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Abstract: The search for new formulations for transdermal drug delivery (TDD) is an important
field in medicine and cosmetology. Molecules with specific physicochemical properties which can
increase the permeability of active ingredients across the stratum corneum (SC) are called chemical
penetration enhancers (CPEs), and it was shown that some CPEs can act synergistically. In this study,
we performed coarse-grained (CG) molecular dynamics (MD) simulations of the lidocaine delivery
facilitated by two CPEs—linoleic acid (LA) and ethanol—through the SC model membrane containing
cholesterol, N-Stearoylsphingosine (DCPE), and behenic acid. In our simulations, we probed the
effects of individual CPEs as well as their combination on various properties of the SC membrane
and the lidocaine penetration across it. We demonstrated that the addition of both CPEs decreases the
membrane thickness and the order parameters of the DPCE hydrocarbon chains. Moreover, LA also
enhances diffusion of the SC membrane components, especially cholesterol. The estimated potential
of mean force (PMF) profiles for the lidocaine translocation across SC in the presence/absence of
two individual CPEs and their combination demonstrated that while ethanol lowers the free energy
barrier for lidocaine to enter SC, LA decreases the depth of the free energy minima for lidocaine
inside SC. These two effects supposedly result in synergistic penetration enhancement of drugs.
Altogether, the present simulations provide a detailed molecular picture of CPEs’ action and their
synergistic effect on the penetration of small molecular weight therapeutics that can be beneficial for
the design of novel drug and cosmetics formulations.

Keywords: chemical penetration enhancers; transdermal drug delivery; stratum corneum; molecular
dynamics simulations; coarse-grained simulations

1. Introduction

Transdermal drug delivery (TDD) is a method of delivering drugs systemically by
applying a drug formulation onto intact and healthy skin [1]. Stratum corneum (SC) serves
as a rate-limiting lipophilic barrier against the uptake of chemical and biological toxins
as well as transepidermal water loss [2]. The structure of SC is organized as stacked
bilayers of ceramides in a splayed chain conformation with cholesterol associated with
the ceramide sphingoid moiety, and free fatty acids associated with the ceramide fatty
acid moiety [3]. Only a minority of molecules with specific physico-chemical properties
can cross the skin sufficiently, and in the case of drugs with the blood circulation target
subdermal tissue [4]. There are different approaches which are used in TDD to overcome the
skin barrier: physical (e.g., iontophoresis, sonophoresis, electroporation, microfabricated
microneedles, local temperature increase) [5], chemical (use of penetration enhancers) [6],
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and the use of carriers (vesicles and micro/nanoparticles) [7]. Regardless of the specific
TDD approach, the drug initially penetrates through the SC, and then passes through the
deeper epidermis and dermis without drug accumulation in the dermal layer. When a
drug reaches the dermal layer, it becomes available for systemic absorption via the dermal
microcirculation [3,8].

Chemical penetration enhancers (CPE) are proven to increase the transport of drugs
across the skin layers. They achieve their effects by different mechanisms that depend
on the chemical nature of penetration enhancers and the properties of the SC, which can
be changed dramatically [4,6,9–15]. The molecular mechanisms of CPE action on the
membrane were widely studied by molecular dynamics simulations [16–35]. In the recent
study, the authors [36] analyzed permeability properties for several CPEs and built a model
for prediction of permeability coefficients. It was shown that the polar groups of fatty acids
serving as CPEs were associated with the ceramide headgroup region while the apolar tails
were generally aligned with the ceramide chains. The different shapes of the penetration
enhancer molecules, and their degree of saturation, determine to what extent they disrupt
the skin barrier lipid packing. [36]. Additionally, in the work of [37], it was shown that
ethanol enhanced bilayer permeability by both mechanisms—extraction of the skin lipids
and enhancing the mobility of lipid chains.

Synergistic combinations of chemical penetration enhancers result in a higher per-
meability for the active ingredient than the average of activities of individual enhancers
and depends on the physico-chemical properties, concentration and ratio used in the
experiment [3,38–41]. Synergistic effects of different CPEs have been described in sev-
eral papers [13–15,38,42]. Particularly, a method of in vitro skin impedance guided high-
throughput (INSIGHT) screening was created and used to explore synergistic mixtures of
CPEs which could deliver active ingredients across the skin [15]. The possible mechanisms
of synergistic actions were discussed in [14,43,44]. The most frequently used enhancer
combinations include fatty acids with propylene glycol, terpenes with propylene glycol,
and fatty acids with ethanol [45]. The latter formulation has been chosen in the present
study to demonstrate the synergistic effect on the permeability of lidocaine, one of the most
popular local anesthetics used for a variety of medical procedures including treatment of
open skin sores, lesions, and in surgical procedures [46,47]. Lidocaine is an amphiphilic
molecule which can penetrate the SC membrane simultaneously [48,49] or at higher rates
when applied with various CPEs [38,46,50–53].

