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Congestive heart failure (HF) is a complex disease state characterized by

impaired ventricular function and insufficient peripheral blood supply. The

resultant reduced blood flow characterizing HF promotes activation of

neurohormonal systems which leads to fluid retention, often exhibited as

pulmonary congestion, peripheral edema, dyspnea, and fatigue. Despite

intensive research, the exact mechanisms underlying edema formation in

HF are poorly characterized. However, the unique relationship between the

heart and the kidneys plays a central role in this phenomenon. Specifically,

the interplay between the heart and the kidneys in HF involves multiple

interdependent mechanisms, including hemodynamic alterations resulting in

insufficient peripheral and renal perfusion which can lead to renal tubule

hypoxia. Furthermore, HF is characterized by activation of neurohormonal

factors including renin-angiotensin-aldosterone system (RAAS), sympathetic

nervous system (SNS), endothelin-1 (ET-1), and anti-diuretic hormone (ADH)

due to reduced cardiac output (CO) and renal perfusion. Persistent activation

of these systems results in deleterious effects on both the kidneys and

the heart, including sodium and water retention, vasoconstriction, increased

central venous pressure (CVP), which is associated with renal venous

hypertension/congestion along with increased intra-abdominal pressure (IAP).

The latter was shown to reduce renal blood flow (RBF), leading to a

decline in the glomerular filtration rate (GFR). Besides the activation of the

above-mentioned vasoconstrictor/anti-natriuretic neurohormonal systems,

HF is associated with exceptionally elevated levels of atrial natriuretic

peptide (ANP) and brain natriuretic peptide (BNP). However, the supremacy

of the deleterious neurohormonal systems over the beneficial natriuretic

peptides (NP) in HF is evident by persistent sodium and water retention

and cardiac remodeling. Many mechanisms have been suggested to

explain this phenomenon which seems to be multifactorial and play a

major role in the development of renal hyporesponsiveness to NPs and
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cardiac remodeling. This review focuses on the mechanisms underlying the

development of edema in HF with reduced ejection fraction and refers to

the therapeutic maneuvers applied today to overcome abnormal salt/water

balance characterizing HF.

KEYWORDS

heart failure, edema, mechanisms, neurohumoral, cardiorenal syndrome, Na+
retention, renal venous congestion, intra-abdominal pressure

Introduction

Generalized edema, the main clinical characteristic of extra
cellular fluid (ECF) volume expansion, represents pathological
sodium balance, and constant accumulation of water in
excessive volumes in the interstitial compartment (1). It occurs
in various edematous disease states including congestive heart
failure (CHF), cirrhosis with ascites, and nephrotic syndrome.
Regardless of its etiology, heart failure (HF) is primarily
classified into two subgroups according to the ventricular
ejection fraction (EF), namely HF with reduced EF (HFrEF) and
HF with preserved EF (HFpEF). The prevalence of both HFrEF
and HFpEF is roughly equal among HF patients, and both have
a similar ominous prognosis, yet each subgroup exhibits unique
clinical features and different responses to medical intervention
(2, 3). HF is a clinical setting characterized by the incapability
of the heart to perfuse enough blood and oxygen/nutrition
to peripheral tissues. This happens frequently in low-output
CHF. In response to these alterations, a series of compensatory
circulatory and neurohormonal adjustments take place in order
to maintain blood pressure and perfusion to various vital organs
including the brain, lungs, and kidneys (4). In the early stages,
these adaptations are beneficial and fulfill their compensatory
role (compensated CHF). However, as CHF evolves, exaggerated
stimulation of these systems becomes harmful as evident by
profound systemic vasoconstriction and increased loading in
the failing heart, eventually leading to the development of
decompensated CHF (4, 5). Among the major abnormalities
at the later stage is the disorder in the effector arm of volume
control, where disproportionate activation of vasoconstrictor-
sodium retaining systems, along with the failure of vasodilatory
natriuretic factors, take place resulting in excessive salt and
water balance (4, 5). Early and even before clinical cardiac
failure manifestations develop, underlying renal aberrations
limit their natriuretic response (6–9). This behavior agrees
with the concept that the primary disturbance underlying
sodium retention does not originate within the kidneys. Rather,
renal sodium retention is secondary to circulatory disturbance
provoked by the failing heart (10–12). The evolvement of the
latter activates vasoconstrictive and anti-natriuretic systems that

continue to retain sodium/water despite the subtle or overt
expansion of ECF volume (13, 14).

The purpose of this review is to summarize the current
understanding of the disturbances in the mechanisms that occur
in one of the most widespread edema-forming states, namely
CHF, and the derived therapeutic options applied today to
overcome the elevated salt balance and edema characterizing
this clinical setting.

Mechanisms underlying edema
formation

Alterations in starling forces and
interstitial fluid accumulation

Trans-capillary convective fluid flow and diffusive solute
transport occur in CHF (1, 4, 15). The water movement is
derived from hydrostatic and osmotic pressure gradients (5).
Capillary hydraulic pressure is determined by several factors,
such as arterial and venous blood pressures (SBP and CVP,
respectively), blood flow, and resistances enacted by the pre- and
post-capillary sphincters. While SBP is influenced by cardiac
output (CO), systemic vascular resistance, and intra-vascular
filling, systemic venous pressure is controlled by right atrial
pressure, intra-vascular volume, and venous capacity. The latter
hemodynamic parameters are profoundly dependent on sodium
balance. Specifically, expansion of interstitial compartment can
directly attenuate venous compliance and hence alter overall
cardiovascular performance (16). Normally, the interstitial
fluid pressure is sub-atmospheric, therefore, even a small
increase in the volume of this ECF sub-space tends to enhance
tissue hydraulic pressure, which opposes the movement of
fluid into the interstitial compartment (17). Collectively, the
development of generalized edema may stem from disorders
in microcirculatory hemodynamics, where elevated venous
pressure transmitted to the capillary is of major relevance
to CHF as substantial renal fluid and sodium retention and
increased ECF volume are hallmark features of this disease.
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Perturbations of the afferent limb of
volume homeostasis in congestive
heart failure

The fact that the kidneys’ ultrastructure is normal in
CHF and keeps retaining sodium and water avidly, despite
ECF expansion, may stem from either “backward failure” or
“forward failure”. The former indicates that the volume sensing
mechanisms fail to appropriately detect the elevated circulating
volume. According to this theory, the failing heart results
in venous congestion along with increased capillary pressure,
where both provoke fluid accumulation in the interstitium
concomitantly to plasma volume depletion. Attenuation of
plasma volume stimulates renal sodium and water retention.
The concept of “forward failure” underscores the contribution
of the myocardium failure in supplying sufficient blood to
the various tissues including the kidneys, which are no longer
able to maintain normal sodium excretion. Noteworthy, both
theories emphasize the “underfilling of the arterial circulation”,
reduced cardiac output, and activation of neurohormonal
responses (18–24). Therefore, a unifying hypothesis termed
“arterial underfilling” was established to explain the sustained
sodium and water retention by the kidneys in response
to diminished cardiac output (10–12). In this context,
hemodynamic alterations, and activation of neurohormonal
compensatory systems in CHF, are similar to those seen in
true dehydration. However, it should be emphasized that in
contrast to real hypovolemia, CHF is characterized by elevated
intracardiac pressures, which are supposed to stimulate the
release of natriuretic peptides (NPs), namely atrial NP (ANP)
and brain NP (BNP), and eventually provoke natriuretic
and diuretic responses. The blunted natriuresis characterizing
CHF may stem from interrupted signaling in afferent sensing
sites localized to the cardiopulmonary system. These include
disrupted baroreceptors located in the carotid sinus and
aortic arch, besides malfunctioning of mechanosensitive nerve
endings localized in cardiac chambers and cardiopulmonary
system. Both arterial baro- and cardiopulmonary reflexes are
blunted in CHF, as expressed by an inadequate tonic inhibitory
effect on sympathetic outflow and eventually sympathetic
nervous system (SNS) activation, together with anti-diuretic
hormone (ADH) and renin secretion along promoting renal
retention of salt and water despite of volume expansion
(25, 26). In this context, it was shown that the interaction
between volume sensing and urinary sodium excretion is
maintained in compensated CHF (27), but not decompensated
CHF, as was previously shown by Abassi et al. in an
experimental model of heart failure induced by arteriovenous
(A-V) fistula (13). Furthermore, important defects in the
interaction between the cardiac and carotid baroreceptors and
renal sympathetic activity have been reported in CHF. In
this context, DiBona et al. (28) demonstrated a higher renal
efferent sympathetic activity in rats with experimental CHF

induced by left anterior descending (LAD) artery ligation.
Interestingly, the renal sympathetic nerve hyperactivity of
these animals was not attenuated following volume expansion.
Moreover, the same group demonstrated that the aberrant
regulation of renal sympathetic activity was associated with
the disrupted function of cardiac, pulmonary, and arterial
baroreceptors (29).

