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GDP-Mannose Pyrophosphorylase B (GMPPB) is a key enzyme for

glycosylation. Previous studies suggested a dysregulation of GMPBB and

mannose in depression. Evidence, however, was sporadic and interventions to

reverse these changes are unknown. Here, we show that GMPPB protein, but

not RNA abundance is increased in the postmortem prefrontal cortex (PFC) of

depressed patients and the chronic variable stress (CVS) mouse-model. This is

accompanied by higher plasma mannose levels. Importantly, a single dose of

intraperitoneally administered vitamin B12, which has previously been shown

to rapidly reverse behavioral symptoms and molecular signatures of chronic

stress in mice, normalized GMPPB plasma mannose levels and elevated

GDP-mannose abundance. In summary, these data underline metabolic

dysregulation in chronic stress and depression and provide further support

for rapid effects of vitamin B12 on chronic stress.

KEYWORDS
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Introduction

GDP-Mannose Pyrophosphorylase B (GMPPB) is a key enzyme in the glycosylation
pathway, which catalyzes the synthesis of GDP-mannose from mannose-1-phosphate
and guanosine triphosphate (1). Its activity is regulated by its enzymatically inactive
homologue GMPPA, which acts as an allosteric inhibitor of GMPPB. Mutations in
GMPPB and GMPPA result in complex congenital disorders of glycosylation (2–4).
Recently, a protein-wide association study on depressed patients found that GMPPB
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protein levels are increased postmortem in the prefrontal cortex
(PFC) of depressed patients (5). Accordingly, receptors for
neurotransmitters that are essential to stress and depression in
the PFC are regulated by glycosylation, including the NMDA
receptor (6–8) and serotonin receptors (9, 10). In congenital
disorders of glycosylation, depressive symptoms are relatively
frequent (11, 12).

The substrate for GMPPB, mannose-1-phosphate, is
reduced in the PFC in a rat model of chronic stress and
depression (13). A high dose of intraperitoneally administered
mannose may contribute to depression-like states in mice (14).
However, it is, at least to our knowledge, unknown, whether
mannose levels are intrinsically affected by depression and
whether this correlates with GMPPB abundance.

We recently observed that vitamin B12 rapidly reverses
depression-associated phenotypes in mice (15). Vitamin B12
(cobalamin) is an essential nutrient, which can only be
synthesized by bacteria. Vitamin B12 is a cofactor in the one-
carbon metabolism, which provides methyl donors, e.g., for
the methylation of DNA, histones or other proteins. 15% of
the human population suffers from vitamin B12 deficiency and
affected individuals have an increased risk of suffering from
depression (16–18). Importantly, there is also evidence that
vitamin B12-supplementation in non-deficient populations may
reduce depression risk (19, 20). We have previously shown
that a single acute dose of vitamin B12 reduced depressive-like
behavior and stress-linked biomarkers in mice in the chronic
mild stress-model (15).

Here we confirm increased GMPPB protein levels in human
PFC postmortem tissue of depressed patients. Furthermore,
we observed increased mannose levels in plasma of depressed
patients. Similar changes were found in the chronic variable
stress (CVS) mouse-model, which is superior in modeling
human molecular signatures of depression (21). Additionally,
plasma GDP-mannose levels were increased by CVS in
mice. Interestingly, an acute dose of vitamin B12 was
sufficient to reverse GMPPB and plasma mannose levels.
In summary, this study underlines an association between
GMPPB and depression.

Methods

Animals and licenses

Mice were housed in accordance with the ethical guidelines
of the Thüringer Landesamt für Verbraucherschutz (TLV).
Experiments were conducted under Animal license UKJ-18-
037 (Germany), which are complying to the EU Directive
2010/63/EU guidelines for animal experiments. C57Bl/6J mice
were bred in the animal facility (FZL) of Jena University
Hospital, Germany. Animals received standard chow
(LASQCdiet Rod16-R, LASvendi GMBH, Soest, Germany),

which contains 50 mg/kg chow vitamin B12. Mice were
at least 10 weeks of age. Mice were housed in a 14L:10D
light-cycle. For brain analysis, mice were sacrificed and PFC
tissue was immediately frozen on dry ice and stored at −80◦C
until further use.

