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Design and analysis of stratified clinical
trials in the presence of bias

Ralf-Dieter Hilgers,1 Martin Manolov,1 Nicole Heussen1,2

and William F Rosenberger3

Abstract

Background: Among various design aspects, the choice of randomization procedure have to be agreed on, when

planning a clinical trial stratified by center. The aim of the paper is to present a methodological approach to evaluate

whether a randomization procedure mitigates the impact of bias on the test decision in clinical trial stratified by center.

Methods: We use the weighted t test to analyze the data from a clinical trial stratified by center with a two-arm parallel

group design, an intended 1:1 allocation ratio, aiming to prove a superiority hypothesis with a continuous normal

endpoint without interim analysis and no adaptation in the randomization process. The derivation is based on the

weighted t test under misclassification, i.e. ignoring bias. An additive bias model combing selection bias and time-

trend bias is linked to different stratified randomization procedures.

Results: Various aspects to formulate stratified versions of randomization procedures are discussed. A formula for

sample size calculation of the weighted t test is derived and used to specify the tolerated imbalance allowed by some

randomization procedures. The distribution of the weighted t test under misclassification is deduced, taking the sequence

of patient allocation to treatment, i.e. the randomization sequence into account. An additive bias model combining

selection bias and time-trend bias at strata level linked to the applied randomization sequence is proposed. With these

before mentioned components, the potential impact of bias on the type one error probability depending on the selected

randomization sequence and thus the randomization procedure is formally derived and exemplarily calculated within a

numerical evaluation study.

Conclusion: The proposed biasing policy and test distribution are necessary to conduct an evaluation of the

comparative performance of (stratified) randomization procedure in multi-center clinical trials with a two-arm parallel

group design. It enables the choice of the best practice procedure. The evaluation stimulates the discussion about the

level of evidence resulting in those kind of clinical trials.
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1 Introduction

Large clinical trials often stratify the randomization on a small collection of covariates that may introduce
heterogeneity into the patient stream. An important covariable in multi-center trials is often the clinical center,
as different study personnel, clinical settings, and patient populations may result in differential study outcomes.1

A stratified population-based analysis can be performed with or without stratification in the design. Less is known
about the impact of stratification when there is a bias in the clinical trial. In this paper, we explore this issue both
for selection bias and chronological bias, and we demonstrate the impact of these analyses on a weighted stratified
analysis. In so doing, we explore the role of specific stratified randomization procedures (RPs) and how certain
procedures may mitigate the effects of bias. The recognition of the role of RPs in mitigating bias has been explored
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in prior research for unstratified trials.2–6 But because stratification into K strata creates K different independent
randomized clinical trials, and a stratified test combines K independent tests, the impact of bias can be more
pronounced.

The paper is organized as follows: In Section 2, we describe different stratified RPs and discuss aspects
to formulate stratified versions of RPs. In Section 3, we derive a formulation of Fleiss1 stratified test
statistic preserving the allocation sequence and derive the distribution of the test statistic taking bias into
account but ignoring bias in the analysis and mention some sample size considerations for the stratified test. In
Section 4, we specify the bias model in the form of an additive combination of strata-specific selection bias and
strata-specific time-trend bias linked to stratified allocation sequence. The criterion introduced in Section 5 is used
to summarize the impact of the allocation sequence-specific bias on the type I error probability over the range of
all sequences induced by a specific RP. Consequently, an assessment of different RPs is enabled which guides the
choice of an RPs for application in a particular clinical trial setting. The methodology is applied to some-specific
scenarios in Section 6 to illustrate the effects. We discuss the findings in Section 7 and draw conclusions in
Section 8.

2 Stratified RPs

RPs for clinical trials for two treatments are well described in literature.2 In principle, any RP used for two-
treatment clinical trials can be employed within strata in a stratified randomization. A comprehensive review is
given in Rosenberger.2 Complete randomization in which patients are assigned to treatments with probability 1/2
is rarely used in stratified clinical trials. Rather, some form of restricted randomization is employed in an effort to
balance treatments within strata. Hilgers6 categorized restricted RPs that force balance in probability, force
balance using a maximal tolerated imbalance, or force terminal balance. A selective list of restricted RPs is
given as follows2:

. Efron’s biased coin design (EBC(p)), which consists of flipping a biased coin with probability p � 0:5 in favor of
the treatment which has been allocated less frequently and a fair coin in case of equal numbers of treatment
assignments,7

. Big stick design (BSD(a)), which can be implemented via complete randomization with a forced deterministic
assignment when a maximal tolerated imbalance a is reached during the enrollment,8

. Random allocation rule (RAR), which assigns half the patients to E and C randomly,9

. Permuted block randomization (PBR(b)) with block size b uses RAR within blocks of b patients, for b
even,10

. Maximal procedure (MP(a)) which uses the allocation sequences of RAR by additionally imposing a maximal
tolerated imbalance (a) and assigning equal probability to all such sequences.11

Note that EBC(p) may be classified as a restricted RP forcing balance in probability. BSD(a) forces balance by
maximal tolerated imbalance a during the allocation process but does not force terminal balance. Restricted RPs
with a maximal tolerable imbalance and terminal balance are PBR(b) and MP(a).

The International Council of Harmonization stated in the E9 recommendation (ICH E9)

It is advisable to have a separate random scheme for each centre, i.e., to stratify by centre or to allocate several whole
blocks to each centre.

The European Medicines Agency ‘‘Guideline on Clinical Trials in Small Populations’’ recommends stratified
randomization to improve power. Using permuted blocks within each stratum is the most popular method of
stratified randomization, and this is often called the stratified block design. Blocks can be selected with a fixed size
or with variable sizes. However, blocking is not the only method to use within strata. The ICH E912 guidelines also
state that ‘‘different trial designs will require different procedures for generating randomization schedules.’’ We
now define stratified randomization more formally.