Abnormalities in efferent limb of
volume homeostasis in congestive
heart failure

Besides the aberrant sensing mechanisms, CHF is associated
with the activation of several adaptive alterations in volume
control. As mentioned above, these effector mechanisms include
activation of neural, humoral, and paracrine systems that
impose changes in glomerular hemodynamics and tubular
transport, which in turn lead to avid sodium retention (1). On
the other hand, CHF is also characterized by the activation
of vasodilatory natriuretic systems, aimed at opposing the
vasoconstrictor anti-natriuretic factors. Thus, the net effect
on sodium and water balance in CHF is determined by the
balance between these antagonistic systems. Although activation
of these vasodilatory and natriuretic systems is essential
to counterbalance the vasoconstrictor/antinatriuretic systems,
abnormal and continuous activation of the efferent limb of
volume control along blunted renal action of NPs profoundly
contribute to the classic manifestations of CHF and further
deterioration of cardiac function (1).

Alterations in glomerular
hemodynamics

The interplay between the heart and kidneys in CHF
is complex (Figure 1), involving multiple interdependent
mechanisms, which can be divided into four categories (6–
9): (1) Insufficient peripheral blood flow during HF results
in deleterious alterations in renal hemodynamics as evident
by increased renal vascular resistance, reduced glomerular
filtration rate (GFR), and a marked reduction in renal plasma
flow (RPF) resulting in increased filtration fraction (FF). This
phenomenon was observed in rats with CHF induced by left
coronary ligation (30), where CHF rats exhibited lower single
nephron GFR (SNGFR) than control animals. Micropuncture
assessment revealed a reduction in single nephron plasma flow
(SNPF) which was to a greater extent than the decline in SNGFR,
accounting for a higher single nephron filtration fraction
(SNFF). The preferential decline in SNPF as compared with
SNGFR is attributed to vasoconstriction of both afferent, and
especially efferent arterioles. Similar alterations in glomerular
hemodynamics have been also reported in rats with A-V fistula,
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FIGURE 1

Mechanisms of edema formation in HFrEF. Myocardial damage of various etiologies may lead to cardiac dysfunction as evident by reduced
cardiac output and ejection fraction. The resultant reduced organ blood flow promotes activation of neurohormonal systems (SNS, RAAS, AVP,
and ET-1) which leads to salt and fluid retention, often exhibited as pulmonary congestion, peripheral edema, dyspnea, and fatigue. Unique
relationship between the heart and the kidney plays a central role in this phenomenon. Specifically, the interaction between the heart and
kidney in HF is complex and involves multiple interdependent mechanisms which includes (1) hemodynamic alterations resulting in insufficient
peripheral and kidney perfusion, (2) HF is characterized by elevated central venous pressure (CVP), which is associated with renal venous
hypertension/congestion along with increased intra-abdominal pressure (IAP). The latter was shown to reduce RBF, leading to a decline in GFR.
Moreover, persistent activation of neurohormonal factor along with reduced renal response to NPs aggravates the hypoperfusion and
hypofiltration due to their vasoconstrictive and tubular Na+ and H2O retaining properties which further aggravates CVP and IAP and eventually
the development of edema. ANP, atrial natriuretic peptide; BNP, brain natriuretic peptide; AVP, arginine vasopressin; ET-1, endothelin 1; LV, left
ventricle; NPs, natriuretic peptides; RAAS, renin angiotensin aldosterone system; SNS, sympathetic nervous system.

a high output failure model (31). As a result, colloid osmotic
pressure gradient (1π) enhances over the glomerular capillary
which eventually leads to impaired GFR as the hydrostatic
pressure gradient (1P) is decreased too. Since the kidneys
receive about one-quarter of CO and considering that GFR
is dependent on RPF, renal hypoperfusion can lead to renal
hypoxia; (2) HF is characterized by elevated CVP, which is
associated with renal venous hypertension (32). The latter was
shown to reduce RBF in animal models, leading to a decline
in GFR (4); (3) Activation of neurohormonal factors, where
the reduced CO and the subsequent decline in blood pressure
and renal perfusion activate the renin-angiotensin-aldosterone-
system (RAAS) and SNS. Activation of these neurohormonal
systems results in deleterious effects on both the kidneys and
the heart, including sodium and water retention, systemic
and renal vasoconstriction, elevated venous volume/return, and
enhanced oxidative stress. Moreover, angiotensin II (Ang II)
and aldosterone promote cardiac and renal remodeling (33,
34). In addition, HF is characterized by increased production
of endothelin-1 (ET-1) and ADH following baroreceptor
activation (7), both of which enhance systemic vasoconstriction
and reduce free water clearance; (4) secretion of various
factors that play an important role in the deterioration of
the cardiac and renal function along with systemic and
local inflammation, endothelial dysfunction, anemia, and other

metabolic alterations (6, 35). In summary, worsening renal
function (WRF) during acute decompensated HF occurs mainly
due to systemic hemodynamic derangements, such as increased
venous pressure, elevated intra-abdominal pressure (IAP), and
drop in arterial blood pressure along with diminished cardiac
function (see the following sections).

Tubular sodium retention

The adverse alterations in glomerular hemodynamics, WRF,
impaired tubular flow, and hormonal status characterizing
decompensated CHF enhance tubular reabsorption of sodium
at both the proximal nephron and collecting duct (4). As
mentioned above, the elevated 1π along the decreased
1P through the glomerular capillary length favors fluid
movement from the tubular lumen into the capillary, and
sodium and water reabsorption in the proximal tubule to
peritubular capillaries. Since the kidneys are encapsulated,
renal venous congestion elevates the interstitial hydrostatic
pressure in both the kidneys, peritubular capillaries, and tubuli
(Figure 2) (36). Likewise, the enhanced renal lymphatic flow
characterizing CHF reduces interstitial π, thus aggravating
tubular salt reabsorption (37). The latter is manifested by
avid proximal sodium reabsorption as a result of abnormal
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FIGURE 2

Impact of congestive venous pressure (CVP) and increased intra-abdominal pressure (IAP) on kidney function in heart failure. Elevated CVP is
transmitted back to the renal veins leading to renal dysfunction (A). The contribution of renal venous congestion to renal dysfunction in HF is
complex and involves multiple mechanisms, including increased pressure along the renal vasculature without decline in 1P, decreasing the net
pressure gradient filtration pressure (NFP) across the glomerulus and thereby reduced GFR (C). In addition, the increase in renal venous pressure
can increase intrarenal interstitial pressure leading to compression of the tubules, increased tubular fluid pressure (B), with reduced GFR due to
an increase in hydrostatic pressure in the Bowman’s capsule (C). In addition, reduced GFR and sodium excretion may develop secondary to
intra-abdominal hypertension (IAH), a hallmark feature of decompensated CHF (A–C). The diverse deleterious renal effects of elevated IAP may
overlap with those of venous congestion. There is a direct compression of abdominal contents that result in a prominent reduction in RBF
(compression of renal arteries) and elevation in renal parenchymal and renal vein pressures (A–C). RBF, renal blood flow; GFR, glomerular
filtration rate; CVP, central venous pressure; IAP, intraabdominal pressure; PTP, proximal tubular pressure. 1P, hydrostatic pressure gradient.

glomerular hemodynamics and activation of neurohormonal
systems as have been shown in both experimental and clinical
studies (4, 38). Evidence for exaggerated proximal sodium
reabsorption conjugated with low delivery of sodium to
more distal tubuli during CHF induced by LAD ligation
was derived from clearance experiments where mannitol was
infused (30, 39), inhibition of distal sodium reabsorption (40)
and deoxycorticosterone acetate (DOCA) escape (41). Further
support for this notion came from the findings that restoring
the increased SNFF with angiotensin-converting enzyme (ACE)
inhibitor normalized proximal peritubular capillary starling
forces and sodium reabsorption (41). Yet, direct actions of
Ang II and norepinephrine (NE) secreted from the renal nerve
contribute to the enhanced proximal sodium reabsorption (4).
In this regard, both Ang II and NE may act by modulating
both renal hemodynamics, as well as by directly boosting
proximal sodium epithelial transport, thus augmenting the
overall proximal sodium reabsorption capacity (4). Besides the

proximal tubule, the distal nephron site also takes part in
the exaggerated tubular sodium reabsorption in experimental
models of CHF. Specifically, applying micropuncture technique
in experimental high or low CO CHF revealed enhanced distal
nephron sodium reabsorption (42–45). Moreover, dogs with
CHF induced by vena cava constriction cannot excrete sodium
load due to exaggerated sodium reabsorption by loop of Henle
(46). In this context, reduced medullary blood flow due to
vasoconstriction prevents washout of solutes from the renal
medulla, thus leading to reduced free water excretion and
consequently to impaired urinary dilution (47).

