PR-B
presented enrichment pathways including the proximal tubule
bicarbonate reclamation, nitrogen metabolism, and tyrosine
phosphorylation of STAT5 protein. While the enrichment pathways
in PR-C were associated with immune suppression, including
downregulation in natural killer (NK) cell activation involved in
immune response, B-cell proliferation, and T-cell activation
involved in immune response.

FIGURE 3 | Distinct three pyroptosis-related (PR) clusters showed diverse tumor microenvironment (TME) cell infiltration. (A) The level of stromalScores,
immuneScores, ESTIMATEScores, and tumorPurity calculated with ESTIMATE in three PR clusters based on the three eligible colon cancer (CC) cohorts of gene-
expression data (GSE39582, GSE33113, and The Cancer Genome Atlas—Colon Adenocarcinoma (TCGA-COAD)). (B) Heatmap showing the correlation of TME cell
infiltration calculated with CIBERSORT. (C) The level of TME cell infiltration in three PR clusters: PR-A, red; PR-B, green; and PR-C, blue. The upper and lower ends
of the boxes represent the interquartile range of values. The lines in the boxes represent median value, and black dots show outliers. The asterisks represent the statistical
p-value. ANOVA test. *p < 0.05; **p < 0.01; ***p < 0.001; p ≥ 0.05, not significant.
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Different Characteristics of Tumor
Microenvironment Cell Infiltration Among
Three Pyroptosis-Related Subtypes
In addition, we tend to estimate the immune microenvironment
among the PR molecular subtypes. The TME cell infiltration
characteristics were calculated with ESTIMATE, including the
tumor purity and immune-scores (ANOVA test, *p < 0.05;
**p < 0.01; ***p < 0.001; p ≥ 0.05, not significant) (Figure 3A).
The result showed that the immune-scores and ESTIMATE were
the highest in PR-A among three subtypes, which suggested that
the PR-A presented a high level of immune fully activation. The
highest stromal-scores and tumor purity were in PR-C, and the
lowest immune-scores were in PR-C, which suggested that the PR-
C may characterized by the suppression of immunity. To
investigate the proportions and differences of tumor infiltrating
immune cell subsets among PR regulators subtypes, we employed a
deconvolution algorithm with the CIBERSORT method
(Figure 3B, Supplementary Figures 1A,B). The results noted
that there were significant differences on the compositions of
TME cell types among the three PR subtypes, which suggested
that PR regulators may influence the types of TME infiltrating cell
in CC. We found that the infiltration of activated immune cell in
TMEwas abundant in PR-A, including the presence of CD8T cells,
activated NK cells, and B cells (ANOVA test, *p < 0.05; **p < 0.01;
***p < 0.001; p ≥ 0.05, not significant) (Figure 3C), which were
same with the immune-scores from ESTIMATE. The high level of
immunity may be related to the significant survival advantage (Bai
et al., 2020). The PR-B was enriched with M1 macrophages,
dendritic cells, plasma cells, and CD8 T cells. And the PR-C
was enriched with M2 macrophages, naive B cell, CD4 T-cell
memory resting, and T-cell regulatory cells (Tregs). The PR-C was
reached with M2 macrophages, resting dendritic cells, and Tregs.
And we quantify the enrichment levels of immunity related
pathways and immune cells in CC via ssGSEA with a total of
29 immune-associated gene sets (Supplementary Figure S2).
There was a significant difference in level of HLA genes among
three subtypes. The checkpoint, CD8 T cells, HLA,MHC, and TILs
were the highest in PR-A, which suggested the potentially ability
for immune-inflamed. Based on the characterization of TME cell
infiltration and biological molecular, PR-A was classified as
immune-activated phenotype, with abundant immune cell
infiltration and survival advantage; PR-B was classified as
intermediate phenotype; and PR-C was classified as immune-
excluded phenotype, characterized by the low immune response
and high tumor purity. But the type of TME immune cells was the
same among different subtypes, which showed that the PR
regulators may regulate the level of immune cell infiltration and
that they could not influence the types of cells in TME.