Drugs and chemicals

Mice were intraperitoneally (i.p.) injected with 2.7 mg/kg
vitamin B12 (cyanocobalamin, #V6629, Sigma-Aldrich,
Burlington, MA, USA) or saline at an injection volume of
10 ml/kg body weight and tested 24 h later as described in
Engmann et al. (22).

RNA purification and quantification

RNA was purified by resuspension in Trizol
and chloroform-precipitation. RNA was washed in
isopropanol and 75% ethanol. After cDNA-conversion
with a GoScriptTM Reverse Transcriptase kit (#A5001,
Promega, Madison, WI, USA), quantitative realtime-PCR
was performed on a Bio-rad CFX96 Real-time system.
Quantitative PCR results were processed as described (23).
Primer sequences were: GMPPB/Gmppb, Fvd: 5′-CCT
CACTGGCATGTGC CTC-3′, Rev: 5′-GACTTGTGGGGC
AGCACG-3′; GAPDH (22), Fvd: 5′-TGGGCAGCCGTTAGG
AAAG-3′, Rev: 5′-AGTTAAAAGCAGCCCTGGTGA-3′;
Gapdh (22), Fvd: 5′-AACTTTGGCATTGTGGAAGG-3′, Rev:
5′-ACACATTGGGGGTAGGAACA-3′.

Western blot

Tissue lysates were prepared with the Potter S tissue
homogenizer (Sartorius, #S14492) in TBS-buffer (20 mM Tris,
150 mM NaCl, 1% (v/v) TritonX-100, complete protease
inhibitor and complete phosphatase inhibitor (#04693124001,
Sigma-Aldrich, Burlington, MA, USA). After sonication,
homogenates were spun down at 16,900 g to remove nuclei
and insoluble debris. The supernatant was stored at −80◦C
until further use. Proteins were denatured at 90◦C for 5 min
in Laemmli buffer (4X Laemmli buffer: 50% glycerol, 5%
SDS, 0.25%1.5M Tris pH 6.8, 30% β-mercaptoethanol, 0.001%
bromophenol blue, ddH2O). After separation by SDS-PAGE
(8% polyacrylamide glycine gels, run for 1.5 h at 80 V)
proteins were transferred onto 0.45 µm PVDF membranes
(#10600023, GE Healthcare) at 290 mA for 100 min. Membranes
were blocked in 2% BSA for 1 h at RT and incubated
with primary antibodies at appropriate dilutions in tris-
buffered saline supplemented with 0.1% Tween-20 (TBS-T)
overnight at 4◦C. The following primary antibodies were used:
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rabbit anti-GMPPA (#15517-1-AP, Proteintech, Rosemont, IL,
USA) 1:500, rabbit anti-GMPPB (#15094-1-AP, Proteintech,
Rosemont, IL, USA) 1:500, rabbit anti-GAPDH (#10494-1-
AP, Proteintech, Rosemont, IL, USA) 1:1,000, self-made mouse
anti-oligomannose antibody (6–9 terminal mannose residues)
1:50 [gift of Rüdiger Horstkorte, Halle (24)]. Membranes
were washed in TBS-T and primary antibodies were detected
with horseradish peroxidase-conjugated secondary antibodies
in an appropriate dilution. Following secondary antibodies were
used: donkey anti-rabbit IgG-HRP (#NA 9340V, Amersham,
Buckinghamshire, UK) 1:4,000 and goat anti-mouse IgM #
(31440, Thermo Fisher Scientific, Waltham, MA, USA) 1:4,000.