In the work of [38], it was demonstrated that linoleic acid (LA) and ethanol (EtOH)
formulation was the most effective of tested enhancers, increasing the lidocaine flux by
42-fold compared to that from PBS. It was suggested that bilayer disordering agents, such
as linoleic acid and ultrasound, transform the SC lipid bilayers into a fluid lipid bilayer
phase or create a separate bulk oil phase [38].

In the present study, we investigated the molecular mechanism by which LA/EtOH
formulation can synergistically enhance the delivery of lidocaine. We have carried out the
coarse-grained (CG) molecular dynamics (MD) simulations of fully hydrated SC model
membrane with lidocaine (LID) in presence and absence of LA and EtOH. The effect of
ethanol and linoleic acid on skin lipid bilayer was explained in both structural properties
and free energy changes of lidocaine translocation through the membrane.

2. Materials and Methods
2.1. Coarse-Grained Models of Ethanol, Linoleic Acid, Lidocaine and SC Membrane

In the present study, we utilized the popular MARTINI force field for the coarse-
grained simulations, which has proved itself as a useful tool for a variety of applications
including investigations of interaction between chemical compounds of different nature
and biological membranes, membrane pore formation, fusion and disruption, lipid phase
transitions, effects of CPEs and detergents on membrane properties, and many more [54,55].
Despite certain limitations of this force field, which does not account explicitly for hydro-
gen bonds, proper distribution of partial charges, smoother stereochemical interactions
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resulting in faster diffusion [56], and stickier interactions between proteins (mostly relevant
to soluble proteins [57]), it describes the interactions between amphiphilic compounds and
biological membranes satisfactorily [58]. The standard MARTINI library already contains
molecular topologies for DPCE, cholesterol, behenic acid, and ethanol (see Figure 1). The
coarse-grained models for lidocaine and linoleic acid (see Figure 1d–e) were developed
based on the auxiliary all-atom simulations according to the iterative scheme we used
before [59] until satisfactory agreement was reached between the AA and CG models. In
order to select MARTINI CG particle types, we applied the automated toolkit [60] and
referred to the already parameterized molecules. The resulting topologies are available at
https://github.com/porekhov/cg_topologies.
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Figure 1. Structural formulae of the SC membrane components: DPCE (a), behenic acid (b), choles-
terol (c); lidocaine (d); penetration enhancers: linoleic acid (e) and ethanol (f). Coarse-grained beads
and their corresponding MARTINI force field types are also shown schematically.

The reference all-atom simulations were run for 100 ns in the NPT ensemble (T = 320 K
maintained by the V-rescale algorithm, P = 1 bar controlled by Parrinello–Rahman barostat;
the integration time step = 2 fs; the Verlet cutoff scheme and particle mesh Ewald (PME)
were used for the nonbonded interactions with the cutoff value set to 1.2 nm).

2.2. Details of Coarse-Grained Simulations and Analysis

The initial models of SC membranes were assembled using CHARMM-GUI web
service [61]. Further, insane.py [62] was used to solvate the systems. Before running any
MD simulations, the steepest descent minimization was performed. The details about all
of the simulated systems (simulation time, composition) are provided in Table 1.

The simulation parameters were chosen based on recommendations [63]. The systems
were simulated in the NPT ensemble using the V-rescale thermostat (T = 320 K, τt = 1.0 ps) and
the Parrinello–Rahman barostat (time constant = 12.0 ps, compressibility = 3 × 10−4 bar−1,
applied semi-isotropically). All CG simulations were performed with the polarizable water
model [64] and the reaction field approach for the long-range electrostatics (εr = 2.5). The time
step was 20 fs. Gromacs 2019.4 was utilized for all simulations [65].

To estimate the potential of mean force (PMF) profiles, we employed a scheme similar
to one used before [66]. Briefly, the lidocaine molecule was slowly pulled with the constant
speed (pulling speed = 1 × 10−5 nm·ps−1; force constant of pulling harmonic potential
= 2000 kJ·mol−1·nm−2) toward the center of SC membrane and the resulting PMF was
obtained by integration of the instant force applied along the simulation time.

https://github.com/porekhov/cg_topologies
https://github.com/porekhov/cg_topologies
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Table 1. The list of simulated systems. CHOL—cholesterol; DCPE—N-Stearoylsphingosine; BCN—behenic acid; LA—
linoleic acid; EtOH—ethanol; LID—lidocaine.