Humoral mechanisms

Most hospitalized CHF patients display a variable degree
of volume overload (48, 49). This is largely attributed to
the mobilization of compensatory anti-natriuretic and
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vasoconstrictive systems including RAAS, SNS, ADH,
and endothelins (ETs), which enhance vascular resistance
and promote salt and water reabsorption by the kidneys
(4). These deleterious actions overcome the activated
vasodilatory/natriuretic substances, such as NPs, nitric
oxide (NO), prostaglandins (PGs), adrenomedullin (AM), and
urotensin II (UII) (13). It is well accepted that salt and water
balance is largely determined by a fine balance between these
antagonistic systems, namely vasoconstrictive/anti-natriuretic
and vasodilator/natriuretic substances. The development of
excessive sodium balance and generalized edema in CHF
represents a milestone where the balance is in favor of the
vasoconstrictive/anti-natriuretic systems (Figure 1). However,
up to 60% of HF patients suffer from a certain degree of kidney
dysfunction (GFR < 60 ml/min), which reduces their ability
to excrete excessive amounts of sodium (32). This subgroup of
CHF patients became of special interest in the last few years,
as numerous studies uncovered that kidney dysfunction in
CHF is a stronger predictor of mortality than impaired cardiac
performance (50–54). Collectively, these findings confirm that
WRF is common in HF and has been associated with decreased
survival, a high rate of hospitalization, and disease progression
(53, 54).

Neurohormonal systems

Vasoconstrictive/anti-natriuretic systems
Renin-angiotensin-aldosterone system

The renin-angiotensin-aldosterone system (RAAS) plays
a critical role in the homeostasis of ECF volume, sodium
balance, blood pressure, and cardiac performance (55, 56).
This sodium/water-retaining and vasoconstrictive system is
activated in hypovolemic and hypotensive conditions which
compromise hemodynamic stability, such as hemorrhage,
hypotension, dehydration, low sodium intake, and activation
of SNS. Our understanding of the RAAS has been evolving
over the last 120 years (57, 58). Classically, the RAAS is
considered as a paracrine/endocrine axis involved in tubular
sodium reabsorption and vasoconstriction, thus may eventually
lead to the development of hypertension and target organ
damage with concomitant inflammation, oxidative stress, cell
proliferation, apoptosis, fibrosis, and coagulation (57, 59). The
system cascade is initiated and regulated by the classic renin
activity originating from the kidneys (Granular cells) (60),
but also expressed locally in the heart during HF (61–64).
Renin produces angiotensin (Ang) I, an inactive 10 amino acid
(aa) peptide from circulating angiotensinogen. Ang I is then
converted by ACE to Ang II, an 8 aa active peptide. ACE is
primarily localized to the endothelial cells of the pulmonary
vasculature. The deleterious impact of RAAS is attributed
to its main component, namely Ang II, where it exerts its
adverse actions by binding to angiotensin II receptor type 1

(AT1R) expressed in various target organs including the kidneys,
heart, and blood vessels. The development of ACE inhibitors
(ACEi), and later of AT1R blockers (ARBs), revolutionized the
therapeutic approach to kidney and heart diseases (65–68),
where both groups of RAAS blockers attenuate cardiac and
renal remodeling and slow down the progression of HF (69–
72) and chronic kidney disease (CKD) (73–75). Aldosterone, the
other active component in the RAAS cascade, was also found
to enhance sodium retention by the principle cells localized to
the collecting duct, thus contributing to ECF expansion and
independently accelerating organ fibrosis, a process revised by
aldosterone antagonists (76).

However, the complexity of the RAAS has been unraveled
in the last two decades, where numerous studies reported that
besides the adverse ACE/Ang II/AT1R axis (the “pressor arm”),
there is a beneficial and protective pathway that attenuates
the adverse vasoconstrictory and salt-retaining effects of the
abovementioned axis (the “depressor arm”) (77, 78). Specifically,
our attention was shifted to another component of the RAAS,
namely angiotensin-converting enzyme 2 (ACE2). The latter
converts Ang II to the bioactive 7-amino-acid peptide, Ang
1–7. Moreover, ACE2 converts Ang I into Ang 1–9, which
can be further converted to Ang 1–7 by ACE. Additional
pathway of Ang 1–7 production involves neural endopeptidase,
or neprilysin (NEP), which converts Ang I directly into Ang 1–7
(79–84).

Ang II exerts its anti-diuretic and anti-natriuretic effects
through the regulation of both renal hemodynamic and tubular
sodium and water transport (55). Specifically, Ang II pressor
action on the kidney decreases renal blood flow and urinary
sodium excretion. In this context, Ang II binds to AT-1 receptors
localized to renal vascular smooth muscle cells, causing
vasoconstriction of both the afferent and efferent arterioles,
resulting in kidney hypoperfusion. Moreover, activation of AT-
1 receptors in the brain increases cardiac and vasculature
sympathetic output, thus increasing CO and total peripheral
resistance along elevated blood pressure. In addition, Ang
II provokes ADH release from the posterior pituitary gland,
which in turn enhances water retention by the collecting duct
to maintain blood volume. Finally, Ang II stimulates thirst,
where the increased water intake increases ECF including
blood volume, which collectively raises blood pressure (55).
The elevated circulatory levels of Ang II or local within-
organ RAAS activation in HF (85) aggravates tubular handling
of salt and water, by directly stimulating proximal tubular
sodium absorption and indirectly via increasing the release
of aldosterone and endothelin, and stimulating thirst despite
a typically low serum osmolality (86). Therefore, blockade
of the RAAS in HF patients with reduced ejection fraction
(EF) by administration of either ACE inhibitors or ARBs
can facilitate sodium excretion although can deteriorate renal
hemodynamics and eventually kidney function due to efferent
arteriole vasodilation (54, 87, 88). In this regard, a meta-analysis
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of published study data by Beldhuis (89) on 28,961 patients
revealed that RAAS inhibitors induce WRF in both HFrEF and
HFpEF. The latter group exhibited an increased mortality risk
when placed on RAAS inhibitors. In contrast, WRF in HFrEF
following treatment with ACE inhibitors increased the mortality
rate to a lesser extent as compared with HFpEF patients on
RAAS inhibitor-induced WRF.

ACE2 is a transcellular protein, which is abundantly
expressed in several vital organs, such as the intestine, kidney,
endothelial cells, heart, lung, brain, and testis (80). In the
heart, ACE2 is widely expressed in the endothelium, smooth
muscle cells, and cardiac myocytes (90). As mentioned above,
locally expressed ACE2 converts Ang II to Ang 1–7 (81), which
exerts vasodilatory, natriuretic/diuretic, anti-inflammatory, and
anti-fibrotic effects via Mas receptor (MasR) (84). Notably,
both clinical and experimental HF displays upregulation of
cardiac ACE2 and enhanced Ang 1–7 production, which
may represent a cardioprotective compensatory mechanism
aimed at counterbalancing the adverse effects of ACE/Ang
II/AT1R axis on the myocardium (84, 90, 91). In this context,
Tripathi et al. have demonstrated that ACE2/Ang 1–7/MasR
exerts a protective role toward systemic and pleural edema
suppression along with enhanced survival in mice model
of HFrEF with progressive dilated cardiomyopathy (DCM),
without comorbidities from modulated blood pressure and renal
failure (92).

In summary, Ang II, the main effector of the RAAS, controls
ECF and urinary sodium excretion via renal hemodynamic and
tubular actions, along with systemic vasoconstriction, as well as
aldosterone and ADH release mechanisms. The intra- and extra-
renal actions of Ang II are exaggerated under a variety of disease
states, such as HF, thus aggravating cardiac dysfunction and
myocardial remodeling. The presence of ACE2/Ang 1–7/MasR
may act as a protective arm to face the deleterious arm of the
RAAS, namely, ACE/Ang II/AT1-R axis.