Consider the allocation zji 2 f0, 1g of patients i ¼ 1, . . . , nj either to the treatment E if zji¼ 1 or C if zji¼ 0 in
stratum j. An RP is implemented by assigning probabilities PðZj ¼ zjjzj 2 f0, 1g

njÞ to the possible allocations

Zj ¼ ðZj1, . . . ,Zjnj Þ in stratum j. A stratified randomization is implemented by creating independent

randomization lists zj 2 f0, 1g
nj for each stratum 1 � j � K: Denote the possible allocations by

z ¼ ðz1, . . . , zKÞ 2 �
K
j¼1f0, 1g

nj ¼ f0, 1gN with N ¼
PK

j¼1 nj. Then a stratified version of an RP is implemented by
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assigning probabilities PðZ ¼ zjz 2 f0, 1gNÞ :¼
QK

j¼1 PðZj ¼ zjjzj 2 f0, 1g
njÞ to the possible allocations z 2 f0, 1gN.

Of course, when implementing complete randomization, the stratified and unstratified RPs result in the
same set if randomization sequences with the same probabilities because assignments are independent and
equiprobable, i.e.

P Z ¼ zjz 2 f0, 1gN
� �

¼
YK
j¼1

P Zj ¼ zjjzj 2 f0, 1g
nj

� �
¼
YK
j¼1

1

2nj
¼

1

2N

However, when implementing a stratified restricted RP, this observation generally does not hold and some
further definitions are necessary. Even in the very simple RAR, the set of possible randomization sequences is
reduced considerable and the probability for the stratified allocation sequence becomes

P Z ¼ zjz 2 f0, 1gN
� �

¼
YK
j¼1

P Zj ¼ zjjzj 2 f0, 1g
nj

� �
¼
YK
j¼1

nj

nj=2

� ��1
6¼

N

N=2

� ��1

Another important aspect concerns the ‘‘balancing behavior’’ of restricted RPs. The term restricted refers to the
fact that conditions on the randomization process are introduced to control the potential imbalance in the
frequency of treatment allocations. Let s, 1 � s � N, denotes the patient’s number preserving the appearance of
patients in the trial so that s¼ 1 denotes the first patient and s¼N the last enrolled patient. njEðsÞ and njCðsÞ denote
the number of patients allocated to treatments E and C in stratum j until a total of s patients are recruited in the
trial so far. Then, the imbalance in the number of allocations to treatment E and C in stratum j until a total of s
patients are recruited is measured by

djðsÞ ¼ njEðsÞ � njCðsÞ ð1Þ

Three definitions of imbalance are used in the following:

(1) An RP shows overall final balance, if d ðNÞ ¼
defPK

j¼1 djðNÞ ¼ 0
(2) An RP controls the final balance within strata, if djðNÞ ¼ 0 for 1 � j � K
(3) An RP controls the maximal tolerated imbalance, if �a � djðsÞ � a for all 1 � j � K, 1 � s � N:

Of course controlling the overall final balance within strata does not imply to control final balance within
stratum, i.e. djðsÞ ¼ 0: Simply controlling the overall final balance may result in one stratum assigning patients only
to E and another stratum assigning the same number of patients to C only, a case which invalidates the estimation
of treatment difference within strata, presumably one issue in the ICH guidance. On the other hand, final balance
within strata ðdjðNÞ ¼ 0Þ implies overall final balance d ðNÞ ¼ 0: In the following, we deal with stratified RPs and
derive additional restrictions for meaningful definitions. With RAR, stratification and consequently final balance
within strata require even samples sizes within each stratum and two treatment arms. The requirement of final
balance within strata implies in the case of the stratified block design that the block sizes are divisors of the stratum
sample sizes nj, 1 � j � K: Note that in stratified trials with a larger number of centers, usually smaller sample sizes
in centers occur and thus final balance within strata forces the block sizes to be small, which will increase the
potential for selection bias. Of course, center-specific block sizes are possible but rather uncommon. We will
consider common block sizes in the following.

It should also be noted that the stratified RAR procedure in general cannot be considered as an unstratified
PBR with block sizes nj, 1 � j � K, because enrollment of patients in the trial is parallel in strata, so that in general
d
�Pk

j¼1 nj
�
6¼ 0, 1 � k � K:

Similar problems arise, when controlling the maximal tolerated imbalance with margin a, which results in an upper
overall bound of

PK
j¼1 jdjðsÞj � Ka for all 1 � s � N: Thus, controlling the maximal tolerated imbalance across strata

could be accomplished by having a different imbalance level in each stratum. Two very straightforward simple settings
are uniform spread jdjðsÞj � a=K, 1 � j � K for all 1 � s � N resulting

PK
j¼1 jdjðsÞj �

PK
j¼1 a=K ¼ a for all 1 � s � N

or proportional spread with jdjðsÞj � anj=N, 1 � j � K for all 1 � s � N resulting
PK

j¼1 jdjðsÞj �
PK

j¼1 anj=N ¼ a for
all 1 � s � N: Hilgers6 suggests defining a in relation to loss of power, and this implies stratum-specific maximal
tolerated imbalance according to the rules above.
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3 Stratified analysis

As mentioned in Section 1, a stratified randomization requires a stratified analysis, although a stratified analysis
can be performed whether or not the randomization was stratified. In this section, we examine the distributional
properties of a test statistic introduced by Fleiss1 (page 268, formulas 1 and 2) based on a weighted t statistic for
the analysis of stratified clinical trials. While we do not consider randomization tests in this paper, clearly
randomization-based inference is an attractive alternative, see Rosenberger.2 The reason for using a parametric
t test is that it facilitates our goal of determining the effect of bias on inference, since we can derive the distribution
of the test statistic under various forms of bias. In particular, in this section, we derive the non-centrality
parameter for the distribution of the test statistic under alternative hypotheses and comment on how it can be
used for sample size considerations. In the sequel, we are interested in the role of the RP in the analysis of stratified
trials. Because Fleiss wrote specifically about centers rather than strata, we use both interchangeably; it should be
clear that stratification can be done on variables other than center however.