# System Composition: Name/Molecules Simulation Type Total Simulation Time, µs

1 SC membrane (208 CHOL + 209 DPCE + 208 BCN)
1:1:1 + 21740 PW + 397 Na+ + 81 Cl− Equilibrium 1

2 SC membrane (208 CHOL + 209 DPCE + 208 BCN + 57
LA) 18:18:18:5 + 21729 PW + 419 Na+ + 59 Cl− Equilibrium 1

3 SC membrane (208 CHOL + 209 DPCE + 208 BCN)
1:1:1 + 10870 PW + 10870 EtOH + 397 Na+ + 81 Cl− Equilibrium 1

4
SC membrane (208 CHOL + 209 DPCE + 208 BCN + 57
LA) 18:18:18:5 + 10870 PW + 10870 EtOH + 419 Na+ +

59 Cl−
Equilibrium 1

5 SC membrane (208 CHOL + 209 DPCE + 208 BCN)
1:1:1 + 1 LID + 21740 PW + 397 Na+ + 81 Cl− PMF 0.46

6 SC membrane (208 CHOL + 209 DPCE + 208 FFA + 57
LA) 18:18:18:5 + 1 LID + 21729 PW + 419 Na+ + 59 Cl− PMF 0.47

7 SC membrane (208 CHOL + 209 DPCE + 208 FFA) 1:1:1
+ 1 LID + 10870 PW + 10870 EtOH + 397 Na+ + 81 Cl− PMF 0.46

8
SC membrane (208 CHOL + 209 DPCE + 208 BCN + 57

LA) 18:18:18:5 + 1 LID + 10870 PW + 10870 EtOH +
419Na+ + 59 Cl−

PMF 0.47

The membrane density profiles, thickness, diffusion coefficients of the lipids and order
parameters for the ceramide chains were calculated as it is described in [67], using Python
scripts exploiting the MDAnalysis toolkit [68], and are available upon request.

3. Results
3.1. Equilibrium MD Simulations of Lidocaine in the Absence and Presence of the CPEs

Several MD systems were developed including SC model membrane with 50% EtOH,
SC model membrane with LA, and membrane with LA and 50% EtOH; as control, we used
the same SC model membranes which were solvated in the explicit coarse-grained 0.15M
NaCl solution. We have further analyzed the properties of the lipid bilayers and the effects
of CPEs on them based on the equilibrium 1-µs long simulations: density of individual SC
membrane components, membrane thickness, and diffusion coefficients of lipids and fatty
acids.

As it was previously shown in the works of [69,70], fatty acids tended to be partitioned
into the lipid bilayer. Thus, we also incorporated LA inside the model SC membranes in the
beginning of simulations to decrease the simulation time required for proper equilibration
of bilayers. The simulations were carried out for four types of systems in total: without
any CPEs, with linoleic acid, with ethanol (50% molar solution), and with both types of
investigated CPEs, i.e., linoleic acid and ethanol (see Table 1).

The representative density distributions of each penetration enhancer across the
bilayer normal in different systems are shown in Figure 2.

The corresponding interleaflet distances measured between average positions of the
hydrophilic P1, Qa, and SP1 CG beads (see Figure 1) of DPCE, behenic acid, and cholesterol,
respectively, in two SC monolayers are provided in Table 2. None of the CPEs led to
disintegration or large reshaping of SC at the simulated timescale, with all membrane
components showing characteristic two-peak density profiles across the bilayer normal
(Figure 2a,c,e,f). However, as one can see, the addition of both the LA and EtOH decreased
the thickness of the membrane. EtOH decreases the interleaflet distance for the DPCE and
CHOL by about ~2 Å and by ~1 Å for the behenic acid while LA decreases the distances by
~1 Å. Acting together, LA and EtOH induced the largest change in the SC thickness. The
same trend is also clear from the density profiles plotted for all four investigated systems
(Figure 2b).
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Figure 2. Density profiles of individual components of SC membranes, CPEs, and water for systems with and without CPEs:
(a) SC bilayer without CPEs (the color code is the same for panels c, e, and f); (b) Density profiles for cholesterol without
CPEs, with individual CPEs, and with their combination; (c) SC bilayer with both ethanol and linoleic acid; (d) Enlarged
density of ethanol and water inside the hydrophobic region of SC membranes simulated with both ethanol and linoleic acid
(solid line) and only with ethanol (dashed line); (e) SC bilayer with both ethanol; (f) SC bilayer with linoleic acid.