Measurement of plasma sugar
concentrations

Human plasma samples were obtained in agreement
with the Ethics committee of Magdeburg University
Hospital, Germany (110/07). Patients did not receive
psychopharmacological substances other than benzodiazepines
for at least 6 weeks prior to testing. Blood plasma was collected
by centrifuging blood immediately after collection for 10 min
at 3,000 rpm (Hettich centrifuge EBA 2, type 2002). The
supernatant consisting of plasma was aliquoted into DNA
LoBind tubes (Eppendorf, Hamburg, Germany) and stored
at −80◦C. Samples from depressed patients and age-matched
controls were collected at day 0 (T0) and 6 weeks after the
beginning of treatment (T6). Treatment differed between
patients and was individually tailored to their needs. As
no difference was found in plasma sugar levels for patients
between days T0 and T6 (data not shown), the average of
both time points was calculated for each participant to reduce
variability. Mouse blood was obtained from unfasted animals
and incubated on ice for 15 min. Samples were centrifuged
for 10 min at 4◦C and 4,000 g. Sugars were measured in the
supernatant with the D-mannose, D-fructose, D-glucose kit
following manufacturer’s instructions (#K-MANGL, Megazyme,
Wicklow, Ireland).

GDP-mannose measurements

Plasma samples were obtained as described above and
stored at −80◦C. For sample preparations, 10 µL of plasma
was added to 190 µL of Methanol/water/Chloroform mixture
(8:1:1), followed by a vigorous shacking and then centrifuged
at 13,200 rpm during 15 min at 4◦C. Supernatant was dried
by speed Vacuum and samples were re-suspended in 70 µL
of methanol 50%, and finally were analyzed by LC/MS as
described previously (2). Tissue quality control showed no
differences in GMP, GDP, or GTP levels between treatments
(data not shown).

Chronic variable stress induction

The CVS-protocol was performed as described (21). In brief,
mice received 21 days of stress with one of three stressors
presented in a semi-random order, where the same stressor
does not occur on two consecutive days. The following stressors
were used: 1 h of tube restraint, tail suspension or 100 mild
electric random foot shocks. If only female experimenters were
present, a used male t-shirt was wrapped in clean protective
clothing from the animal unit and placed into the experimental
room in order to avoid variability due to sex-specific scents of
the scientists (3). All experiments were conducted in the light
phase of the light-cycle to allow comparability with previous
experiments (15). For CVS-groups, vitamin B12 was injected at
the last day of CVS (day 21), just prior to the stressor.

Postmortem brain samples

Samples were generously provided by the Douglas-Bell
Canada Brain Bank. Experiments were conducted in agreement
with the Ethics committee of Jena University Hospital, Germany
(Reg.-Nr. 2020-1862-Material) and Douglas Institute REB
Approval #04/21.

Statistics

Statistical analysis was performed in GraphPrism. Two-
tailed Student’s t-test was used for comparison of two groups.
Two-way ANOVA with Bonferroni post-hoc test was used,
when two factors were varied. Outliers were removed when
data points were more than two standard deviations away
from the average.

Results

GDP-mannose pyrophosphorylase B
and plasma mannose are increased in
depressed patients and in a mouse
model of chronic stress

We obtained PFC postmortem tissue from depressed
patients to assess whether altered GMPPB levels observed
by Wingo et al. (5) can be reproduced and whether this
was associated with altered mannosylation (Figure 1A).
Additionally, we obtained samples from the CVS mouse-model
(Figure 1B). This model is the gold standard in mimicking
molecular and behavioral changes linked to depression and is
well suited for functional and interventional studies (21, 25).