Development and Validation of Risk
Assessment Tool-Constructions Related to
Pyroptosis-Related Regulators for Colon
Cancer Patients
To further reveal the role of PR subtypes for prognosis and
treatment of CC and apply the clusters to guide subsequent

treatment, we established risk assessment tool-constructions
based on the PR subtypes. All the genes were analyzed for co-
expression network analysis using the WGCNA package
(Figure 4A, Supplementary Figure S3). The association was
built among the expression of gene and the PR clusters and
clinical information based on the three eligible CC cohorts of
gene-expression data (GSE39582, GSE33113, and TCGA-
COAD). A total of 18 modules were identified; and the ME in
the brown, yellow, red, and pink modules showed significantly
higher association with PR regulators clusters than other modules
in CC. From these modules, we identified 854 signature genes
associated with the PR regulators (p < 0.05), which were selected
for further analysis. Next, we estimated the independent
prognostic signature of these genes using univariate Cox
regression analysis, and the p-value <0.05 was considered to
be the cutoff criteria. Patients from TCGA-COAD, GSE33113,
and GSE39582 were randomly divided into inner-training and
inner-testing groups through the 8:2 ratio. And we set GSE17538
as the independent validation cohort. Next, we established the
LASSO-Cox regression model and cross validation to calculate
the mean-squared error of genes with independent prognostic
factors (Figure 4B). Eight genes, cytotoxic T-lymphocyte-
associated protein 4 (CTLA4), chemokine (C-C motif) ligand
11 (CCL11), ninein (NIN), transmembrane protein 154
(TMEM154), kinesin family member 7 (KIF7), KIAA1671,
ribonuclease P/MRP 14-kDa subunit (RPP14), and cadherin
19 (CDH19), were identified with the LASSO-Cox regression
model and multivariate Cox regression analysis, which were used
to establish the PRM (Figure 4B). All of these genes had
significant independent prognostic factors in multivariate Cox
regression analysis (Figure 4C). Besides these, eight genes
expression were different in three PR subtypes (ANOVA test,
*p < 0.05; **p < 0.01; ***p < 0.001; p ≥ 0.05, not significant)
(Figure 4D). And CTLA4, CCL11, NIN, TMEM154, KIAA1671,
RPP14, and CDH19 expressions were associated with immune-
scores (Figure 4E). The prognostic index formula for CC was as
follows: PRM-scores � [Status of CTLA4 * (−0.27274) + Status of
CCL11 * (−0.05312) + Status of NIN * (0.30814) + Status of
TMEM154 * (−0.21183) + Status of KIF7 * (0.55555) + Status of
KIAA1671 * (−0.15928) + Status of RPP14 * (−0.34418) + Status
of CDH19 * (0.45252)]. We divided colon patients into high- and
low-PRM-score groups based on the median value, which was set
as the cutoff value to divide the patient into high or low group in
the validation cohorts.

The survival analysis suggested that the OS of the high-PRM-
score group was significantly lower than that of the low-PRM-
score group in inner-training cohort (log-rank test, p < 0.001,
Figure 5A), as well as the Kaplan–Meier curves of the inner-
testing cohort (log-rank test, p < 0.001, Figure 5E). The PRM-
score distribution and the expression of eight PR significant genes
in the inner-training and inner-testing cohorts are presented in
Figures 5B,C,F–G. Then, ROC curves were used to estimate the
validity of the eight PR risk assessment tool-constructions in CC
cohorts. The AUCs were equal to 0.738 at 3 years and 0.782at
5 years in the inner-training group (Figure 5D, Supplementary
Figures 4A, B). Similarly, the AUCs were equal to 0.708 at 3 years
and 0.753 at 5 years in the inner-testing group (Figure 5H,
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Supplementary Figure 4C), which showed that the model could
achieve satisfactory predictive accuracy in both the inner-training
and inner-testing cohorts. We established the survival analysis
and ROC curves in the independent validation cohort
(GSE17538), which showed the significant difference in OS
between high- and low-PRM-score groups (log-rank test, p <

0.001, Supplementary Figure 5A). The AUCs were equal to 0.644
at 3 years and 0.684 at 5 years in the independent validation
group (Supplementary Figures 5B, C). And we established the
model to predict the prognosis based on PR genes with “random
Survival Forest” (Supplementary Figures 6A–C). And the 10-
fold cross validation was employed to prevent overfitting.