Sympathetic nervous system

Renal sympathetic nerves innervate the vasculature and
nephrons, where they play a central role in the regulation
of renal hemodynamics and tubular function (93, 94).
Specifically, sympathetic nerve endings were observed
in smooth muscle cells of renal vessels, mesangial cells,
juxtaglomerular granular cells, and the various tubular
segments, including proximal convoluted, Henle’s loop,
and distal tubuli. The early stages of HF are characterized
by high sympathetic activity and high levels of circulatory
NE, which harmfully affect vital organs, including the heart
and kidneys (95). As mentioned above, the activation of
neurohormonal systems during HF is initially beneficial in
maintaining systemic blood pressure (BP) and adequate organ
perfusion, however, it becomes detrimental as the disease
evolves (96). Increased renal sympathetic nerve outflow
attenuates urinary sodium and water excretion through (1)

exaggerated tubular sodium reabsorption throughout the
nephron; (2) hypoperfusion and hypofiltration by inducing
afferent and efferent arteriole vasoconstriction; and (3)
provoking renin secretion from the juxtaglomerular granular
cells (Figure 2), which eventually leads to RAAS activation
(60) and attenuation of the renal actions of ANP (97).
Support for the major contribution of the renal nerve to
renal excretory and hemodynamic derangement was derived
from experimental HF studies showing decreased sodium
retention, hyperperfusion, hyperfiltration, and vasodilation
of both afferent and efferent arterioles following renal
denervation (95, 97, 98). In line with these findings, α or
β receptors antagonists also enhanced urinary excretion of
sodium and water, probably secondary to improvement in
both renal and cardiac hemodynamics and suppression of
renal sympathetic nerve, as well as RAAS activity (1, 99),
although this matter remains somewhat controversial (100).
Collectively, activation of the renal sympathetic nerve composes
a major factor in the anti-natriuretic and vasoconstrictive
systems which largely contributes to avid renal sodium
and water retention characterizing patients with advanced
HF (101).

Anti-diuretic hormone

Since the pioneer report by Szatalovicz et al. in the early
80s (102), several studies have reported elevated circulatory
levels of ADH in patients with HF, especially in those with
advanced CHF and hyponatremia (1). The increased secretion
of ADH in these patients is attributed to non-osmotic stimuli
such as attenuated compliance of the left atrium and activation
of the baroreceptors and RAAS (101, 103). This non-osmotic
release of ADH is largely responsible for hyponatremia, a
clinically important complication of heart failure, as ADH
stimulates V2 receptors (V2) along increased aquaporin-2 AQP-
2 water channel density in the apical side of epithelial cells
in the collecting duct, ensuing water retention and eventually
hyponatremia. The contribution of ADH to the excessive water
balance in CHF is supported by the findings that oral treatment
with V2 antagonists (Aquaretics) provoked significant free
water clearance, low urinary osmolarity, and elevation of
plasma osmolality, along with downregulation of AQP-2 in the
collecting duct (104). Besides the activation of the V2/AQP-
2, ADH also stimulates V1a receptors localized to the vascular
smooth muscle cells, with constriction of coronary vessels
and stimulation of cardiac myocyte proliferation (101, 103).
These findings suggest an adverse role for vasopressin in fluid
overload and cardiac remodeling characterizing CHF patients.
This notion is supported by clinical trials demonstrating that
V2 blockade induces diuresis and lowers congestion without
WRF when administered with furosemide to chronic HFrEF, but
unfortunately did not improve outcomes when applied during
the post-acute phase (105). In summary, these results implicate
ADH in the pathogenesis of water retention and hyponatremia
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characterizing CHF, and that V2 receptor blockade may bear
potential therapeutic properties for clinical CHF.

Endothelin

The endothelin family contains three members, namely
endothelin-1 (ET-1), the most famous representative,
endothelin-2 (ET-2), and endothelin-3 (ET-3). These peptides
are generated and secreted mainly by endothelial cells, and act
in the proximity of their production in a paracrine/autocrine
mode of action via endothelin receptors A and B (ETA
and ETB, respectively). Besides their explicit role in normal
physiology, ETs are involved in the pathogenesis of many
diseases, including cardiovascular and renal disorders (106,
107). Under normal conditions, ET-1 regulates basal vascular
tone, glomerular hemodynamics, and sodium homeostasis.
At the cardiac level, ET-1 synthesis takes place in cardiac
myocytes, where it exerts positive inotropic effects at low
doses, but can cause a reduction in CO at high concentrations.
In addition, numerous studies have demonstrated that the
kidney is a major site of ET-1 synthesis (mainly the inner
medulla), besides being a preferential target organ of this
peptide. Specifically, ET-1 exerts various effects on the kidneys,
where it affects renal function by modulating: (1) renal
vascular resistance; (2) tubular salt and water reabsorption;
and (3) tonus, proliferation, and mitogenesis of mesangial
cells (106). Noteworthy, this system is also involved in
various pathophysiological conditions including hypertension,
myocardial hypertrophy, and inflammation, and in the
development and progression of renal and cardiovascular
diseases, including CKD and CHF (108). Concerning the latter,
ET-1 plays a role in cardiac remodeling via increasing fibroblast
activation and inflammation in the failing heart or secondary
to RAAS activation (108). Furthermore, the endothelin system
is involved in kidney dysfunction in both acute and chronic
kidney failure by inducing deleterious actions such as oxidative
stress, inflammation, renal remodeling, interstitial fibrosis,
glomerulosclerosis, reduced RBF and GFR, and water and
sodium retention (109, 110). It should be emphasized that
CKD and persistent congestion influence HF prognosis as was
demonstrated in patients hospitalized with acute HF (111).
Interestingly, the prognostic impact of these two parameters is
associated with increased cytokine levels, suggesting an adverse
role of inflammation in the prognostic impact of congestion
and CKD and may also interfere with the outcome of these
patients (111).

The pathophysiological involvement of ET-1 in CHF is
supported by a few observations: (1) several studies have
documented upregulation of the ET system in CHF (112). (2)
Both experimental and clinical studies have reported that ET-1
receptor antagonists improved the severity of this disease state.
Considering that CHF is associated with reduced renal perfusion
along increased vascular resistance and elevated levels of ET-1,
it is tempting to suggest a cause-and-effect relationship between

the adverse alteration in renal hemodynamics and the activation
of ET-1 in this clinical setting. Indeed, experimental studies
have shown that administration of bosentan, a mixed ETA/ETB
receptor antagonist, into rats with severe decompensated
CHF induced by placement of aortocaval fistula remarkably
improved RBF, as was evident by enhancement in renal cortical
perfusion (113). In line with these findings, applying tezosentan,
a dual ETA/ETB antagonist, in rats with CHF induced by
myocardial infarction abolished the enhanced renal vascular
resistance (RVR) and improved RBF and urinary salt excretion
(114). These encouraging observations were backed up by
several studies that have shown beneficial effects of chronic
selective ETA blockers (115, 116) or dual ETA/ETB receptor
antagonists (117) in experimental CHF, as was evident by
relieving sodium retention and mitigating renal hypo filtration.
Unfortunately, comprehensive clinical trials failed to show
beneficial effects on morbidity and mortality (108). What
else, fluid retention and elevated serum transaminase levels
were important adverse effects of ET receptor antagonist
agents, especially when using non-selective compounds (118).
Therefore, proving the involvement of the ET system in the
deranged renal hemodynamic and impaired excretory function
in CHF and its therapeutic relevance in this clinical setting
requires further study.