We will consider a two-arm parallel group clinical trial stratified by K centers with no interim analysis. The
response to the treatments E and C respectively is measured with the continuous normally distributed endpoint
yji, 1 � i � nj ¼ njE þ njC, 1 � j � K, on njE patients in the experimental group (E) and njC patients in the control
group (C) in centers j. The total sample size is denoted by N ¼

PK
j¼1 nj.

We use the allocation sequence notation of the statistical model assuming no treatment by center interaction by

yji ¼ �EZji þ �Cð1� ZjiÞ þ �ji þ �ji ð2Þ

where �jiNð0, �
2Þ, 1 � i � nj ¼ njE þ njC, 1 � j � K: The expected treatment effects under E and C are denoted by

lE and lC, respectively. The Zji denotes the allocation sequence indicator with Zji¼ 1 if patient i in center j is
allocated to treatment E and Zji¼ 0 if patient i in center j is allocated to treatment C. Here and in what follows the
notations njE ¼

Pnj
i¼1 Zji and njC ¼

Pnj
i¼1 ð1� ZjiÞ are used. Furthermore, sji denotes the fixed ‘‘bias’’ effect acting

on the response of patient i in center j. Without loss of generality, we assume �ji 4 0:
Fleiss’s statistic to test the hypothesis ðH0 : �E ¼ �CÞ of no treatment effect across centers becomes

t ¼

PK
j¼1 wjDj

sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
j¼1 w

2
j =w

�
j

q ¼

PK
j¼1 wjDj

� �
��1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
j¼1 w

2
j =w

�
j

q �1

sp=�
ð3Þ

where Dj ¼ ~yjE � ~yjC are the mean treatment differences with ~yjE ¼
1
njE

Pnj
i¼1 yjiZji and ~yjC ¼

1
njC

Pnj
i¼1 yjið1� ZjiÞ:

Furthermore, wj are weights associated with center j, w�j ¼
njE�njC
njEþnjC

and sp is the pooled variance given by

s2p ¼
XK
j¼1

X
‘¼E,C

ðnj‘ � 1Þs2j‘

 !, XK
j¼1

X
‘¼E,C

ðnj‘ � 1Þ

 !

Here s2j‘ denotes the variance of treatment group ‘ in center j. To derive the distribution of equation (3) under
model (2), the distributions of the numerator as well denominator must be calculated. Note that the variance is
given by

Var
X

wjDj

� �
¼
XK
j¼1

w2
j

1

n2jE

Xnj
i¼1

Var yji
� �

Zji þ
1

n2jC

Xnj
i¼1

Var yji
� �

1� Zji

� � !

¼
XK
j¼1

w2
j

�2

njE
þ
�2

njC

� �
¼ �2

XK
j¼1

w2
j

njE þ njC
njE � njC

¼ �2
XK
j¼1

w2
j =w

�
j

so that the numerator of equation (3) has variance 1. Of course, Dj is normally distributed via the distribution of yij
and thus the expectation of the denominator equals

�ðZÞ ¼ E

PK
j¼1 wjDj

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
j¼1 w

2
j =w

�
j

q
0
B@

1
CA
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¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK
j¼1

w2
j =w

�
j

vuut
0
@

1
A�1E XK

j¼1

wj
1

njE

Xnj
i¼1

yjiZji �
1

njC

Xnj
i¼1

yjið1� ZjiÞ

 ! !

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK
j¼1

w2
j =w

�
j

vuut
0
@

1
A�1 ð�E � �CÞ

XK
j¼1

wj þ
XK
j¼1

wj ~�jE � ~�jC
� � !

where Z ¼ ðZ11, . . . ,Z1n1 , . . . ,ZK1, . . . ,ZKnK Þ
t is the observed allocation vector, ~�jE ¼

1
njE

Pnj
i¼1 �jEZji and

~�jC ¼
1
njC

Pnj
i¼1 �jCð1� ZjiÞ. In summary, the numerator is i.i.d. normally distributed with expectation �ðZÞ and

variance 1.
Next, we calculate the distribution of the denominator sp=� using the allocation sequence notation

XK
j¼1

X
‘¼E,C

ðnj‘ � 1Þ

 !
s2p
�2
¼
XK
j¼1

X
‘¼E,C

ðnj‘ � 1Þ
s2j‘
�2
¼
XK
j¼1

ðnjE � 1Þ
s2jE
�2
þ ðnjC � 1Þ

s2jC
�2

 !

¼
XK
j¼1

Xnj
i¼1

Zji

� yji
�
�

~yjE
�

�2
þ
Xnj
i¼1

ð1� ZjiÞ

� yji
�
�

~yjC
�

�2 !

