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Understanding the real-time dynamical mechanisms of neural systems remains a

significant issue, preventing the development of efficient neural technology and user trust.

This is because the mechanisms, involving various neural spatial-temporal ingredients

[i.e., neural structure (NS), neural dynamics (ND), neural plasticity (NP), and neural

memory (NM)], are too complex to interpret and analyze altogether. While advanced tools

have been developed using explainable artificial intelligence (XAI), node-link diagram,

topography map, and other visualization techniques, they still fail to monitor and visualize

all of these neural ingredients online. Accordingly, we propose here for the first time

“NeuroVis,” real-time neural spatial-temporal information measurement and visualization,

as a method/tool to measure temporal neural activities and their propagation throughout

the network. By using this neural information along with the connection strength and

plasticity, NeuroVis can visualize the NS, ND, NM, and NP via i) spatial 2D position

and connection, ii) temporal color gradient, iii) connection thickness, and iv) temporal

luminous intensity and change of connection thickness, respectively. This study presents

three use cases of NeuroVis to evaluate its performance: i) function approximation

using a modular neural network with recurrent and feedforward topologies together with

supervised learning, ii) robot locomotion control and learning using the same modular

network with reinforcement learning, and iii) robot locomotion control and adaptation

using another larger-scale adaptive modular neural network. The use cases demonstrate

how NeuroVis tracks and analyzes all neural ingredients of various (embodied) neural

systems in real-time under the robot operating system (ROS) framework. To this end,

it will offer the opportunity to better understand embodied dynamic neural information

processes, boost efficient neural technology development, and enhance user trust.

Keywords: visual analytics, information visualization, explainable artificial intelligence, artificial neural networks,

embodied neural control, robotics
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1. INTRODUCTION

Artificial neural networks (ANNs) have achieved huge success in
embodied neural control of robots. One study took inspiration
from the neural architecture of C. elegans and developed
neural architectures for mobile robot parking and robot arm
manipulation (Lechner et al., 2019). Other studies equipped
multi-legged robots with bio-inspired neural control, which
enables the robots to walk or climb on different terrains and
adapt to unseen environments (Ijspeert et al., 2007; Arena et al.,
2017; Homchanthanakul et al., 2019; Knüsel et al., 2020; Schilling
and Cruse, 2020; Thor et al., 2020; Srisuchinnawong et al., 2021;
Szadkowski et al., 2021).

The abilities of such bio-inspired embodied neural systems
are the results of the exploitation of four intertwined key neural
(spatial-temporal) ingredients (Pau and Johansen, 1990; Rusu
et al., 2003; Luque et al., 2014; Cashman et al., 2017; Hohman
et al., 2018; Lechner et al., 2019; Rudin, 2019; Shaikh and
Manoonpong, 2019; Capolei et al., 2020; Chatzimparmpas et al.,
2020; Tang et al., 2020), as illustrated in Figure 1. The neural
ingredients are:

• Neural Structure (NS)which defines the network connections
and constrains the information propagation.

• Neural Dynamics (ND) which alters neural activity patterns
according to the propagated neural information.

• Neural Plasticity (NP) which enables neural connection
modification based on the neural activity patterns.

• Neural Memory (NM) which allows temporary neural
information storage (short-termNM) through direct storation
of activity patterns or ND and longer-time-scale neural
information storage (long-term NM) though connections
or NS.

Despite the success that such neural ingredients have produced,
the main drawbacks of ANNs are their black box nature and
lack of explainability (Rudin, 2019; Chatzimparmpas et al.,
2020; Tang et al., 2020). As a consequence, this limits the
comprehension to develop efficient embodied neural systems and
creates communication barriers between people from different
fields (Nordlie and Plesser, 2010; Briscoe, 2012; Ming et al., 2017;
Senk et al., 2018).

To address the problem, several explainable artificial
intelligence (XAI) techniques have been proposed. One
technique is to extract the feature importance level to aid
understanding (Tang et al., 2020). However, analysis of the
underlying neural mechanisms has not been fully realized.
Cloning the original model into a transparent one is an
alternative (Ribeiro et al., 2016; Sheh, 2017); however, the
cloned model can still differ from the actual one (Rudin,
2019). Therefore, Rudin (2019), Hohman et al. (2018), and
Chatzimparmpas et al. (2020) suggested designing interpretable
models and analyzing the neural information instead (Hohman
et al., 2018; Rudin, 2019; Chatzimparmpas et al., 2020). Even so,
interpretable neural models also require effort to understand the
ongoing neural processes (Hohman et al., 2018; Chatzimparmpas
et al., 2020).