Increased GMPPB protein levels in postmortem PFC-
tissue from depressed patients were confirmed in our cohort
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FIGURE 1

GMPPB and plasma mannose are increased by chronic stress and depression. (A) Cartoon illustrating the regulation of GDP-mannose
production. (B) Experimental setup for CVS-experiment. (C) Representative western blots. (D–K) Statistics: Student’s t-test. (D–G) Results from
human cohorts. (D–F,H–J) Prefrontal cortex. (G,K) Plasma. (D) Increased GMPPB protein-levels in depressed patients (Depr.) vs. controls (Nil);
n = 15–18 per group; t31 = 3.32, **P < 0.01. (E) No association between depression and GMPPB RNA-levels; n = 15–18 per group; t31 = 1.22,
P = 0.23. (F) No association between depression and oligomannose-levels. n = 15–19 per group; t32 = 0.59, P = 0.56. (G) Increased plasma
mannose in depressed patients; n = 18–19 per group; t35 = 2.51, *P < 0.05. (H–K) Results from the CVS mouse-model. (H) Increased GMPPB
protein-levels in stressed mice; n = 13–14 per group; t25 = 2.18, *P < 0.05. (I) Reduced Gmppb-RNA levels in CVS-group; n = 10–12 per group;
t20 = 2.13, *P < 0.05. (J) Increased oligomannose-levels in stressed mice; n = 13–14 per group; t25 = 2.53, *P < 0.05. (K) Increased plasma
mannose in CVS-group. n = 19–21 per group; t38 = 2.44, *P < 0.05. (D–K) Individual data points are plotted and means ± s.e.m. are shown.
A.U., Arbitrary units; Rel. FC, Relative fold change. Illustrations were generated with biorender.com.
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FIGURE 2

Vitamin B12 rapidly reverses GMPPB levels and plasma mannose in stressed mice. (A) Representative western blots. (B) Experimental setup for
Vitamin B12-experiment. (C–F) Statistics: Student’s t-test. (C) Vitamin B12 reduces GMPPB protein-levels in the PFC of stressed mice; n = 14–15
per group; t27 = 3.43, **P < 0.01. (D) No effect of vitamin B12 on Gmppb transcription; n = 7–8 per group; t13 = 0.05, P = 0.96. (E) No effect of
vitamin B12 on oligomannose abundance in the PFC; n = 14 per group; t26 = 0.42, P = 0.68. (F) Vitamin B12 reduces plasma mannose in
CVS-treated mice; n = 20–21 per group; t39 = 3.23, **P < 0.01. (C–F) Individual data points are plotted and means ± s.e.m. are shown. A.U.,
Arbitrary units. Illustrations were generated with biorender.com.

(Figures 1C,D). The change in GMPPB protein abundance was
not accompanied by increased GMPPB transcripts, suggesting
a regulation of the protein itself (Figure 1E). As GMPPB is
a mediator of mannosylation, oligomannose levels in the PFC
and plasma mannose levels were measured as well. While PFC
oligomannose levels were not affected in depressed patients
(Figure 1F), plasma mannose levels were increased (Figure 1G
and Supplementary Figure 1).

In the CVS mouse-model, increased GMPPB was observed
as well (Figure 1H). Here, too,GmppbRNA-levels did not match
the observed increase in protein abundance (Figure 1I). In the
mouse model, both, PFC oligomannose and plasma mannose
were increased (Figures 1J,K).

These data suggest that chronic stress and depression
are indeed linked to altered PFC GMPPB and mannose
metabolism. GMPPB and oligomannose changes in the CVS-
model occurred in the PFC. No changes were observed
in the hippocampus (Supplementary Figure 2). Moreover,
GDP-mannose levels were significantly increased in murine
plasma samples (Supplementary Figure 3). Mannose can be
converted from other carbohydrates such as fructose and
glucose (Supplementary Figure 4). Hence, plasma fructose and
glucose levels were assessed in mice and human cohorts as well.

While fructose was not affected in depressed patients or by
CVS, glucose amounts were significantly reduced in depressed
patients (Supplementary Figure 4).

Vitamin B12 rapidly reverses
GDP-mannose pyrophosphorylase B-
and plasma mannose-levels in
chronically stressed mice

Previously, we have observed that a single dose of vitamin
B12 at the end of a chronic stress paradigm can ameliorate
symptoms associated with depression (15).