Vasodilatory and natriuretic systems
Natriuretic peptides

The natriuretic peptides (NPs) system plays a crucial
role in maintaining cardio-renal homeostasis by opposing the
abovementioned vasoconstrictor, anti-diuretic, anti-natriuretic,
and tissue remodeling factors/pathways (119–121). The NP
system includes two cardiac hormones, ANP and BNP. Under
normal conditions, ANP and BNP are expressed mainly in the
heart, with the appendages of the atria being the major site.
Previous studies have shown that ANP and BNP encoding genes
(NPPA and NPPB, respectively) play an important role already
in the evolvement of the murine fetal heart (122). NPPA and
NPPB lead to the translation of preprohormones (preproANP
and preproBNP, respectively). Cleavage of the signaling tail
of these peptides produces the inactive prohormones that are
designated to undergo further cleavage by corin and furin
enzymes to produce the potent peptides ANP and BNP,
consisting of 28 and 32 amino acids, respectively (123–126).
Both ANP and BNP contain an N-terminal tail and a 17 amino
acid ring linked by a disulfide bond. The latter is crucial for the
peptides’ biological activity. An additional C-terminal extension
grants the peptides the ability to signal through the NP receptor.
In the atria, the mature and activated BNP, and the proteolytic
product N-terminal proBNP (NT-proBNP), together with the
unprocessed proANP, are stored intracellularly within mature
vesicles, which serve as a warehouse for regulated basal secretion
of NPs (119). However, stimulated secretion of ANP and BNP
occurs via three pathways. Atrial/ventricular wall distention and
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intracardiac volume overload enhance NPs secretion through
the Go/iα-coupled receptor, resulting in higher levels of ANP
and BNP in plasma (127). Through the Gqα-coupled receptor,
several secretagogues, like Ang II, phenylephrine, and ET-1,
may induce the same effect (128). In contrast, inflammatory
and bacterial lipopolysaccharides may augment BNP, but not
ANP secretion, through different pathways leading to p38
activation (129). Interestingly, studies have demonstrated that
stimulated secretion of ANP and BNP happens in a constitutive-
like manner, meaning de novo ANP and BNP are secreted first,
and preferentially via immature, rather than mature vesicles, as
opposed to basal secretion (130).

A third hormone in the NPs system is named C-type
NP (CNP). CNP is expressed mainly in the central
nervous system, vascular endothelial cells, and kidney,
where it functions primarily as a local autocrine/paracrine
hormone. Despite its structural similarity with ANP
and BNP, CNP lacks a C-terminal extension, and thus
does not have natriuretic activity, and its secretion is not
regulated by the heart.

The NPs exert their biological activities through natriuretic
peptide receptors NPR-A and NPR-B. ANP and BNP recognize
and bind NPR-A, and in a considerably less affinity to NPR-
B. The latter constitutes the major binding receptor for CNP.
NPR is a transmembrane receptor containing an intracellular
domain with guanylyl cyclase (GC) activity. After binding to the
receptor, ANP/BNP induces a conformational change in NPR-
A leading to the activation of GC and a subsequent elevation in
intracellular, plasma, and urine cGMP levels (119). By activating
the GC in the various target tissues, ANP and BNP induce
numerous effects, including natriuresis, diuresis, anti-fibrosis,
anti-proliferation, and vasorelaxation, in addition to lowering
blood pressure and cardiac preload. A third receptor, NPR-
C, lacks the GC-coupled intracellular domain and acts as a
clearance receptor through the internalization and degradation
of NPs (119).

Natriuretic peptides blunted response in heart failure
In HF, ANP, and BNP secretion is significantly enhanced,

and their plasma levels are substantially elevated (131–133).
Today, NT-proBNP and BNP plasma levels serve as clinical
biomarkers of choice for diagnosing acute decompensated heart
failure (ADHF) and are also used as prognostic biomarkers
(33, 134–136). An international study suggested incorporating
NT-proBNP as a continuous measure along with other
clinical variables to provide a more consistent, accurate, and
individualized approach to HF patients (137). Nonetheless, one
of the paradoxes seen in HF patients is the attenuated NPs effects
despite their exceptionally elevated circulating levels in the
plasma (138, 139). This phenomenon of NPs resistance/blunted
response in HF has been of great interest for researchers in the
last two decades, and many mechanisms have been suggested to
explain the apparent paradox as outlined below:

Hemodynamic alterations: Hemodynamic changes and the
decrease in CO along with a subsequent decline in renal
perfusion occurring in HF, which have been widely studied and
are well defined (6, 140), might be of paramount significance
in the pathophysiology of renal hypo-responsiveness to NPs.
NPs have been shown to undergo free filtration in the
glomeruli and exert their biological effects in renal tubuli. In
addition, HF syndrome is characterized by substantially elevated
neurohormonal factors including Ang II, aldosterone, ADH,
ET-1, and the SNS, all of which contribute to the attenuated
renal and systemic effects of ANP and BNP (see above). Thus,
poor renal blood perfusion, and the state of neurohormonal
overactivation, may be key players in the attenuated effects of
NPs in the kidney.

Post-translational modifications of natriuretic peptides: The
abundance of the less-active forms of natriuretic peptides
can be a result of post-translational modifications, which
have been demonstrated by several studies to have the
ability to modulate the activity, stability, and potency of
NPs. This important fine-tuning ability can be achieved
by the process of O-glycosylation of specific amino acids
within the peptide (141–144). Semenov et al. (123, 145)
have shown that the processing of proBNP by HEK293 cells
expressing human furin and corin enzymes is suppressed by the
O-glycosylation at threonine 71 amino acid located closely to
the cleavage site. Furthermore, when incubated with purified
furin, O-glycosylated proBNP extracted from the plasma of
HF patients was significantly less activated when compared to
non-glycosylated proBNP.

In another study, O-glycosylation modifications have
been identified on all three NPs extracted from porcine heart
and human prostate tissues. In addition, two O-glycosylation
sites were identified on the mature ANP hormone, both
within the highly conserved receptor binding region.
Further in vivo and in vitro assays have demonstrated
ANP glycosylation to positively affect circulating half-life by
hampering the activity of the NPs degrading enzymes. However,
ANP glycosylation negatively affected NPR-A activation.
Interestingly, O-glycosylated proANP molecules were found
in plasma extracted from human patients with a relatively
high concentration of proBNP, estimated to account for
10% of all circulating proANP (146). Vodovar et al. (147)
conducted studies on plasma obtained from 683 patients. It was
revealed that HF patients had 1.5-fold higher concentrations
of O-glycosylated proBNP compared to patients with ADHF
or patients with dyspnea of non-cardiac origin. Furthermore,
a significant negative correlation was observed between the
concentration of glycosylated proBNP and the activation
byproduct NT-proBNP, in both ADHF and non-ADHF
patients. Moreover, despite having no difference in furin plasma
concentrations, the enzyme’s activity was extremely high in
ADHF patients among all three subgroups. Interestingly, no
difference was observed in corin’s activity or concentration
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between all groups. These observations suggest that post-
translational modifications likely occur in any case of chronic,
but not acute, overproduction of proBNP.

Altogether, these data suggest an additional explanation for
the reduced response to NPs resulted from the post-translational
O-glycosylation of proBNP, which was shown to be enhanced in
chronic HF and reduced in the acute state.

Increase in peripheral degradation and NPR-C clearance: The
increase in NPs peripheral degradation and NPR-C clearance
occurring in HF may also contribute to this phenomenon.
Once released into the circulation, NPs may undergo proteolytic
degradation by several enzymes. Neprilysin (NEP), dipeptidyl
peptidase 4 (DPPIV), insulin-degrading enzyme (IDE), peptidyl
arginine aldehyde protease (PAAP), and meprin-A are all
proteolytic enzymes capable of degrading and inactivating the
NPs, each having different cleavage site and distinct affinity to
the various peptide forms (148–153). One possible explanation
for the NPs paradox seen in HF may be the abundance of smaller
and inactive NPs as a result of enzymatic degradation in the
circulation (154, 155).

In a study published by Dos Santos et al. (156), HF
patients exhibited a 130% increase in circulating DPPIV activity
compared to healthy subjects, with an inverse correlation
between the increase in enzyme activity and left ventricular
ejection fraction (LVEF). Similar findings were observed in rats
with HF compared to sham-operated animals, with the former
demonstrating an increase in both the abundance and the
activity of DDPIV, both in the plasma and in heart tissue (156).
Furthermore, when treated with a DDPIV inhibitor for 6 weeks,
HF-induced rats exhibited a significant attenuation of left
ventricle end-diastolic pressure, systolic performance, chamber
stiffness, cardiac remodeling, and pulmonary congestion.

In another study conducted by Bayes-Genis et al. (157),
it was demonstrated that in patients with HF, circulating
levels of NEP positively correlated with hospitalization and
cardiovascular death. Interestingly, upregulation of mRNA and
immunostaining of NEP in the kidneys of rats subjected to
different HF models was evident (158). These findings were of
paramount importance as they provided a scientific rational for
the development of drugs aimed at targeting NEP for clinical
use. Indeed, studies have shown that dual blockade of AT1R and
NEP in HF patients was more efficient in reducing the mortality
from cardiovascular causes or hospitalization due to worsening
HF than was ACE inhibition alone (159, 160). Moreover,
combined inhibition of AT1R and NEP led to a greater reduction
in NT-proBNP serum levels in patients admitted with ADHF,
as compared to ACE inhibitors alone (161). These data indicate
that NEP plays a major role in HF syndrome and eliminating its
action is beneficial in HF patients.