In order to reduce the effort involved and capture the neural
processes, graphs and node-link diagrams are extensively used.
Graphs suit small time series but not massive whole network data
(Lechner et al., 2019; Mehmood et al., 2020; Tang et al., 2020). On
the other hand, although node-link diagrams (Pau and Johansen,
1990; Rusu et al., 2003; Cashman et al., 2017; Lechner et al.,
2019) suit large-scale analysis, the temporal neural information
cannot be tracked online. Thus, combining the advantage of each
can lead to effective neural visualization (Chatzimparmpas et al.,
2020) where spatial neural information is projected onto the
node-link diagram with temporal neural information displayed
at nodes and connections.

Examples of those neural visualizations are the topography
map (Mehmood et al., 2020) and Neurorobotics Platform
(Falotico et al., 2017). They project snapshots of neural activity
patterns (partial ND) onto certain positions of the network (NS)
without neural activity propagation (ND) and the dynamical
changes of neural plasticity (NP) and memory (NM). Another,
the Brain Simulator (Simon, 2020), visualizes a neural network as
a neuron array with a fixed layout (NS) and discrete connection
weights (partial NM and NP) without activity propagation (ND).
Other network visualizations demonstrated by Lechner et al.
(2019), Manoonpong et al. (2007), and Schilling et al. (2013)
display neural networks with ND, but the representations of the
temporal neural information of the NP and NM are excluded.

While state-of-the-art neural visualizations may be effective
in their own right, their available function remains limited since
they cannot visualize all key neural spatial-temporal ingredients
(NS, ND, NP, NM) along with their relationship online for
real-time embodied neural mechanism analysis (see Table 1

in the conclusion and discussion section). Furthermore, their
application in real-time closed-loop embodied neural control of
robots is unsuitable since they typically do not support a practical
robot interface, like the Robot Operating System (ROS) (Koubâa,
2019), which effortlessly allows for communication with the most
frequently used ROS-based robots in the robotic community.
To address this problem, this study presents NeuroVis as a
general method/tool to measure and visualize the NS, ND, NP,
and NM in real time with the ROS interface for easy NeuroVis-
robot communication.

2. NEUROVIS

NeuroVis1 is an open-source real-time neural visualization that
measures and visualizes neural information of ANNs. NeuroVis
is designed for discrete-time non-spiking neurons (Pau and
Johansen, 1990; Rusu et al., 2003; Cashman et al., 2017; Tang et al.,
2020; Srisuchinnawong et al., 2021) described by:

ai[t + 1] = f (
∑

wji[t]aj[t]+ b[t]) (1)

ai[t] denotes the activity of neuron i at timestep t. f denotes the
activation function, wji[t] denotes the weight of the connection

1NeuroVis software is publicly available at

https://gitlab.com/zumoarthicha/neurovis.git.
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FIGURE 1 | Neural ingredients of an embodied neural system and their relationships. The neural system is embedded into a body and interacts with the environment

through the body (Beer, 2008). This complete view describes the complex dynamical neural system-body-environment interactions. NeuroVis offers a possibility to

visualize and analyze neural processes of the neural system underlying such complex interactions.

from neuron j to neuron i at timestep t. b[t] denotes the bias of
neuron i at timestep t.

Based on literature reviews, the features of NeuroVis are
formulated to fill the existing gaps as follows:

2.1. All Four Spatial-Temporal Neural
Ingredient Representation
Current methods still do not completely cover NS, ND, NP,
and NM. For example, some merely present the activity pattern
(partial ND) without information propagation between neurons
(Falotico et al., 2017; Mehmood et al., 2020; Simon, 2020).
Therefore, one of NeuroVis features is to present all the spatial-
temporal neural ingredients using visual attributes with high
degree of perceptiveness (e.g., color, intensity, and thickness)
to facilitate visual analysis (Alexandre and Tavares, 2010).
Specifically, NeuroVis represents NS as a spatial 2D neural
position and connection line, based on a node-link diagram, ND
as the temporal color gradient of each neuron and connection
according to Equations (2, 3), NM as connection thickness
according to equation 4, and NP as temporal luminous intensity
and changes in connection thickness according to Equation (5).