Table 2. Interleaflet distance measured between average positions of P1, SP1, and SP1 CG beads of
DPCE, behenic acid, and cholesterol, respectively, in two SC monolayers.

System
Interleaflet Distance, Å

DPCE Behenic Acid Cholesterol

None 24.78 38.55 30.54
+EtOH 22.53 37.55 28.54

+LA 23.28 37.80 29.54
+EtOH, +LA 22.03 36.30 27.28

Interestingly, we observed penetration of EtOH inside the hydrophobic core of SC in
the simulation with both CPEs but not with EtOH (Figure 2d), indicating that LA facilitates
partitioning of this compound inside SC presumably due to fluidization of the membrane.

The order parameters of the hydrocarbon tails of sphingosine (chain A) and the fatty
acid (chain B) of the DPCE ceramide were also calculated for all four MD systems (Figure 3).
The addition of either EtOH or LA decreased the order parameters for both chains, which
occurs, to a larger extent, in the case of LA, presumably due to the unsaturated nature of
its acyl chain. Again, when acting together, CPEs decreased the order parameters to an
even larger degree (Figure 3, yellow lines).
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Figure 3. (a) Order parameter of the hydrocarbon tails of sphingosine (chain A) and the fatty acid
(chain B) of the DPCE ceramide. ‘None’ corresponds to the system without enhancers, ‘+EtOH’,
‘+LA’, and ‘+EtOH, +LA’ to systems with either one or both enhancers added; (b) Scheme illustrating
the coarse-grained representation of DPCE.

The lateral diffusion coefficients for the membrane components are shown in Figure 4.
EtOH slightly decreased diffusion coefficients for all of them, i.e., ceramide, cholesterol,
and fatty acid. Contrarily, LA increases the diffusion coefficients for cholesterol and
DPCE without any noticeable effect on linoleic acid. The addition of both enhancers to
the system led to even larger diffusion coefficients for DPCE and cholesterol while the
diffusion of behenic acid remained at the same level. At the same time, the dispersion
of diffusion coefficients also increases in this case, as indicated by larger values of the
standard deviation, implying significant disordering of the SC lipids.
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Figure 4. Diffusion coefficients of the individual membrane components: DPCE, behenic acid, and
cholesterol. ‘None’ corresponds to the system without enhancers, ‘+EtOH’, ‘+LA’, and ‘+EtOH, +LA’
to systems with either one of both enhancers added.

Taking all these observations together, it appears that addition of 50% EtOH or LA
affect the membrane thickness and order parameters of the hydrocarbon chains of DCPE.
LA additionally affects the diffusion coefficients of uncharged SC bilayer components. The
combination of two CPEs makes these alterations of SC properties more pronounced.
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3.2. PMF Calculations

For energetical characterization of the test compound (lidocaine) permeation, we have
estimated four potentials of mean force (PMF) for the process of its translocation across SC.
PMF profiles (Figure 5) demonstrated that addition of EtOH decreased the energetic barrier
for the lidocaine entrance inside the hydrophobic region of SC by ~0.6 kcal/mol. At the
same time, the addition of LA decreases the depth of the global free energy minimum for
lidocaine inside the SC membrane by ~2 kcal/mol, suggesting that it should facilitate the
overall penetration of lidocaine across SC. Addition of two CPEs resulted in both features:
decrease of the barrier for the SC entry and decrease of the global free energy minimum,
implying a mechanism for the synergistic effect of this CPE combination.
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either one or both enhancers added.

4. Discussion

It has been proposed that the mechanisms of action of ethanol as CPE involve in-
creasing the permanent concentration and affecting the lipid domains in the SC mem-
branes [30,37,71,72]. Fatty acids are often used with cosolvents as they act synergistically
to enhance the penetration of a drug [73,74]. It was shown that the higher the degree of
unsaturation led to a more pronounced enhancing effect; moreover, the cis-conformation
of unsaturated fatty acids led to a higher level of disruption of SC lipids compared to
the trans-conformation [73]. It was also demonstrated that larger distances between the
carboxylic group of fatty acid and its double bond(s) led to a higher drug flux [75].