Note that Varðyji=�Þ ¼ 1 and Eðyji=�Þ ¼ ð�E þ �jiÞ=� for Zji¼ 1 and or E yji=�
� �

¼ �C þ �ji
� �

=� for Zji¼ 0 are
i.i.d. normally distributed for all 1 � i � nj and 1 � j � K. Following the arguments in Johnson and Kotz,13 thePnj

i¼1 Zjiðyji � ~yjEÞ
2=�2 for group E, i.e. Zij¼ 1 and the

Pnj
i¼1 ð1� ZjiÞðyji � ~yjCÞ

2=�2 for group C, i.e. Zij¼ 0 are �2

distributed with njE � 1 and njC � 1 degrees of freedom respectively and non-centrality parameters

Xnj
i¼1

Zji

�2
�E þ �ji �

1

njE

XnjE
i¼1

ð�E þ �jEÞ

 !2

¼
Xnj
i¼1

Zji

�2
ð�ji � ~�jEÞ

2

Xnj
i¼1

1� Zji

� �
�2

�C þ �ji �
1

njC

XnjC
i¼1

�C þ �jC
� � !2

¼
Xnj
i¼1

1� Zji

� �
�2

�ji � ~�jC
� �2

Applying that the sum of independent non-central �2�j ð	jÞ distributions is non-central �
2 with

P
�j degrees of

freedom and non-centrality parameter
P
	j, it follows that the distribution of

PK
j¼1

P
‘¼E,C ðnj‘ � 1Þ

� �
s2p=�

2 is non-

central �2 with non-centrality parameter

	ðZÞ ¼
1

�2

XK
j¼1

Xnj
i¼1

Zjið�ji � ~�jEÞ
2
þ
Xnj
i¼1

ð1� ZjiÞð�ji � ~�jCÞ
2

 !

¼
1

�2

XK
j¼1

Xnj
i¼1

�2ji �
XK
j¼1

njE ~�2jE �
XK
j¼1

njC ~�2jC

and

df ¼
XK
j¼1

X
‘¼E,C

ðnj‘ � 1Þ ¼ N� 2K ð4Þ

degrees of freedom. Finally, we have to show the independence of the numerator

XK
j¼1

wjDj ¼
XK
j¼1

wj ~yjE � ~yjC
� �

¼
XK
j¼1

wj
1

njE

Xnj
i¼1

yjiZji �
1

njC

Xnj
i¼1

yjið1� ZjiÞ

 !

and denominator

XK
j¼1

X
‘¼E,C

nj‘ � 1
� � !

s2p ¼
XK
j¼1

Xnj
i¼1

Zji yji � ~yjE
� �2

þ
Xnj
i¼1

ð1� ZjiÞ yji � ~yjC
� �2 !
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as random variables. Here, Theorem 3 of Searle14 is used, stating that two random variables that can be expressed
as xtAx and Bx, where x � Nð�,VÞ is independent, if BVA ¼ 0. First, note that V ¼ �2I holds in our case.

For enabling the matrix notation of the above expressions, a usual design matrix X can be defined which
includes two columns for the allocation indicator variables and N rows. Rearrangement of the design matrix by
center and treatment group so that the first n1E observations belong to treatment E and the preceding n1C
observations belong to C in center 1 and so on can be implemented by a suitable permutation matrix P. This
simplifies the matrix notation of the above numerator and denominator in terms of B and A by reshuffling the
allocation sequence Z ¼ ðZ11, . . . ,ZknkÞ

t using a suitable permutation matrix P. This permutation matrix does not
affect the matrix equation. Furthermore, note that it is sufficient to show the matrix equation for a particular
center j because of the block structure implied by the independent observations in different centers. With this
reshuffling, the notation for center j corresponding to Theorem 3 is

Bj ¼ wj
1

njE
1tnjE , �

1

njC
1tnjC

� �t

and with Hij ¼ Inij �
1
nij
1nij�nij the matrix

Aj ¼ ðHnjE ,HnjC Þ ¼ InjE �
1

njE
1njE�njE , InjC �

1

njC
1njC�njC

� �

so that �2BjInjEþnjCAj ¼ 0 for all 1 � j � K, which shows the independence. In summary, the distribution of the
statistic in equation (3) is doubly non-central t,13 with non-centrality parameter

�ðZÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK
j¼1

w2
j =w

�
j

vuut
0
@

1
A�1 ð�E � �CÞ

XK
j¼1

wj þ
XK
j¼1

wj ~�jE � ~�jC
� � !

	ðZÞ ¼
1

�2

XK
j¼1

Xnj
i¼1

�2ji �
XK
j¼1

njE ~�2jE �
XK
j¼1

njC ~�2jC

 ! ð5Þ

In the case sampling is ‘‘stratified’’ by center and the objective is to estimate the overall treatment effect
accounting for center, Fleiss1 proposed the weights wj ¼ w�j ¼

njE�njC
njEþnjC

resulting in the test statistic (3)

t ¼

PK
j¼1 w

�
j Dj

sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
j¼1 w

�
j

q ¼

PK
j¼1

njE�njC
njEþnjC

Dj

sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
j¼1

njE�njC
njEþnjC

q ð6Þ

Of course, equation (5) implies that �ðZÞ depends on the weights only and becomes

�ðzÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiXK
j¼1

w�j

vuut
0
@

1
A�1 ð�E � �CÞ

XK
j¼1

w�j þ
XK
j¼1

w�j ~�jE � ~�jC
� � !

ð7Þ

In the case sampling is ‘‘stratified’’ by center and the objective is to estimate the overall treatment effect, Fleiss1

proposed the weights wj¼ 1 so that equation (3) becomes

t ¼

PK
j¼1 Dj

sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
j¼1 1=w

�
j

q
whereas the first non-centrality parameter �ðzÞ equals

�ðzÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK
j¼1

1=w�j

vuut
0
@

1
A�1 K � ð�E � �CÞ þ

XK
j¼1

~�jE � ~�jC
� � !
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Weighting centers in the absence and presence of center-by-treatment interaction has discussed in detail by
other authors.15

3.1 Sample size considerations

We now briefly discuss the aspects of the sample size and power calculation using the weighted t test statistic.
Details can be found in the Supplementary Material Section S1. The results will be used in our numerical
evaluation study.