NCi[t] = clip(−1, γNCai[t], 1) (2)

CCij[t] = clip(−1, γCCai[t]wij[t], 1) (3)

CTij[t] = |γCTwij[t]| (4)

LIij[t] = |γLI(wij[t])− wij[t − 1]| (5)

NCi[t] denotes the dynamic color gradient of the neuron i at
timestep t (if NCi[t] equals to –1, 0, and 1, the neuron will be red,
gray, and green, respectively). CCij[t] denotes the dynamic color
gradient of the connection from neuron i to neuron j at timestep
t (if CCij[t] equals to –1, 0, and 1, the connection will be red,
gray, and green, respectively). CTij[t] denotes the thickness of the
connection from neuron i to neuron j at timestep t. LIij[t] denotes
the luminous intensity of the connection from neuron i to neuron
j at timestep t. γNC, γCC, γCT , and γLI denote the scaling factors
that scale the neuron color gradient, connection color gradient,
connection thickness, and luminous intensity transformation,
respectively. ai[t] denotes the activity of neuron i at timestep
t. wij[t] denotes the weight of the connection from neuron i to
neuron j at timestep t.

2.2. General Neural Information
Visualization
Due to the inclusion of all NS, ND, NP, andNM,NeuroVis can act
as general neural information visualization and substitute other
state-of-the-art techniques that do not fully cover all the spatial-
temporal neural ingredients (see Table 1 in the discussion and
conclusion section for the summary). From this point of view, the
neural information measurement and visualization of NeuroVis
can correlate to the results of other techniques. To demonstrate
this, a use case (described below) presents the example of
interpretation using NeuroVis along with references to other
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FIGURE 2 | Example of a neural network with two neurons (i.e., neuron X with

negative activity and neuron Y with positive activity) and the inhibitory

(negative) connection between them. (A) Visualization of NeuroVis. NeuroVis

automatically converts a combination of the negative activity from X and the

negative connection into the visible actual input (i.e., here positive (excitatory)

input) to Y. (B) Visualization of the other methods. It does not automatically

convert the combination as such the actual input to Y is not visible.

works that employed different techniques (e.g., cross-correlation
and mutual information analysis) but reported similar results.

2.3. Straightforward Interpretation
NeuroVis makes two improvements from the existing methods
(Manoonpong et al., 2007; Schilling et al., 2013; Lechner et al.,
2019; Simon, 2020) in order to straightforwardly provide the
overview and dynamics of (embodied) neural systems and
allow non-experts to easily understand and interpret the neural
visualization of NeuroVis.

Firstly, in contrast to other visualization methods
(Manoonpong et al., 2007; Schilling et al., 2013; Lechner
et al., 2019; Simon, 2020) that are based on static symbol and
color representations of connection types2, Neurovis encodes
neural activity and synaptic temporal dynamics into dynamic
color gradients of connections according to Equation (3).

Using this approach, one has to simply consider only the
input to each neuron in order to analyze why the neuron is
active instead of considering both the connection type and
presynaptic neuron’s activity as usually required by the other
methods. Taking Figure 2A as an example of the visualization
obtained from NeuroVis, Y receives a positive signal (green) and
becomes positive (green). In contrast to this, when employing the
other methods with static symbol and color representations, both
the presynaptic neuron’s activity and connection weight or type
must be taken into account. Taking Figure 2B as an example of
the visualization obtained from the other methods, Y becomes
positive (green) since X is negative (red) and the connection
weight is negative (red).

Secondly, while the other neural visualizations (Manoonpong
et al., 2007; Schilling et al., 2013; Lechner et al., 2019) do not
display the NP (dynamically changing connections), Neurovis
displays connection plasticity through connection thickness
(according to Equation 4) and also highlights the change of
the plasticity with a luminous yellow outline (according to
Equation 5), as shown in Figure 4A.

2.4. Practical ROS Interface
ROS (Koubâa, 2019) is a framework that allows communication
between multiple ROS nodes locating on either the same or

2For example, in Manoonpong et al. (2007), a blue arrow represents an inhibitory

synapse, while a red arrow represents an excitatory synapse, In Lechner et al.

(2019), a red arrow represents an inhibitory synapse, while a green arrow

represents an excitatory synapse.