Here, we investigated the effects of both types of abovementioned CPEs on properties
of the model SC membrane containing DPCE, behenic acid, and cholesterol, and permeation
of lidocaine across it. The equilibrium simulation conducted in the presence of 50% ethanol
demonstrated that the membrane became thinner (Table 2, Figure 2b), the order parameters
for DPCE slightly decreased (Figure 3), and the diffusion coefficients for all components
also decreased (Figure 4). We did not observe the permeation of EtOH directly to the center
of the SC membrane at the times up to 1 microsecond (Figure 2d). However, the simulation
indicated that the ethanol molecules penetrated to the lipid headgroups and could even
reach the area of the lipid tails (Figure 2e). Formation of favorable interactions between
EtOH and headgroups of SC lipids was previously discussed in [30,37] and it apparently
leads to slightly decreased diffusion coefficients of SC components and, at the same time,
decreased free energy barrier for the entrance of lidocaine inside the hydrophobic region of
SC since unionized lidocaine is much better soluble in EtOH compared to water. The latter
effect apparently explains the penetration’s enhancing effect of ethanol at the explored
concentration of 50%. In our simulations, the addition of EtOH did not result in water flow
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across the membrane (Figure 2d), or any other crucial disruptions of the membrane integrity
as it was shown previously in [30,37]. It should be pointed out, however, that in the latter
studies, the membrane disintegration was observed at much higher concentrations of
ethanol up to 100%. It is worth mentioning that at higher concentrations, other mechanisms
of penetration enhancement may become involved, e.g., formation of transmembrane
pores [76] or denaturation of membrane proteins [77].

The addition of the unsaturated linoleic acid to the SC membrane in our simulations led
to significant decreased order parameters (Figures 3 and 4) and thickness of the membrane
(Table 2). This observation is in good agreement with experimental and computational
data [69,73]: two unsaturated carbon bonds led to more disturbance in the lipid bilayer,
its fluidization and shortening of the hydrophobic region of SC. The diffusion coefficients
increased only in the case of cholesterol, and slightly decreased in the case of DPCE but did
not affect the behenic acid. This effect can be explained by the additional interactions of the
charged fatty acid with DPCE and CHOL, and repulsion with the negatively- charged SC
component, i.e., behenic acid. The free energy profile for lidocaine translocation across SC in
the presence of linoleic acid revealed that the free energy barrier at the water-lipid interface
remained the same but, instead, the depth of the global PMF minimum corresponding to
the center of hydrophobic SC core decreased due to the less ordered and also less density of
packed hydrocarbon chains [69,70]. In this situation, lidocaine can easily escape from the
free energy well and eventually pass across SC.

Finally, the addition of both enhancers to the system resulted in more pronounced flu-
idization of the SC membrane as indicated by the DPCE order parameters. The thickness of
the bilayer decreased by 0.25 nm and the dispersion of diffusion coefficients also increased,
additionally implying a significant level of SC disordering. In this case, EtOH could also
penetrate inside the hydrophobic core of SC (see Figure 2d). PMF profile for lidocaine
translocation featured both effects that were observed earlier for individual CPEs: both
the depth of the minimum in the SC center and the maximum at the headgroup interface
decreased, resulting in increased permeability.

It is also worthwhile to mention that while the current analysis is limited solely to
a combination of two prototypical CPEs, ethanol and linoleic acid, these results may be
transferred to a broader group of related chemicals, including analogs of the present
CPEs: oleic acid, lauric acid, and propylene glycol, which are also commonly used in
combinations [14].

5. Conclusions

In the present study, we have mechanistically and energetically characterized the per-
meation mechanism of lidocaine across stratum corneum in the presence of two enhancers,
linoleic acid and ethanol, as well as their combination by means of coarse-grained MD
simulations. We demonstrated that both CPEs decreased the DPCE ordering in SC and
its thickness, making SC more fluidic. However, these effects were more pronounced for
linoleic acid. Both enhancers also affected the energetics of lidocaine penetration across
the membrane: the addition of ethanol resulted in the decreased free energy barrier for the
entrance of the compound inside the hydrophobic core of SC while the addition of linoleic
acid decreased the depth of free energy minimum inside the lipid bilayer, facilitating the
lidocaine passage across SC. Combination of both enhancers resulted in the synergistic
effects on membrane fluidity reflected in larger decrease of order parameters, membrane
thickness, and increase of diffusion coefficients. Moreover, the alteration of the free energy
profile for the lidocaine translocation across SC resembled in this case are both charac-
teristic features observed for individual enhancers. These results provide a mechanistic
picture of synergistic action of penetration enhancers at molecular level. Future research
should focus on increasing the range of tested concentrations, and the complexity of model
SC membranes and CPEs’ formulations. We also believe that the developed models and
methodology can be used to design or test various combinations of permeation enhancers
in different drug or cosmetic formulations.
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