In addition to catalytic degradation, evidence suggests an
increase in NPs clearance via NPR-C in patients with HF
(158). As expected, blockade of the NPR-C in experimental HF

induced a dose-dependent increase in ANP and cGMP plasma
levels, as well as natriuresis and diuresis (162). These findings
shed light on the adverse role of NPs clearance in HF, which
along with NPs peripheral degradation contribute to the NPs
paradox seen in HF.

Altogether, these data suggest that NPs degrading enzymes,
including DPPIV and NEP, together with increased intracellular
clearance, may play a crucial role in the development of NPs
blunted response in HF.

Downregulation of NPR-A receptors and changes in
downstream signaling: Downregulation of NPR-A receptors
and changes in downstream signaling might play an important
role in this state of hyporesponsiveness to NPs. The increase
in NPs degradation and clearance may partially explain the
NPs paradox in HF, especially the blunted response to the
administration of synthetic active NPs seen in patients with HF
(163). Several studies conducted on HF patients and HF models
of experimental animals have suggested a downregulation of
NPR-A activity and expression in different tissues, including
the kidney (139). It should also be emphasized that elevated
expression of phosphodiesterase-5 (PDE5), a cGMP hydrolyzing
enzyme, might also contribute to renal hyporesponsiveness to
NPs (139). These data shed more light on the complexity of HF
syndrome and suggest that multiple mechanisms underlie the
renal hypo-responsiveness to NPs in HF.

Aberrant natriuretic peptides activation: In addition to
the abovementioned factors and mechanisms involved in the
pathogenesis and the development of the NPs paradox in HF,
the NPs machinery might constitute a major player in the
evolvement of this pathological state. An aberrant machinery
system unable to meet the body’s requirements in HF, in which
it is incapable of producing and/or secreting mature and active
hormones, may lead to a pathological state of NPs deficiency and
a subsequent neurohormonal imbalance.

Corin is a type-II transmembrane serine protease expressed
mainly in the heart (164, 165). By converting proANP
and proBNP to their active forms through precise and
regulated enzymatic cleavage (124, 125), corin is an important
regulator of water and sodium balance, blood pressure, and
cardiac remodeling. Therefore, disruption of its expression
and/or activity may contribute to the development of several
cardiovascular diseases (166–173).

Despite its crucial role, only a few experimental and clinical
studies examined the status of cardiac corin under pathological
conditions. Moreover, the reported findings were inconsistent.
While some studies demonstrated upregulation of corin, others
reported down-regulation of this enzyme in HF (168, 174–
180). These conflicting results may stem from the application of
different models of HF, the duration of HF, the studied chamber
of the heart, and more. Yet, the demonstration of decreased
cardiac levels of corin in HF may subsequently suggest poor
and insufficient activation of NPs and thus partially explain the
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aberrant renal response to NPs. In this context, the functional
role of cardiac corin in HFrEF was experimentally demonstrated
by the genetic restoration of reduced cardiac corin levels in
mice with DCM, where it caused improvement of contractile
function, suppression of pleural edema, and extended lifespan
through cleavage of the pro-ANP and cGMP modulation (168,
181). However, restoration of depressed cardiac corin expression
improved systolic function and reduced HF-related systemic
and pulmonary edema along with attenuation of HFrEF and
survival prolongation through mechanism(s) independent from
proANP cleavage (182).

Additionally, corin is also found in the blood system
in its circulating forms. Previous studies demonstrated the
decreased concentration of soluble circulating corin in patients
with HF and acute myocardial infarction, compared to
healthy individuals (183–191). Noteworthy, clinical studies
demonstrated that decompensated heart failure, assessed by
edema and elevated plasma ANP/BNP levels, is associated with
reduced corin levels and decreased cleavage of proANP/proBNP
peptides (179, 192–195). These observations suggest an
inefficient activation of secreted pro-natriuretic peptides which
conceivably contributes to HFrEF decompensation (191, 194,
195). In contrast to these findings, Wang et al. (192)
reported that acute myocardial infarction (<72 h) induces
elevated levels of circulating corin along with a decrease in
cardiac corin levels. Interestingly, plasma corin levels were
inversely correlated with heart function at the early phase of
acute myocardial infarction, thus may reflect the severity of
myocardial damage.

Moreover, corin is synthesized as an inactive zymogen
and is subsequently activated by proprotein convertase
subtilisin/kexin-6 (PCSK6) (196, 197). One might suggest
that disturbance in the expression and/or activity of PCSK6
may lead to inactivated corin, and subsequently unprocessed
and inactive natriuretic peptides. Recently, we demonstrated
decreased cardiac PCSK6 expression and immunoreactive
levels in rats with decompensated HF (198). To the best of
our knowledge, up to date, there is still no additional data
concerning PCSK6 cardiac and circulating abundance or
activity in HF, and its contribution to cardiac remodeling,
corin activation, and natriuretic peptide processing in this
context is unknown.

Inaccurate immunoassays: An additional contributing
factor may be the increase in the secretion of the less active
forms of BNP seen in HF patients, rather than the mature
active hormone BNP1−32. These peptides include NT-
proBNP1−76, proBNP1−108, and additional small peptides
resulting from peripheral enzymatic degradation and include
BNP3−32, BNP5−32, and BNP8−32 (199–202). Today, different
commercial immunoassays are available for detecting NT-
proBNP1−76 and BNP1−32 in human plasma. Importantly,
these assays can also detect other less-active forms of BNP,
whether as a result of degradation or glycosylation, and their

specificity and sensitivity depend on the cross-reactivity of each
assay (155).

A study by Hawkridge et al. (203) measured the active
BNP1−32 levels in the plasma of four HF patients using mass
spectrometry. Surprisingly, the group did not detect BNP1−32

in these plasma despite the substantially high levels of BNP1−32

reported by using commercial immunoassay on the same
plasma. An additional study by Seferian et al. (204) revealed that
proBNP1−108 is the major immunoreactive BNP form in plasma
of HF patients, by using specific monoclonal antibodies.

Thus, the high circulating-BNP-levels state seen in HF can
be misleading, as these elevated levels may primarily reflect
both the inactive and the less potent forms of NPs. In this
case, while high circulating BNP levels may constitute a reliable
biomarker for HF, patients may be in a state of natriuretic
peptide deficiency.

Renal venous congestion

The observation that elevated CVP results in increased
outflow pressure in the renal veins in association with renal
dysfunction has been first recognized in 1931 (205). In heart
failure patients, several studies showed an association between
increased CVP and renal dysfunction (32, 206) (Figure 2).

The contribution of renal venous congestion to renal
dysfunction in HF is complex, involving multiple contributing
mechanisms (Figure 2) (7). Increased renal venous pressure
increases pressures along the renal vascular tree, thus
decreasing RBF (207) and arteriovenous pressure gradient
in the glomerulus and thereby decreasing GFR (7).

An increase in renal venous pressure can elevate intrarenal
interstitial pressure, which in turn affects the entire capillary bed
and the tubules (208–211). The kidney is an encapsulated organ
and therefore responds to raised renal venous pressures with
a disproportionate elevation in intracapsular pressure, which
also leads to increased intrarenal interstitial pressure (212). This
leads to compression of the tubules (with relative sparing of
the renal cortex), increased tubular fluid pressure, with reduced
GFR due to an increase in hydrostatic pressure in Bowman’s
capsule (210). Increased interstitial pressure may promote
tubular inflammation and fibrosis, affect tubuloglomerular
feedback and activate neurohormonal systems (213) (Figure 2).

However, the pattern of renal venous pressure increase in
patients with heart failure is substantially different from those
used in experimental models, where renal venous pressure
was abruptly raised to extremely high values that are usually
not seen even in patients with severe heart failure (e.g., 25–
50 mm Hg) (209, 210, 213, 214). For example, in the isolated
perfused rat kidney model, GFR was not significantly altered
until the imposed venous pressure reached 25 mm Hg (210).
In a dog model of renal vein hypertension, renal dysfunction
occurred only when cardiac output was concomitantly reduced
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(24). Notwithstanding, it is possible that the kidneys are more
sensitive to elevated CVP in the setting of chronic heart failure,
such that GFR may fall with lower CVP than required in healthy
animals (215).