FIGURE 3 | The NeuroVis-ROS interface. Neurovis ROS node creates a

visualization using three ROS messages (including network connection,

neuron name, and neuron activity) from another ROS node implementing the

neural network that interfaces with a real robot or simulation.

different devices. Under this framework, NeuroVis acts as a
ROS node that subscribes to those real-time (≥ 20Hz) messages
and monitors embodied neural robot control during robot
operation, as shown in Figure 3. Since NeuroVis operates under
ROS, neural data can be recorded using a ROS package called
rosbag. NeuroVis also has a function to automatically record the
NeuroVis visualization as a video file (see also the git repository
of NeuroVis1).

3. NEUROVIS USE CASES

This section presents three use cases in which NeuroVis was
used to visualize and interpret three different (embodied)
neural networks. The first use case aims to provide the design
principles and demonstrate that NeuroVis covers all four neural
ingredients (the first feature; subsection 2.1). Besides it evidences
the opportunity to substitute other state-of-the-art information
visualization techniques with this method (the second feature;
subsection 2.2) and provides an example of interpreting the
neural network (the third feature; subsection 2.3). The second
use case aims to evaluate the NeuroVis-ROS interface on a small-
scale embodied neural network that was learned online using
reinforcement learning for hexapod locomotion generation (the
fourth feature; subsection 2.4). Lastly, the third use case aims
to further evaluate the NeuroVis-ROS interface on a larger-scale
embodied neural network (the fourth feature; subsection 2.4)
and demonstrate an example of interpreting a complex embodied
neural network (the third feature; subsection 2.3).

3.1. Use Case 1: Function Approximation
The first use case involves a modular neural network with
recurrent and feed forward topologies as an example as shown
in Figure 4A. This architecture has been used to produce an
arbitrary periodic signal for robot locomotion (Thor et al., 2020;
Srisuchinnawong et al., 2021). The dynamics of the network are
governed by:

C1[t + 1] = tanh(w11C1[t]+ w21C2[t]) (6)

C2[t + 1] = tanh(w12C1[t]+ w22C2[t]) (7)
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FIGURE 4 | (A) Neural visualization of the network in the first use case. (B) C1 and C2 activities or outputs of the RNN. (C) Connection weights of K2 and K4 to O,

where the change of line thickness and luminous intensity (yellow) represents the weight changes (NP). Red and green colors indicate the propagated signals that

contribute to the decrease and increase of activity, respectively. (D) The activities of K1-8 and O are mapped according to the color of the gradient. The saturated

green node, saturated red node, and color-less node indicate highly positive, highly negative, and inactive (≈ 0) neural activities, respectively. (E) The target function at

neuron T of the first use case. Note that the graphs (B–D) illustrate the neural information analysis based on the visualization of NeuroVis. In this study, for simplicity,

only the weights between K1-8 and O are adapted online to observe the NP and NM. A video of this use case can be seen at Supplementary Video 13.

Ki[t] = gaussian(C1[t],C2[t]) = exp(−σ

2
∑

i=1

(Ci[t]− µi)
2) (8)

O[t] =

k
∑

i=1

wKiOKi[t] (9)

Ci[t], Ki[t], and O[t] denote the activities of the neuron Ci, Ki,
and O at timestep t, respectively. wij denotes the weight of the
connection from neuron i to neuron j. k denotes the number of
the kernel. Here, eight kernels are used. tanh(), gaussian(), and
exp() denote hyperbolic tangent activation function, Gaussian
activation function, and exponential functions, respectively.
σ and µi denote the parameters of the Gaussian function,
which are set to 40 and eight interpolated points between –1
and 1, respectively.

In this use case, w11, w21, w12, and w22 are predefined and
fixed as 1.000, 0.049, -0.049, and 1.000, respectively (Pasemann
et al., 2003). On the other hand, the connections between K1-8
and O were trained online to approximate two nonlinear target
functions (at neuron T) with supervised learning according to:

wKiO[t + 1] = wKiO[t]+ ηKi[t](T[t]− O[t]) (10)

wKiO[t] denotes the weight of the connection from the kernel
neuron Ki to the output neuron O at timestep t. η denotes the
learning rate, which is 0.01 in this case. Ki[t], T[t], and O[t]
denote the activities of the kernel neuron Ki, the target T, and
the output O at timestep t, respectively.