FIGURE 4 | Generation of risk assessment tool-constructions to predict patient survival related to pyroptosis-related regulators for colon cancer patients. (A)
Identification of a co-expression module in colon cancer. Each piece of the leaves on the cluster dendrogram corresponded to a gene, and those genes with similar
expression patterns compose a branch. Correlation between gene modules and clinical features or three pyroptosis-related (PR) clusters. The upper row in each cell
indicates the correlation coefficient ranging from −1 to 1 of the correlation between a certain genemodule and clinical features or three PR clusters. The lower row in
each cell indicates the p-value. (B) In the LASSO-Cox model of inner-training cohort from GSE39582, GSE33113, and The Cancer Genome Atlas—Colon
Adenocarcinoma (TCGA-COAD) data, the minimum standard was adopted to obtain the value of the super parameter l by 10-fold cross validation. (C) Hazard ratio and
p-value of the constituents involved in multivariate Cox regression analyses of eight signatures in inner-training cohorts. (D) The expression of eight signatures in three PR
clusters: PR-A, red; PR-B, green; and PR-C, blue. The upper and lower ends of the boxes represent the interquartile range of values. The lines in the boxes represent
median value, and black dots show outliers. The asterisks represent the statistical p-value. ANOVA test. *p < 0.05; **p < 0.01; ***p < 0.001; p ≥ 0.05, not significant. (E)
The association between the immuneScores calculated with ESTIMATE and the expression of eight signatures related to three PR clusters.
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FIGURE 5 | Construction and validation of the PRM-scores in colon cancer cohorts. (A) Kaplan–Meier curves for the overall survival (OS) of colon patients in inner-
training cohort between the high- and low-PRM-scores groups based on GSE39582, GSE33113, and The Cancer Genome Atlas—Colon Adenocarcinoma (TCGA-
COAD) data (log-rank test, p < 0.01). (B, C) Distribution of PRM-scores and the expression of eight signatures related to three pyroptosis-related (PR) clusters in inner-
training cohort. (D) receiver operating characteristic (ROC) curves demonstrated the predictive efficiency of the PRM-scores in inner-training cohort. (E)
Kaplan–Meier curves for the OS of colon patients in validation cohort between the high- and low-PRM-scores groups (log-rank test, p < 0.01). (F, G)Distribution of PRM-
scores and the expression of eight signatures related to three PR clusters in validation cohort. (H) ROC curves demonstrated the predictive efficiency of the PRM-scores
in validation cohort.
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Differences of Immune Function and
Biological Characteristic Between Risk
Assessment Model-Scores Groups
We estimated the immune microenvironment between the eight
genes related high- and low-PRM-score groups. Only the
immune-scores were significant different between two groups,
and the level of tumor-purity was the same in the two groups
(Mann–Whitney U test, *p < 0.05; **p < 0.01; ***p < 0.001; p ≥
0.05, not significant) (Figure 6A). We found that the infiltration
of activated immune cell in TME was abundant in low-PRM-
score groups, including the M1 macrophages, NK cells, CD4
T cells (Mann–Whitney U test, *p < 0.05; **p < 0.01; ***p < 0.001;
p ≥ 0.05, not significant) (Figure 6B). To further evaluate the
association between the expression of the tumor immune
microenvironment and these eight genes, we analyzed the
corrections between the 22 types of immune cell infiltration

profiles and these eight genes (Supplementary Figure S7).
GSEA was used to analyze potential biological characteristics
of the PRM-score groups in CC patients. As shown in Figures
6C,D, according to the Hallmark and KEGG collection defined by
MSigDB, the genes in the high-PRM-score group were mainly
enriched in angiogenesis, KRAS signaling, and epithelial
mesenchymal transition. And the genes in the low-PRM-score
groups were mainly enriched in cell cycle, P53 signaling pathway,
T-cell receptor signaling pathway, and PI3K/AKT/MTOR
signaling.

Establishment and Validation of the
Nomogram
The univariate and multivariable Cox regression models were
applied to the inner-training cohort to evaluate the predictors of
OS. Univariate analyses indicated that age, stage-N, stage-M,

FIGURE 6 | Characteristics of the PRM-scores scoring model for colon cancer patients. (A) The level of stromalScores, immuneScores, ESTIMATEScores, and
tumorPurity calculated with ESTIMATE in high- and low-PRM-scores groups. (B) The level of tumor microenvironment (TME) cell infiltration in high- and low-PRM-scores
groups: high PRM-scores, red; and low PRM-scores, blue. The upper and lower ends of the boxes represent the interquartile range of values. The lines in the boxes
represent median value, and black dots show outliers. The asterisks represent the statistical p-value. Mann–Whitney U test. *p < 0.05; **p < 0.01; ***p < 0.001; p ≥
0.05, not significant. (C) The enriched gene sets in Kyoto Encyclopedia of Genes and Genomes (KEGG) by samples with high-risk sample. And only several leading gene
sets are displayed in the plot. (D) Enriched gene sets in Hallmark collection by samples of high-risk sample. Only several leading gene sets are shown in the plot. Each line
represents one particular gene set with unique color, and upregulated genes are located in the left approaching the origin of the coordinates; by contrast, the
downregulated genes are on the right of the x-axis. Only gene sets with nominal (NOM) p < 0.05 and false discovery rate (FDR) q < 0.05 were considered significant. And
only several leading gene sets are displayed in the plot.
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PRM-scores, and PR subtypes were associated with OS in CC
patients (p < 0.05 in all cases, Table 1). Next, the multivariate Cox
analyses found that age, stage-N, stage-M, PRM-scores, and PR
subtypes were independent risk factors for OS based on forward
and backward elimination methods (Table 1).