Assuming no bias �ji ¼ 0 in model (2), the sample size to prove the hypothesis H0 : �E ¼ �C vs.
~H1 : �E � �C ¼ � with the weighted t test (equation (3)) is given by

PK
j¼1 wj

� �2
PK

j¼1
wj

2

w�j

¼
�2

�2
tN�2Kð1� 
Þ þ tN�2Kð1� �=2Þð Þ

2
ð8Þ

The derivation assumed homogeneous variances in all groups and centers. Using the optimal weights of Fleiss,1

i.e. wj ¼ w�j ¼
njE�njC
njEþnjC

, equation (8) simplifies to

XK
j¼1

njE � njC
njE þ njC

¼
�2

�2
tN�2Kð1� 
Þ þ tN�2Kð1� �=2Þð Þ

2

which in case of a balanced allocation ratio of r � nj ¼ njE and ð1� rÞ � nj ¼ njC with 0 � r � r for all 1 � j � K
becomes

rð1� rÞN ¼
�2

�2
tN�2Kð1� 
Þ þ tN�2Kð1� �=2Þð Þ

2
ð9Þ

This formula, derived under the assumption of homogenous variances using the optimal weights and the
allocation ratio of r, can be evaluated under various perspectives. One can determine the sample size necessary
to detect a certain treatment effect of a clinical trial or to determine the power for various settings of the allocation
ratio. Of course, the relationship of the sample size to the RP is obvious in the case of RPs forcing terminal
balance. The power can also be related to RPs with the maximal tolerated imbalance margin a. The margin can be
justified on the basis of the tolerable loss in power resulting from unbalanced allocation. In this case, equation (9)
can be used to describe the relationship between r and the power. Both aspects are mentioned in the numerical

evaluation study below. Using the weights wj ¼ 1, the left-hand side of equation (8) yields rð1�rÞK2PK

j¼1
1
nj

and thus depends

on the center sample sizes. In the case of equal center sample sizes, the same formula can be used for the
unweighted test. In contrast to the weighted test, the sample size formula for the unweighted case requires
assumptions if unbalanced sample sizes across centers are assumed.

4 Stratification in the presence of bias

We now turn to the question of bias. Two common forms of bias encountered in clinical trials are chronological
bias due to time trends in patient outcomes,16 and selection bias, which can result in covariate imbalances and
inflation of type I error rates.3 By definition, selection bias arises from the conscious or unconscious guessing of
treatment assignments so that patients have a higher chance of assignment to the investigator’s treatment of choice
for those patients. While double-blinded studies, and multi-center studies with a central randomization unit
mitigate the possibility of selection bias, Berger17 gives numerous examples of when selection bias has arisen in
practice. As the ICH E9 Guidelines note,12

It is important to identify potential sources of bias as completely as possible so that attempts to limit such bias may be
made. . .. The treatment effect and treatment comparisons should involve consideration of the potential contribution of

bias to the p-value.

A recent paper provides a template on assessing the potential for chronological or selection bias and gives
guidance on how to choose an appropriate RP and test statistic to account for that possibility.6 Here, we use a
similar model to determine the impact on Fleiss’s test in the presence of such bias.

Hilgers et al. 1721



We first specify a compound bias vector sji for stratum j and patient i that is a linear combination of a metric of
chronological bias and selection bias. Taking into account the stratified randomization, we explore a linear time-
trend16 model per stratum similar to Hilgers6 given by

�ji ¼ �j
i

njE þ njC|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
linear time trend

þ 
j
njEði� 1Þ � njCði� 1Þ

njEði� 1Þ þ njCði� 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
selection bias

ð10Þ

Hereby, the magnitude �j of the linear time trend varies between centers. Note that Hilgers6 proposed to
formulate �j as fraction of the variance �2: The second term generalizes the biasing policy first introduced by
Proschan3 for the Gauss test and later investigated by Hilgers6 for the t test. The amount of selection bias 
j � 0 is
allowed to vary between centers. The biasing policy in equation (10) ‘‘favors’’ or biases the expected response
towards treatment E assuming if the less frequent treatment allocated so far is E assuming E will be allocated next.
The direction 
j � 0 corresponds to favoring E. Other metrics have been used to define the selection bias metric,
including just the sign of njEði� 1Þ � njCði� 1Þ. We chose our metric so that it is roughly the same scale as the
chronological bias metric.

5 Evaluation criterion

In our numerical evaluation study, we enumerate all possible randomization sequences for four different
procedures and compare the bias to the type I error rate via computing the proportion of sequences that
preserve the type I error rate at the nominal (0.05) level. If there is no bias (e.g. 
j ¼ �j ¼ 0), 100% of
sequences will preserve the type I error rate, regardless of the procedure used. To be more formal, denote the
bias vector s ¼ ð�11, . . . , �1nj , . . . , �K1, . . . , �KnjÞ and the set of all sequences z generated by the RP by �RP. The test
statistic tðzÞ depends on the randomization sequence is central t distributed with N� 2k degrees of freedom under
the null hypotheses and no bias s ¼ 0, i.e. the null hypotheses H0 will be rejected at the � level if
jtðzÞj � tN�2kð1� �=2Þ: Then, the evaluation criterion can be expressed by using our distributional result above
including the non-centrality parameter (7)