We observed that an acute dose of vitamin B12 reduced
GMPPB protein-amounts in stressed mice (Figures 2A–
C). Gmppb RNA-levels and PFC oligomannose were not
affected (Figures 2D,E). Additionally, vitamin B12 decreased
plasma mannose levels (Figure 2F) without affecting plasma
fructose and glucose (Supplementary Figure 4). Moreover,
plasma GDP-mannose levels were not altered by vitamin B12
(Supplementary Figure 3). These data suggest that in mice,
a single dose of vitamin B12 can, at least in part, counteract
chronic stress-induced changes in mannose metabolism.

Frontiers in Nutrition 05 frontiersin.org

https://doi.org/10.3389/fnut.2022.981511
https://biorender.com/
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-981511 October 13, 2022 Time: 11:52 # 6

Franzka et al. 10.3389/fnut.2022.981511

GMPPA, an allosteric inhibitor of
GDP-mannose pyrophosphorylase B, is
affected by depression, but not
chronic stress or vitamin B12

GMPPA is the allosteric feedback inhibitor of GMPPB
(Figure 1A). GMPPA protein levels were increased in depressed
patients (Figures 3A,D). However, they were not affected by
chronic stress in untreated mice or by vitamin B12 in stressed
mice (Figures 3B–F and Supplementary Figure 5). Hence,
the observed GMPPB-changes appear to be selective in mice.
In human depression cohorts, GMPPB-associated elevations in
mannosylation might be counteracted by an increase in GMPPA
abundance as a compensatory mechanism.

Discussion

Here we confirm a previous observation that altered
GMPPB levels are increased in the postmortem PFC of
depressed patients. We found similar changes in a mouse model
of chronic stress and depression. Changes in mice were specific
to the PFC and were not accompanied by altered GMPPA-levels.
Notably, in a brain proteome-wide association study, Wingo
et al. found not only GMPPB levels to be altered, but also beta
3-glucosyltransferase (B3GALTL). This indicates that various
enzymes in the glycosylation process might be changed upon
depression. We further observed increased plasma mannose-
levels in patients suffering from depression. Unfortunately, it
was not possible to obtain correlative data as the samples
had to be taken from different alive and postmortem cohorts.
Furthermore, we found that vitamin B12 can rapidly decrease
GMPPB and plasma mannose in stressed mice.

While the CVS-model reflected main observations from
human depressed patients, it differed in several details. For
instance, Gmppb transcript-levels were reduced in stressed mice
but not in depressed patients. Stressed mice, but not depressed
patients, showed altered protein-bound oligo-mannose residues
in the PFC. Plasma glucose-levels were decreased in depressed
patients but not in stressed mice. In humans, but not mice,
GMPPA levels were altered. These differences need to be
considered when exploring functional links between GMPPB
metabolism and depression. Causes may be species-differences
or secondary biases due to life style-changes in depressed
patients or sampling methods (e.g., altered dietary choices,
fasting prior to testing in humans vs. mice, longer postmortem
intervals in human samples). Furthermore, depressed patients
were under medication (benzodiazepines for plasma cohort,
various pharmaceuticals for the postmortem cohort), which may
affect metabolic markers as well.

Based on the availability of samples, our data sets were
skewed toward males and Caucasians. In order to ensure a wider

applicability of findings, such biases should be avoided whenever
possible in the future.

The discrepancy between regulation of Gmppb transcripts
vs. proteins suggest a regulation on a protein level, e.g., via
posttranslational modifications or proteasomal degradation.
Furthermore, a clear link between vitamin B12 and
carbohydrate mechanisms has not been explored. Being a
regulator of methyl donors, it is conceivable that vitamin
B12 affects the methylation of GMPPB or its’ regulators, for
instance on it’s R357 residue (26). This possibility should be
further investigated.