Because stage-N, age, stage-M, PRM-scores, and PR subtypes
were predictive for OS in multivariate analysis, these variables
were further included in the nomogram, which was for predicting
the 1, 3, and 5-years OS for CC patients (Figure 7A). The
weighted total score, calculated from these factors, was applied
to predict the 1, 3, and 5-years OS of CC patients.

Besides, the model showed good accuracy for predicting the
OS, and internal validation was performed using the inner-
training cohort with a C-index of 0.739. Furthermore, the
decision curve analysis (DCA) results of the nomograms also
confirmed their clinical applicability for predicting the OS, with
superior performance compared with PRM-scores and PR
subtypes (Figure 7B). Calibration curves for the probability of
OS at 3 and 5 years indicated satisfactory consistency between
actual observation and nomogram-predicted OS probabilities in
CC cohort (Figure 7C, Supplementary Figure 4B).

DISCUSSION

Pyroptosis is a newly discovered type of programmed cell death
induced by inflammasomes, leading to membrane rupture and

the release of cell contents that trigger the inflammatory response.
It has a dual function in tumor development, inhibiting tumor
growth in liver cancer and having an ambiguous effect in breast
cancer (Tan et al., 2021). Gasdermin family proteins are the
executors of pyroptosis, which is regulated by multiple signaling
factors and stromal cells in the TME. A comprehensive
bioinformatics analysis of PR regulators is needed to evaluate
the involved molecular signatures and signaling pathways,
promising better results than those obtained when judging the
prognosis using individual gasdermin proteins. Therefore, we
evaluated the factors and molecular signatures related to
pyroptosis to establish a classification and prognostic model,
which provides potential signatures for CC therapy targeting
pyroptosis.

In this study, we revealed three distinct pyroptotic tumor
subtypes based on the expression of 27 PR regulators. These three
subtypes had a significantly distinct prognosis, immune cell
infiltration, and molecular characteristics. The PR-A subtype
was characterized by a survival advantage, high immune-
scores, and abundant immune cell infiltration, corresponding
to an immunologically activated phenotype. The PR-B subtype
corresponded to an intermediate phenotype. Finally, the PR-C
type was characterized by a low immune response and high
tumor purity, corresponding to an immune-excluded phenotype.
According to the functional enrichment analysis, PR-C tumors
exhibited low immune-scores and IL-17 production, T cell-
mediated cytotoxicity, T-cell chemotaxis, and T-cell migration

TABLE 1 | Univariable and multivariable Cox regression analyses of OS in CC patients.

Characteristic (OS) Univariable analysis Multivariable analysis

HR (95% CI) p-Value HR (95% CI) p-Value

Age (years) — — — —

<60 1 — 1 —

≥60 1.24 (1.93–1.67) 0.031 1.44 (1.07–1.94) 0.016
Gender — — — —

Female 1 — — —

male 1.28 (0.99–1.65) 0.056 — —

T stage — — — —

T1/2 1 — 1 —

T3/4 1.73 (1.06–2.85) 0.029 1.24 (1.15–2.05) 0.043
Unknown 3.74 (1.71–5.18) <0.001 0.98 (0.26–3.71) 0.981
N stage — — — —

N0 1 — 1 —

N1/2 1.78 (1.38–2.32) <0.001 0.20 (0.90–1.64) 0.181
Unknown 2.59 (1.50–4.48) <0.001 1.73 (1.25–4.33) 0.021
M stage — — — —

M0 1 — 1 —

M1 4.58 (3.36–6.24) <0.001 3.55 (2.51–3.70) <0.001
Unknown 2.69 (1.74–4.19) <0.001 2.09 (1.17–3.74) 0.002
PRM-scores — — — —

Low 1 — 1 —

High 3.76 (2.82–5.01) <0.001 3.17 (2.36–4.26) <0.001
Pyroptosis-related molecular subtype — — — —

PR-A 1 — 1 —

PR-B 1.69 (1.25–2.31) <0.001 1.31 (1.09–1.81) 0.013
PR-C 1.78 (1.28–2.49) <0.001 1.27 (1.09–1.82) 0.034

Note. Multivariate Cox regression analysis is used to calculate the HRs and 95% CIs for OS in CC patients. Covariables that are significant in univariable competing risk regression analysis
(p < 0.05) are included in the multivariable analysis.
HR, hazard ratio; CI, confidence interval; CC, colon cancer; OS, overall survival.
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and differentiation, which were related to immune suppression,
including the downregulation of NK cells, reduced B-cell
proliferation, and subdued T-cell activation.