PRP,sðH1jH0Þ ¼ PRP,s Z 2 f0, 1gN : jtN�2k,�ðZÞ, 	ðZÞ

�
1�

�

2

�


 � jtN�2k�1� �
2

�


� �
¼
X
z2�RP

1 FN�2k,�ðzÞ, 	ðzÞ tN�2k

� �
2

�� �
þ FN�2k,��ðzÞ, 	ðzÞ tN�2k

��
2

�� �
� �

n o
PRP,s Z ¼ zð Þ

ð11Þ

where FN�2k,�,	 denotes the distribution function of the doubly non-central t-distribution with N� 2K degrees of
freedom and non-centrality parameters �ðZÞ and 	ðZÞ: In the ideal case, the probability should be 1, meaning that
the 5% level is maintained by all allocation sequences. A value below 1 indicates that the actual type I error rate is
higher than the target level of 5%. Note that this quantity summarizes the impact of bias over all randomization
sequences and demonstrates the clinical consequences as well as the ‘‘go/no-go’’ decision of the regulator directly.

6 Numerical evaluation study

The objective of the following numerical evaluation study is to illustrate effects of stratification in both the
randomization and the test statistic. It is not intended to conduct a comprehensive simulation study,
recognizing that the specification of the sample size as well as �j and 
j depends on the practical situation. To
be more specific, we start with a K¼ 2 center clinical trial and use a total sample size of 80 patients with common �j
and 
j in all centers. The following reasoning leads to the specification of �j and 
j. Concerning the linear time trend
�j, it should be noted that although the �j are defined within each center, the maximal extent of the time trend
should not exceed r. In contrast, although the magnitude of the selection bias effect 
j may vary between centers, it
is like a population effect within center and no maximal extent restriction may apply. To relate the total sample
size of 80 in a K¼ 2 center clinical trial to the effect size, formula (9) is used. The hypothesis H0 : �E ¼ �C vs.
~H1 : �E � �C ¼ � should be tested with the (optimal) weighted t test (equation (3)) assuming common variance

r¼ 1 and intended allocation ratio of 1:1 at the 5% significance level with a power of 80%. This results in a
uniform effect size of � ¼ 0:635. With this effect size, the allocation ratio r is varied so that the loss in power does
not exceed 2%. This yields an allocation ratio of r¼ 0.608 which translates to sample size of 31:49 corresponding
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to a maximal tolerable imbalance of 18. With the uniform or proportional spread, this results in a maximal
tolerated imbalance by center of 4 and 5, respectively.

For illustration purposes, we will compare the stratified and unstratified versions of CR, BSD(9), PBR(4), and
EBC(2/3). These four procedures represent complete randomization and the three types of restricted
randomization mentioned earlier. These procedures were evaluated for two different splits of the total sample
size (n1 ¼ n2 ¼ 40 and n1 ¼ 60, n2 ¼ 20) and the combinations of selection and time-trend bias as
ð
, �Þ ¼ ð0, 0:2Þ, ð0:2, 0Þ, ð0:2, 0:2Þ, ð0, 0:05Þ, ð0:05, 0Þ, ð0:05, 0:05Þ: The evaluation criterion was the number of
sequences protecting the 5% level for stratified and unstratified randomization as well as stratified (wj ¼ 1,w�j )
and unstratified (us) test statistic and RP (see Supplementary Material). Note that unstratified randomization and
test statistic correspond to the case presented in Hilgers.6 The results for (0,0.05), (0.05,0), (0.05,0.05) are given in
Table 1 as well as for (0,0.2), (0.2,0), (0.2,0.2) in Table 2. In an additional evaluation, the number of centers K is
increased from 2 to 8 while splitting the total sample uniformly to the centers to show, whether there is a different
influence on the type I error rate. We used an R software script to conduct the analysis, see Supplementary
Material.

In the case where both biases are present, the stratified randomization with stratified analysis performs worse
than unstratified analysis scenarios. The magnitude does not depend on the balancing of sample sizes between
centers (20 : 60 vs. 40 : 40; Table 1). Using the favored weighted test statistic following a stratified analysis, it
appears that BSD and CR perform much better than all other RPs in the both biased scenarios. However, the
effect depends markedly on the type of bias. In the case of only time trend in the data, the final balance procedures
(EBC(0.67), PBR) perform better than BSD or CR as well as with the unstratified analysis following unstratified
randomization. Weightig with w�j performs uniformly better than weighting with wj=1.

7 Discussion

The approach presented in this paper for multi-center trials follows the ideas of the evaluation of randomization
procedures for design optimization (ERDO)6 framework. However as outlined, many aspects need to be addressed
to demonstrate the contribution of randomization in mitigating bias during the planning phase of a multi-center
trial.

Although Kraemer18 discussed various RPs in clinical trials including stratification, the most common choice of
stratified randomization is PBR with common block size.19–22 We have presented new aspects to formulate RPs,
whether unrestricted or restricted, in order to induce the final balance or maximal tolerated imbalance including
PBR in a stratified form. We have discussed the formulation of stratified unrestricted and restricted procedures
forcing balance in probability, forcing balance by maximal tolerable imbalance, and forcing terminal balance as
three subclassifications of restricted RPs.

There are several limitations of this study. First, our compound criterion for selection bias and chronological
bias imposes similar scaling, but it is difficult or impossible to scale them identically. Second, the weighting of the
two criteria is subjective and may be adjusted to account for the different scaling. Although our statistical test
assumes homogeneous variances across centers, the methodology can be used with standardized observation in the
case of known heterogeneous variances across centers.