In experimental models, renal dysfunction secondary to
venous congestion is potentially reversible, at least partially.
Lowering renal vein pressure immediately improved its
associated renal hemodynamic derangements, leading to
improved urine output and GFR. Clinically, the potential for
reversibility is demonstrated in patients who show improved
renal function after decongestive therapy with diuretics or
patients with improvement in right ventricular function
secondary to a reduction in pulmonary pressures (216–218).

Mullens et al. were the first to report that elevated CVP was
associated with WRF in severe HF with reduced cardiac index
who required inotropes or vasodilators (32). In this study, the
association between baseline venous congestion and worsening
renal function was stronger than the association with CO.

However, the findings of this initial report were not
consistent. In subsequent studies, the magnitude of reduction in
CVP did not result in improvement in renal function or lower
incidence of WRF (219–221).

The effect of the reduction in venous pressure may be
difficult to demonstrate clinically given that pressure has little
correlation with volume in the venous system (222). Veins
have a high compliance and are easily able to accommodate
changes in blood volume. The compliant nature of the venous
vessels (which contain >70% of total blood volume) establishes a
relative pressure-volume disconnection, allowing large changes
in blood volume to be associated with small changes in pressure.
Thus, even an effective treatment of volume overload may not
be sufficient to produce a meaningful reduction in CVP and, in
turn, in renal function.

More recent attempts to prove this concept clinically in
patients with HF involve a device-based direct reduction (rather
than with diuretics and vasodilators) of renal vein pressure.
Revamp Medical developed the percutaneous Doraya catheter,
which is positioned infra-renally (223). The distal frame opening
can be adjusted to produce a partial obstruction of the venous
flow at this level, thus resulting in a reduction of renal venous
pressure. The first-in-human study of the Doraya catheter in
acute heart failure patients (NCT03234647) demonstrated a
substantial pressure reduction at the level of the renal veins
(12.4 ± 4.7 mm Hg compared to baseline). This was associated
with an increase in urine output from 77.1 ± 25 mL/h at
baseline, to 200.8 ± 93 mL/h during device deployment on a
stable diuretic dose (223).

Magenta Medical developed a transcatheter renal
venous decongestion system designed to reduce the
pressure in both renal veins using an axial-flow pump-
head positioned in the inferior vena cava (IVC). Two sealing
elements are positioned above and below the kidneys to
compartmentalize the renal segment of the IVC and allow

selective reduction of renal venous pressures. A clinical trial
(NCT03621436) is underway.

Intra-abdominal pressure

The renal consequences of intra-abdominal hypertension
(IAH) secondary to fluid overload and visceral edema, and
its association with acute kidney injury (AKI), have been first
recognized in critically ill patients such as those with abdominal
surgery, trauma, and major burns (7, 224, 225). More recently,
this entity has been implicated as an important contributor to
renal dysfunction in HF based on animal (215, 226) and human
(227) studies.

The normal intra-abdominal pressure (IAP) ranges from 4
to 7 mmHg (228). IAH is defined as a sustained or repeated
abnormal increase of IAP to ≥12 mmHg (224, 228). However,
given the susceptibility to renal dysfunction in heart failure,
there are data suggesting that even smaller increases in IAP, in
the range of 8–12 mm Hg, can induce a reduction in GFR and
sodium excretion (215, 229).

The deleterious effects of IAP on the kidney are closely
linked and overlap with those of the aforementioned
pathophysiology of venous congestion (Figure 2) and
congestive nephropathy (227). There is a direct compression
of abdominal contents that result in a prominent reduction
in RPF (compression of renal arteries) and elevation in renal
parenchymal and renal vein pressures (228). The abdominal
perfusion pressure (APP) is defined as the difference between
the mean arterial pressure and the IAP. As IAP increases, the
perfusion of organs or vessels in or near the abdomen falls even
with normal mean arterial pressure (224).

In normal physiologic states, hydrostatic pressure in
Bowman’s space (and therefore in the proximal tubules) is
negligible, promoting glomerular filtration; in the presence
of IAH, Bowman’s space and proximal tubular pressure will
be increased close to IAP, resulting in reduced GFR (214,
224, 230). The decreased glomerular hydrostatic pressure (due
to hypoperfusion) also contributes to the reduction in the
glomerular filtration gradient (225). Elevated IAP also up-
regulates the RAAS (231). Because IAH increases renal venous
pressure, which in turn produces renal interstitial congestion,
the result is a vicious cycle that further increases IAP and renal
venous pressure (224).

A reduction in IAP with paracentesis leading to
improvement in kidney function has been reported in
hepatorenal syndrome (224). Because the majority of patients
with IAH are hypervolemic, systemic volume removal also leads
to a prompt decrease in IAP and concomitantly improves renal
venous hypertension (232).

Few data are available on IAH in HF. A study of 40
patients has shown that 24 (60%) had elevated IAP and 4
(10%) demonstrated IAH despite the absence of overt ascites
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(229). A higher prevalence of impaired renal function was
observed in patients with IAP, and improvement in kidney
function was associated with a reduction of IAP. In a small
prospective analysis of patients with acute heart failure, diuretic
resistance, and mild IAH, a reduction in IAP with ultrafiltration
or paracentesis (if ascites were present) resulted in an increase
in urine output and a reduction in serum creatinine (227).

Currently, few data are available regarding the indications
to measure IAP in patients with HF and fluid overload. If IAH
is documented, prompt volume removal must be considered
to decrease IAP.

Edema therapy in heart failure

Congestion is also a hallmark of HFpEF and is associated
with adverse outcomes (233, 234). Patients with HFpEF
and HFrEF present acutely with comparable clinical and
echocardiographic evidence of venous congestion and renal
dysfunction (235).

In addition to salt and fluid retention, congestion can also be
triggered by fluid redistribution (236, 237). Blood redistribution
across different compartments may lead to rapid changes in
systemic and pulmonary venous pressures despite constant
total blood volume (238, 239). For example, sympathetic
activation can increase preload by a functional shift of blood
from the splanchnic venous reservoir to the central vascular
compartment (222). A rapid increase in systemic pressure and
systemic vascular resistance, leading to afterload mismatch
may also trigger symptoms in patients with excessive afterload
sensitivity and impaired preload reserve (240).

Current recommendations for the treatment of hospitalized
patients with fluid overload (241–243) adopt an algorithm
originally used in the CARRESS-HF trial (244) (Figure 3). The
algorithm entails a stepped pharmacologic care that ensures
appropriate diuretic doses, with frequent monitoring of urine
output and clinical response (Figure 3) but has not been
rigorously validated in clinical trials.

Diuretics

The efficacy of the diuretic effect is assessed by measuring
urine output and spot sodium urine concentration, where
effective diuresis is defined as urine volume of >100 to 150 mL/h
or urine spot Na+ >50–70 mEq/L with a urine output goal
of 3–5 L/day (241). Of note, fluid intake during decongestive
therapy can be substantial, such that net fluid loss remains
small despite apparently satisfactory urine output. In one study,
fluid intake exceeded 50% of urine output in two-thirds of the
patients (245). In addition, the patient’s weight is not considered
in these protocols. A urine output of 2 L/day can be interpreted
differently in a patient weighing 70 or 110 Kg.

When this goal is not met, doubling the diuretic dose
is recommended. Because the dose-response relationship of
a loop diuretic is log-linear, the natriuretic response to each
double the dose of a loop diuretic may be modest (246,
247). The addition of oral metolazone or chlorothiazide may
provide a greater natriuretic response and urine output (248,
249), with an increased risk for hypokalemia, hyponatremia,
worsening renal function, and hypotension (249). The addition
of acetazolamide to loop diuretic therapy in patients with acute
decompensated heart failure resulted in a higher incidence of
successful decongestion (250).

Recently, sodium-glucose co-transporter 2 (SGLT2)
inhibitors have been shown to induce significant natriuresis,
particularly when added to loop diuretics (251–253).

The usual goal is complete decongestion, with the absence
of signs and symptoms of elevated resting filling pressures,
because rehospitalization rates and mortality are considerably
lower in patients who are free of clinical congestion at the
time of hospital discharge (241, 242). However, complete
decongestion can be hampered by several factors including
low cardiac output, dominant right heart failure and severe
pulmonary hypertension, severe renal dysfunction, low plasma
oncotic pressure, and symptomatic hypotension (242). For these
patients, the goal of edema resolution may need to be relaxed.
For example, patients with right ventricular dysfunction,
pulmonary hypertension, and tricuspid regurgitation often
cannot be decongested to a normal jugular venous pressure.
Currently, there is a great interest in novel clinical approaches
to treat decongestion. Ongoing clinical trials of drugs or devices
for the treatment of congestion are depicted in Table 1.