In order to provide a theoretical basis for the clinical treatment
of CC, we established a reliable risk assessment tool based on three
PR subtypes. The PS-score takes into account the heterogeneity of
patients and links pyroptosis with the clinical prognosis. The PRM-
scores were estimated based on the fractions of eight genes from the
PR key module, and it featured both tumor promoter and
suppressors, which were weighted differently. CTLA4, a
member of the immunoglobulin superfamily, has been proved
to act as an immunosuppressor that can convey the inhibitory

signal to T cells in most tumors (Liu et al., 2021a; Sena et al., 2021).
The treatment with immune checkpoint inhibitors (ICIs) against
CTLA4 could reinvigorate the exhausted antitumor immunity
(Wang et al., 2021a; Imazeki et al., 2021). Our results showed
that CTLA4 expression is related to the tumor infiltration
characteristics of multiple immune cell types. CCL11, a
neutrophil-related chemokine, exerts a chemotactic effect on
eosinophils by interacting with CXCR3 and CCR5 (Wang et al.,
2021b), which was found to be a potential prognostic signature for
TNM stage II CC patients (Liu et al., 2021b). NIN is essential for
the construction of the centrosome and helps regulate cell
migration and polarity (Goldspink et al., 2017). SNPs of NIN

FIGURE 7 | The clinical application value of the PRM-scores scoring model and pyroptosis-related (PR) clusters. (A) A nomogram was established for predicting 1, 3,
and 5-years overall survival (OS) in colon cancer. To calculate probability of OS, first, determine the value for each factor by drawing a vertical line from that factor to the points
scale. “Points” is a scoring scale for each factor, and “total points” is a scale for total score. Then sum up all of the individual values and draw a vertical line from the total points
scale to the 1, 3, and 5-years OS probability lines to obtain OS estimates. (B) The decision curve analysis (DCA) of nomogram in inner-training set for 5 years OS. (C)
Calibration curves for the probability of OS at 5 years. The nomogram cohort was divided into three equal groups for validation. The gray line represents the perfect match
between the actual (y-axis) and nomogram-predicted (x-axis) survival probabilities. Black circles represent nomogram-predicted probabilities for each group, and X’s
represent the bootstrap-corrected estimates. Error bars represent the 95% CIs of these estimates. A closer distance between two curves suggests higher accuracy.
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were found to be related with the morbidity of CRC (Grosch et al.,
2013). The research on KIAA1671, CDH19, and TMEM154
mainly focused on their prognostic implications (Blons et al.,
2002; Fernández-Madrid et al., 2004; Zhang et al., 2020). It was
reported that CDH19 was related to the inflammatory response
(Oparina et al., 2015). KIF7 is a member of the kinesin family that
plays a significant role in cancer proliferation (Yao et al., 2019).
TME cell infiltration data demonstrated that the PS-score holds an
important value for immunotherapy. More activated immune cell
infiltration in patients with a low PS-score predicted a better
response to immunotherapy. Furthermore, we established an
efficient and accurate nomogram to guide subsequent treatment
for CC patients.

Finally, there are also some limitations that should be kept in
mind when considering this research. Although we used multi-
database searches to perform the verification from multiple
angles, all of the database searches were retrospective and
lacked complete clinical information. It is necessary to conduct
prospective studies and perform subgroup validation.
Furthermore, there is little current research on the role of
pyroptosis in CC, and our research can only provide
preliminary theoretical support for future experimental
verification. The risk model developed in this study did not
exhibit a better predictive value for the OS of CC patients, and
the random survival forest algorithm exhibited overfitting and
high variance. We plan to implement a more suitable machine
learning method to improve the predictive ability.

In conclusion, we conducted a comprehensive and systematic
bioinformatics analysis for PR regulators and demonstrated their
relationship with the development of CC. This study also suggests
the extensive effect of PR regulators on the tumor immune
microenvironment based on the established PR CC subtypes.
Moreover, we identified eight PR independent risk signatures,
and we built the PRM-score for assessing the prognosis of CC
patients. Our comprehensive evaluation of PR regulators
improves our understanding of the TME and provides an

important theoretical basis for prognosis and selection of
therapeutic strategies.
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