Our proposed approach is demonstrated in a numerical evaluation study. Here, we use very specific settings, e.g.
common selection bias and time-trend effects across centers, limited sample sizes corresponding to a particular
effect size. We are aware that this evaluation study does not mirror all practical situations. However, specific
practical situations of the multi-center clinical trial to be planned can be embedded easily into the evaluation study
to demonstrate the corresponding effects. Moreover, the corresponding results for different evaluation metrics, e.g.
mean type I error probability, are supplemented in tables. We used the supplemented R code for all computations.

We have chosen to use a parametric t test as our evaluation statistic rather than the more natural randomization
test.23 Randomization tests can be computed easily through the Monte Carlo re-randomization methodology,
although power considerations are computationally intensive. They tend to preserve type I error rates under time
trends and have no distributional assumptions.2 Randomization tests can be formulated easily incorporating
stratification, but the theoretical results we have derived herein would be impossible for exact randomization
tests or Monte Carlo re-randomization tests.

Our theoretical derivation could be applied to a general class of weights wj including, in particular, the inverse
variance approach, although we focus our numerical evaluation study to the weights wj¼ 1 or wj ¼ w�j , see Lin.

15

Lin stated that many statisticians as well as the U.S. Food and Drug Administration recommend the unweighted
wj¼ 1 analysis.
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Sample size considerations are presented by various authors. Whereas Ruvuna24 and Vierron and Giraudeau25

used the normal approximation formula, Lin’s15 approach is based on the t statistic. We presented a
general sample size formula for the weighted t test with K centers which generalizes Lin’s approach for the two
center case and the weighted (w�j ) and unweighted wj¼ 1 evaluation. Among others, our results can be used to
demonstrate the effect on the power when adding centers during progress of the trial, which seem to be common
practice to increase recruitment. Furthermore, our formulas can be used for power considerations, when
imbalance in sample sizes between centers is assumed.24,25 Although it was not discussed in here, the approach
can be extended to the case of random center size by using the corrected variance formulas of Ganju and
Mehrotra.26

Although some authors mention that randomization is used to avoid bias, bias is quite likely to occur when the
PBR is used, particularly when the block size is small. We present a general formal analytical approach to show
how RPs are able to limit the impact of selection and chronological bias on the test decision.

Table 1. Probability of stratified and unstratified randomization procedures to keep the 5% level for BSD(9), CR, EBC(0.67) and

PBR(4) depending on the amount of selection 
 ¼ 0, 0:05 and time-trend bias � ¼ 0, 0:05 for different allocation ratios and analysis

using weighted (w�j ), unweighted (wj¼ 1) and unstratified (us) t test.

Allocation ratio � Z
Randomization

procedure

Stratified randomization Unstratified randomization

w�j test wj¼ 1 test us-test w�j test wj¼ 1 test us-test

20 : 60 0.05 0 BSD (9) 0.58 0.27 0.71 0.58 0.27 0.67

CR 0.58 0.28 0.67 0.58 0.28 0.68

EBC (0.67) 0.85 0.41 0.95 0.76 0.41 0.96

PBR (4) 1.00 0.93 1.00 1.00 0.93 1.00

0 0.05 BSD (9) 0.35 0.12 0.47 0.35 0.12 0.47

CR 0.34 0.11 0.46 0.34 0.11 0.47

EBC (0.67) 0.11 0.04 0.19 0.17 0.04 0.19

PBR (4) 0.00 0.00 0.00 0.00 0.00 0.00

0.05 0.05 BSD (9) 0.43 0.17 0.66 0.41 0.17 0.63

CR 0.42 0.17 0.63 0.42 0.17 0.63

EBC (0.67) 0.22 0.08 0.84 0.30 0.08 0.86

PBR (4) 0.03 0.00 1.00 0.03 0.00 1.00

40 : 40 0.05 0 BSD (9) 0.57 0.31 0.76 0.59 0.31 0.67

CR 0.59 0.32 0.68 0.59 0.32 0.68

EBC (0.67) 0.82 0.52 0.97 0.74 0.52 0.96

PBR (4) 1.00 1.00 1.00 1.00 1.00 1.00

0 0.05 BSD (9) 0.35 0.16 0.47 0.34 0.16 0.47

CR 0.34 0.16 0.47 0.36 0.16 0.47

EBC (0.67) 0.11 0.04 0.20 0.15 0.04 0.20

PBR (4) 0.00 0.00 0.00 0.00 0.00 0.00

0.05 0.05 BSD (9) 0.42 0.23 0.69 0.43 0.23 0.62

CR 0.43 0.23 0.63 0.42 0.23 0.63

EBC (0.67) 0.22 0.10 0.88 0.29 0.10 0.87

PBR (4) 0.03 0.00 1.00 0.02 0.00 1.00

8� 10 0.05 0 BSD (2) 0.79 0.13 0.98 0.68 0.13 0.66

CR 0.69 0.10 0.68 0.68 0.10 0.68

EBC (0.67) 0.78 0.12 0.91 0.71 0.12 0.96

PBR (2) 1.00 0.36 1.00 0.81 0.36 1.00

0 0.05 BSD (2) 0.00 0.00 0.15 0.04 0.00 0.48

CR 0.05 0.00 0.48 0.05 0.00 0.47

EBC (0.67) 0.01 0.00 0.21 0.02 0.00 0.19

PBR (2) 0.00 0.00 0.00 0.00 0.00 0.00

0.05 0.05 BSD (2) 0.00 0.00 0.86 0.05 0.00 0.63

CR 0.05 0.00 0.62 0.05 0.00 0.63

EBC (0.67) 0.01 0.00 0.79 0.02 0.00 0.86

PBR (2) 0.00 0.00 1.00 0.00 0.00 1.00

BSD: big stick design; EBC: Efron’s biased coin design; PBR: permuted block randomization; CR: complete randomization.