Renin-angiotensin-aldosterone system
inhibitors

Renin-angiotensin-aldosterone system inhibitors
significantly improved morbidity and mortality in chronic
HF patients with HFrEF (260). The beneficial effects of RAAS
blockers in HFrEF occur at the cardiac and vasculature levels,
yet they induce a reduction in GFR and WRF due to efferent
vasodilation, thus increasing the risk of poor clinical outcomes
although the mortality benefit is maintained (53, 89, 261).
Evidence for the involvement of the RAAS in the development
of elevated sodium balance can be derived from studies showing
that the renal and hemodynamic response to ANP is impaired in
experimental CHF of various etiologies, and that administration
of either ARB or ACE inhibitor restores this blunted response
to ANP (13). In the last two decades, the adverse role of
aldosterone in the pathogenesis of CHF was established (262).
Besides promoting sodium retention, aldosterone contributes
to vascular and cardiac remodeling by inducing perivascular
and interstitial fibrosis (262, 263). Therefore, the addition of
small doses of spironolactone or finerenone to standard therapy
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FIGURE 3

Algorithm for decongestive therapy.

substantially reduces the mortality rate and morbidity in CHF
patients (262, 264, 265). At the renal level, RAAS blockers
induce diuretic and natriuretic responses, especially at the
initial stages of their administration (266).

Beta-blockers

When given with ACEi or diuretics, β-blockers have been
shown to reduce mortality and morbidity in patients with
HFrEF (267). Beta-blockers should be initiated in clinically
stable, euvolemic patients at a low dose and gradually increased

to the maximal tolerated dose. Since activation of the β1 receptor
stimulates renin secretion, one may assume that the beneficial
effects of β-blockers at both the cardiac and renal levels are
partially attributed to attenuation of renin secretion.

Sodium-glucose co-transporter 2
inhibitor

Several clinical trials have demonstrated that SGLT2
inhibitors cause a significant reduction in HF hospitalization
(268–270). These beneficial effects on HFrEF patients persist
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TABLE 1 Ongoing clinical trials of drugs or devices for the treatment of congestion in HF.

Study ClinicalTrials.gov
identifier

Agent/Device Clinical setting Hypothesis

ADVOR trial
(254)

NCT03505788 Acetazolamide AHF Acetazolamide improves decongestion when combined
with loop diuretic therapy in AHF

AVANTI trial
(255)

NCT03901726 Pecavaptan, a dual
V1a/V2 AVP

receptors antagonist

AHF Pecavaptan improves decongestion when combined
with loop diuretic therapy in AHF

TRANSFORM-
HF trial
(256)

NCT03296813 Torsemide Stable HF Torsemide comparative-effectiveness trial of torsemide
versus furosemide

REVERSE-HF NCT05318105 Ultrafiltration –
Aquadex system

AHF Ultrafiltration versus IV diuretics in worsening heart
failure

DICTATE-AHF
trial (257)

NCT04298229 Dapagliflozin AHF Efficacy and safety of initiating dapagliflozin within the
first 24 h of hospitalization in patients with AHF
compared to usual care

Reprieve
cardiovascular
system (258)

NCT05015764 Reprieve system AHF Reprieve system, which continuously monitors urine
output and delivers a matched volume of hydration
fluid sufficient to maintain the set fluid balance rate,
compared with standard diuretic-based regimen
improves decongestion in AHF

Aortix CRS pilot
study

NCT04145635 Aortix pump Cardiorenal syndrome An elevation of the safety and performance of the
Aortix system for intra-aortic mechanical circulatory
support in patients with cardiorenal syndrome

SAHARA study NCT04882358 Alfapump DSR
system

Volume overloaded HF Feasibility and safety study of the alfapump DSR
system in the treatment of volume overloaded heart
failure

DAPA ACT
HF-TIMI 68

NCT04363697 Dapagliflozin AHF Effect of in-hospital initiation of dapagliflozin versus
placebo on the clinical outcome of cardiovascular death
or worsening heart failure

RELIEVE-HF
trial (259)

NCT03499236 V-Wave Interatrial
Shunt

Stable HF Safety and effectiveness of the V-Wave Interatrial
Shunt System for improving meaningful clinical
outcomes in patients with NYHA functional class II,
III, or ambulatory class IV HF

even in non-diabetic patients as was reported by DAPA-
HF and EMPEROR-Reduced trials (271–273). Specifically,
dapagliflozin significantly reduced the primary endpoint of
worsening HF or cardiovascular death in the non-diabetic
and diabetic groups, respectively, showing its similar efficacy
regardless of the presence or absence of diabetes (273).
Similar results were obtained by The EMPEROR-Reduced trial,
where empagliflozin reduced the combined primary endpoint
of cardiovascular death or HF hospitalization by 25% (272).
In both DAPA-HF and EMPEROR-Reduced trials, attenuation
of eGFR decline was observed following its greater initial drop
due to the reduced glomerular hyperfiltration. The mechanisms
underlying these beneficial effects include improvement in
insulin secretion and sensitivity, osmotic diuretic and natriuretic
effects, and resulted reduction of preload and afterload,
augmentation of loop diuretics natriuretic action, improvement
in myocardial energetics, increase oxygen delivery to the failing
myocardium secondary to hemoconcentration, anti-oxidative
stress and anti-inflammation (268, 274). At the renal level,
SGLT2 inhibitors exert cardiorenal protection beyond these

effects, where their natriuretic action due to inhibition of
SGLT2 at the proximal tubule and increased sodium to macula
densa activates tubuleoglomerular feedback (TGF) as evident
by afferent arteriole vasoconstriction, thus preserving renal
function as well as improve renal outcomes observed in patients
with HF (268, 274).

Sacubitril/valsartan

Since either ARBs or neprilysin inhibitors have shown to
improve cardiac and renal function in both experimental and
clinical CHF (1, 268, 275), a combined drug, sacubitril/valsartan
(ARNI) was introduced in the last decade and became a key
drug for the treatment of HFrEF (276, 277). Recent data
demonstrated that sacubitril/valsartan, a combined angiotensin
receptor blocker and neprilysin inhibitor, significantly reduced
cardiovascular mortality and hospitalization due to worsening
HF among HFrEF patients, as compared to an ACEi (160).
Besides counteracting the negative cardiorenal effects of the
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upregulated RAAS via AT1R blockade, inhibition of neprilysin
by ARNI increases NPs by preventing their degradation, thus
inducing natriuresis, reduction of blood pressure, inhibition of
cardiac myocyte hypertrophy, apoptosis, and fibrosis (277).

Summary and conclusion

HFrEF is associated with renal dysfunction, reflecting
the interconnection between the heart and the kidney.
Multiple mechanisms underlie this interdependence including
hemodynamic alterations manifested by insufficient peripheral
and renal perfusion, along with activation of neurohormonal
systems. Exaggerated activation of these factors results in
deleterious effects on both the kidneys and the heart, including
sodium and water retention, vasoconstriction, increased central
and renal venous hypertension/congestion, as well as increased
IAP. The latter was shown to induce renal hypoperfusion and
hypofiltration. Besides the activation of vasoconstrictor/anti-
natriuretic neurohormonal systems, HF is elevated by levels
of NPs, yet their beneficial natriuretic and anti-fibrotic effects
are attenuated due to the supremity of the deleterious
neurohormonal systems as evident by persistent sodium and
water retention and cardiomyopathy. As our understanding
of the pathogenesis of cardiac remodeling and sodium
retention characterizing CHF is gradually improving, the
introduction of mechanistic-based treatments equivalently
increases (243). These include neurohumoral blockers such as
β-receptor blockers, ACE inhibitors, ARBs, aldosterone receptor
antagonists, besides diuretics, the cornerstone therapy, and most
recently SGLT2 inhibitors. All these therapies aimed at reducing
cardiac remodeling and restoring normal sodium balance along
the euvolemic state (88, 267, 278). Although the application of
diuretic therapy is widely adopted in acute decompensated CHF
and chronic HF, the need for loop diuretic utilization should
be tapered continuously to prevent the rebound of sodium
retaining/vasoconstrictor systems. Intriguingly, new drugs in
the treatment of chronic HF, which also decrease sodium
avidity, have demonstrated improved HF hospitalizations and

survival (4). Therefore, the introduction of SGLT2 inhibitors
and widening their clinical use beyond diabetes may represent a
game changer in the treatment of HFrEF and renal dysfunction.
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