Currently it is unclear whether increased GMPPB
abundance in the PFC will lead to increased plasma mannose
levels, e.g., via degradation of glycoproteins. It is conceivable
that, despite the observed brain-region specific alterations,
GMPPB abundance may be altered in other tissues such as liver
(27). We recently showed that hyperglycosylation of proteins is
correlated with increased plasma mannose levels (2). Moreover,
we showed that increased GMPPB levels correlate with protein
hypermannosylation and enhanced plasma mannose levels
(24). Altered glycosylation may affect protein stability and
conformation, protein interactions and adhesion, as well as
protein activity and localization (28).

In depressed patients and CVS mice, we found
plasma mannose concentrations to be strongly increased,
which may reflect increased release from glycans or
increased generation of mannose from glucose or fructose.
Although only approximately 2% of mannose entering
the cell is used for glycosylation (29), the higher systemic
mannose levels may contribute to the larger pool of GDP-
mannose/hypermannosylated proteins in CVS mice and
patients and thus hyperglycosylation.

In agreement with this, we detected increased plasma GDP-
mannose levels in stressed mice. Plasma GDP-mannose levels
are probably derived from blood cells or dead peripheral
cells and not from an efflux from cells as reported for blood
mannose (30). Plasma GDP-mannose levels were not affected
by vitamin B12 in stressed mice. This may be due to previously
observed tissue-specific effects of vitamin B12. Future studies
might address blood glycoproteins and their regulation through
vitamin B12 as well.

It has been shown that reduced GMPPB abundance leads to
decreased GDP-mannose levels and thus affects neuronal and
muscle development (4, 31, 32). For example, motor neurons
were shortened (4), and an early marker of pan-neuronal cells
was remarkably decreased in GMPPB knockdown zebrafish
(33). Notably, GDP-mannose supplementation restored GDP-
mannose levels, protein mannosylation and thus muscle and
neuronal defects (4). Another study showed that GDP-fucose
supplementation in a GDP-mannose 4,6 dehydratase mutant
zebrafish where fucosylation was decreased restored protein
fucosylation and the neuronal phenotype (34). However, it
has been shown that extremely elevated GDP-mannose levels
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FIGURE 3

GMPPA levels are not associated with depression or chronic stress in the PFC. (A) Representative western blots for GMPPA and housekeeping
gene, GAPDH on prefrontal cortex tissue. (A) Human cohorts. (B) Naïve mice and CVS model. (C) Vitamin B12 treatment in stressed mice. (D–F)
Statistics: Student’s t-test. (D) Increased GMPPA abundance in depression; n = 15–18 per group; t31 = 2.91, **P < 0.01. (E) GMPPA is not altered
by chronic stress; n = 13–15 per group; t26 = 1.10, P = 0.28. (F) Vitamin B12 does not affect GMPPA levels; n = 13–15 per group; t26 = 1.95,
P = 0.06. (D–F) Individual data points are plotted and means ± s.e.m. are shown. A.U., Arbitrary units. Illustrations were generated with
biorender.com.

affect neuron morphology and development (4). Thus, normal
neuron function likely depends on a balanced GDP-mannose
homeostatis mediated by GMPPB and GMPPA.

A possible link between GMPPB and plasma mannose levels
may be addressed using GMPPB mutant mice. Furthermore,
the impact of a mannose-enriched or mannose-depleted
diet on symptoms of chronic stress and depression could
be investigated.

This study further supports the rapid stress-ameliorating
effects of vitamin B12. The current findings add a metabolic
and possible protein-regulatory level to the previously observed
changes in behavioral and transcriptional markers, highlighting
a multidimensional impact of vitamin B12. To date, the vitamin
B12 induced stress reversal has been observed in two different
mouse models of chronic stress.

Hence, vitamin B12 should be tested as a rapid dietary
intervention to treat symptoms associated with chronic stress
and depression in human cohorts. Blood samples may be
taken to investigate an impact on plasma mannose in addition
to mood-related measures. This would allow in patient-
correlations and may perhaps provide a therapeutic approach
using a widely available, affordable, well-tolerated and rapid
acting molecule to improve symptoms of stress and depression.