1724 Statistical Methods in Medical Research 29(6)



The idea behind the selection bias used originates from a natural preference for one of the treatments.
Furthermore, it seems to be very common, assuming that the allocation process tends to produce a balanced
allocation ratio at least at the end, that investigators would believe that the treatment used most frequently thus far
is less likely to appear next. Combining these two arguments, it may be reasonable, that in the situation of
knowledge or best guessing what the next allocation would probably be, to choose the next patient according
to the expected next treatment. This is also in line with the patient’s hope to be assigned to the better treatment.
Summarizing, it has to be stated that this process is unconscious or subconscious. The question is not whether
selection bias occurs or not, but rather how much impact of bias one is willing to accept. This can be investigated
with the proposed sensitivity analysis approach even in the planning phase. With this consideration, a unique
approach is presented to link the randomization process of unrestricted or restricted procedures with the trial
outcome.

Table 2. Probability of stratified and unstratified randomization procedures to keep the 5% level for BSD(9), CR, EBC(0.67) and

PBR(4) depending on the amount of selection 
 ¼ 0, 0:2 and time-trend bias � ¼ 0, 0:2 for different allocation ratios and analysis

using weighted (w�j ), unweighted (wj¼ 1) and unstratified (us) t test.

Allocation ratio � Z
Randomization

procedure

Stratified randomization Unstratified randomization

w�j test wj¼ 1 test us-test w�j test wj¼ 1 test us-test

20 : 60 0.2 0 BSD (9) 0.65 0.31 0.71 0.67 0.31 0.67

CR 0.66 0.32 0.68 0.66 0.32 0.68

EBC (0.67) 0.90 0.47 0.95 0.84 0.47 0.96

PBR (4) 1.00 0.97 1.00 1.00 0.97 1.00

0 0.2 BSD (9) 0.45 0.15 0.54 0.43 0.15 0.53

CR 0.45 0.16 0.54 0.44 0.16 0.55

EBC (0.67) 0.15 0.05 0.23 0.23 0.05 0.24

PBR (4) 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 BSD (9) 0.48 0.18 0.62 0.48 0.18 0.61

CR 0.48 0.18 0.62 0.48 0.18 0.60

EBC (0.67) 0.28 0.09 0.83 0.34 0.09 0.84

PBR (4) 0.03 0.00 1.00 0.03 0.00 1.00

40 : 40 0.2 0 BSD (9) 0.66 0.36 0.75 0.66 0.36 0.65

CR 0.67 0.36 0.67 0.67 0.36 0.67

EBC (0.67) 0.89 0.60 0.97 0.82 0.60 0.96

PBR (4) 1.00 1.00 1.00 1.00 1.00 1.00

0 0.2 BSD (9) 0.45 0.22 0.53 0.45 0.22 0.54

CR 0.44 0.21 0.54 0.45 0.21 0.54

EBC (0.67) 0.15 0.05 0.24 0.22 0.05 0.25

PBR (4) 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 BSD (9) 0.48 0.25 0.67 0.48 0.25 0.61

CR 0.48 0.25 0.62 0.47 0.25 0.61

EBC (0.67) 0.27 0.11 0.86 0.33 0.11 0.84

PBR (4) 0.01 0.00 1.00 0.01 0.00 1.00

8� 10 0.2 0 BSD (2) 0.72 0.11 0.97 0.61 0.11 0.66

CR 0.61 0.08 0.68 0.62 0.08 0.68

EBC (0.67) 0.70 0.10 0.91 0.64 0.10 0.96

PBR (2) 1.00 0.37 1.00 0.72 0.37 1.00

0 0.2 BSD (2) 0.00 0.00 0.25 0.03 0.00 0.54

CR 0.03 0.00 0.54 0.03 0.00 0.54

EBC (0.67) 0.00 0.00 0.26 0.01 0.00 0.24

PBR (2) 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.2 BSD (2) 0.00 0.00 0.82 0.04 0.00 0.60

CR 0.04 0.00 0.61 0.03 0.00 0.61

EBC (0.67) 0.00 0.00 0.77 0.01 0.00 0.85

PBR (2) 0.00 0.00 1.00 0.00 0.00 1.00

BSD: big stick design; EBC: Efron’s biased coin design; PBR: permuted block randomization; CR: complete randomization.
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Of course, other biases for time trend, e.g. log-time trend and step time trend16 or attrition bias could be easily
implemented in the modeling and then used in a numerical evaluation study. For instance, attrition bias could be
modeled by a variable taking 0 or 1 on missingness, which offers opportunities, to study mechanism like missing at
random.

Within this paper, we formulate a biasing policy for selection and chronological bias for a two-arm, parallel
group, multi-center trial, according to the weighted stratified t test procedure proposed by Fleiss.1 We further
derive the distribution of the stratified weighted test statistic to calculate the impact on the type I error rate.
Finally, the impact of the combined additive bias in multi-center trials using the unstratified t test compared to the
weighted stratified t test is demonstrated in a simulation study.

8 Conclusion

Stratification in the randomization process makes the analysis sensitive to bias, i.e. results in type I error inflation.
Procedures forcing terminal balance are worse in the cases where the study is prone to selection bias, irrespective if
time trend is present additionally. Unbalanced sample size between centers does not affect the results. This leads to
the conclusion that stratification in the randomization should be considered carefully if bias is supposed to be
present. In summary, the presented approach contributes to optimizing the design of clinical trials stratified by
center with respect to improve the derived level of evidence.
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