Despite the missing functional link between vitamin
B12 and mannose metabolism, this study provides several
novel insights: (1) Systemic mannose levels are altered in
depressed patients and in a mouse model. The fact that

vitamin B12 rapidly reverses plasma mannose changes in
stressed mice demonstrates the dynamic nature of this
marker. (2) Vitamin B12 rapidly normalizes metabolic
correlates of depression in a mouse model. Together with
previous behavioral and molecular data, this study further
encourages testing of vitamin B12 as a fast-acting intervention
to chronic stress.
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SUPPLEMENTARY FIGURE 1

Demography of human cohorts. (A) Postmortem prefrontal cortex
tissue. (B) Plasma samples. (C) Plasma-mannose levels (from Figure 1)
analyzed by sex; n = 9 per group; 2-way ANOVA: effect of depr.: F(1,
32) = 13.68, P = 0.0008; effect of sex: F(1, 32) = 0.02, P = 0.88; no
interaction: F(1, 32) = 2.14, P = 0.15; Bonferroni post hoc test: effect of
depr. within females: ∗∗P < 0.01; all other comparisons: P > 0.05. (D)
Legend with abbreviations. (C) Individual data points are plotted and
means ± s.e.m. are shown. Illustrations were generated with
biorender.com.

SUPPLEMENTARY FIGURE 2

Hippocampal GMPPB and oligomannose are not affected by chronic
stress or depression. (A) Representative western blots on hippocampal
tissue. (B–D) Statistics: Student’s t-test. (B) No difference in
GMPPB-levels; n = 9 per group; t16 = 1.10, P = 0.29. (C) No difference in
GMPPA-levels; n = 10 per group; t18 = 0.69, P = 0.50. (D) No difference
in oligomannose-levels; n = 9–10 per group; t17 = 0.18, P = 0.86. (B–D)
Individual data points are plotted and means ± s.e.m. are shown. A.U.,
Arbitrary units. Illustrations were generated with biorender.com.

SUPPLEMENTARY FIGURE 3

GDP-Mannose is increased in plasma of chronically stressed mice but
not altered by vitamin B12. (A,B) Statistics: Student’s t-test. (A)
GDP-mannose is affected by CVS. n = 9–10 per group; t17 = 2.95,
∗∗P < 0.01. (A) GDP-mannose is not affected by vitamin B12 in the CVS
group. n = 9–10 per group; t17 = 1.21, P = 0.24. Individual data points
are plotted and means ± s.e.m. are shown. A.U., Arbitrary units.

SUPPLEMENTARY FIGURE 4

Fructose and glucose levels in chronic stress and depression. (A)
Overview of conversion pathway between mannose, fructose and
glucose. (B–G) Statistics: Student’s t-test. (B,C) Plasma sugar levels in
human cohorts. (B) Fructose-levels are not significantly altered in
depressed patients; n = 19–20 per group; t37 = 1.86, P = 0.07. (C)
Glucose levels are reduced in depressed patients. n = 19 per group;
t36 = 3.80, ∗∗∗P < 0.001. (D,E) Plasma sugar levels in mice. (D) Fructose
levels are not affected by CVS; n = 19–20 per group; t37 = 1.15, P = 0.26.
(E) Glucose levels are not altered by CVS; n = 19–21 per group;
t38 = 1.47, P = 0.15. (F) Vitamin B12 does not affect plasma fructose
levels; n = 20–21 per group; t39 = 0.13, P = 0.90. (G) Plasma glucose
levels are not affected by vitamin B12 in stressed mice; n = 20 per
group; t38 = 1.96, P = 0.06. (B–G) Individual data points are plotted and
means ± s.e.m. are shown. Illustrations were generated
with biorender.com.

SUPPLEMENTARY FIGURE 5

Full length western blots.
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