During the training process, NeuroVis displayed the
visualization at the display frequency of 40 frames per second (40
Hz) under the ROS interface (see Supplementary Video 13 for

3The video of the first use case is available at

www.manoonpong.com/NeuroVis/video1.mp4.

the demonstration). Note that themodular network is considered
here to show that NeuroVis can be applied to both discrete-time
non-spiking recurrent and feed forward networks. The results
are described below alongside the network interpretation and
the structural elements from which they mainly derive since this
better reflects the tight intertwining of the neural ingredients and
NeuroVis functions.

3.1.1. Neural Structure
The NS determines whether each pair of neurons connects or
not. It represents the spatial neural information structure of the
network. The network connection is mathematically modeled as
a Boolean connection matrix (C) (Capriglione et al., 2016):

C =







c11 . . . c1m
...

. . .
...

cn1 . . . cnm






(11)

where the element at row i column j (cij) denotes the existence of
the connection from neuron i to neuron j.

NeuroVis thus draws a node-link diagram according to the
connection matrix, as depicted in Figure 4A. Connections are
drawn to link pairs of neurons to identify their existence. The
neurons are simulated at adjustable positions (Alexandre and
Tavares, 2010) so that the layout follows the explanation order
(Rusu et al., 2003; Lechner et al., 2019). For example, in this use
case (Figure 4A), the neurons are positioned according to the
functions of the modular network. The upper part of the network
layout is a two-neuron recurrent network (RNN), namely, C1
and C2, with a hyperbolic tangent activation function. The
RNN generates basic sinusoidal-like signals which are propagated
downward to the lower part of the layout which is a feed-forward
neural network (FFNN) with eight hidden neurons (K1-8) and
one output neuron (O) for periodic signal shaping. However, we
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FIGURE 5 | Snapshots from the first video 3. (A,B) The network during online learning showing the changes in neural activities and connection weights. (C) The

weights converging to different thicknesses in the network. A video of this use case can be seen at Supplementary Video 13.

can also position neurons in relation to the robot system that they
control (see the third use case).

NeuroVis displays the connections with arrows. One can
observe which inputs are taken by a certain neuron and to which
neuron the output transmits. The RNN with the predefined
weights produces two sinusoidal-like signals (i.e., activities of
C1 and C2, Figure 4B), which are transmitted to K1-8 of the
FFNN. By doing so, the sinusoidal-like signals are shaped by
the Gaussian activation function with different parameters. The
activities of K1-8 are then weighted and summed to produce the
output O with respect to a target function T (Figure 4E). The
error e is then calculated as e = T − O. Finally, the network
takes e to adapt the weights between K1-8 and O online using
a standard delta rule, as shown in Equation (10). The ND, NP,
and NM of the network described below are constrained by
this NS.

3.1.2. Neural Dynamics
The ND represents temporal neural information which describes
the evolution of the activity pattern according to the information
propagated (see Figure 5). Since neurons are usually analyzed as
negative, inactive, or positive (Lechner et al., 2019), NeuroVis
scales the measured neuron activities to values between –
1 (negative activity; red) and +1 (positive activity; green),
where 0 denotes inactivity (gray). It then presents neural
activity using colors and gradients (Alexandre and Tavares,
2010) (see Figure 4D). The information propagated through
a connection is also typically interpreted as the signal,
contributing to the increase or decrease in activity (Lechner
et al., 2019). Thus, NeuroVis multiplies the activity using the
connection weight to obtain the hue and gradient of the
connection, representing the information transmitted through
such connection (Figures 4A,C).

By observing at C1 and C2 through NeuroVis in
Supplementary Video 1 and in Figure 5, we can track and
analyze the ND of the network as follows. At 0:18 min

(Figure 5A), C2 has a strong positive activity (green). It
propagates the activity directly to C1 via the excitatory
connection (green), making C1 become positively active (green)
at 0:19 min (Figure 5B). Afterward, C1 turns highly positive
(green), transmitting its activity to C2 via the inhibitory
connection (red) and inhibiting the C2 activity (to become less
green, see Figures 5A,B). This ND of the RNNmakes C1 and C2
change from red to green repeatedly and vice versa.

Concurrently, the oscillating activities of C1 and C2 propagate
to K1-8. Due to the Gaussian activation function with different
centers, K1-8 can be observed to receive the same inputs but
exhibits different activities, and K1-8 becomes active at certain
input patterns. For example, in Figures 5A,C, whenever C1 is
pale red, and C2 is bright green, K1-4 and K8 are active. As a
result of such ND, a group of three to five neurons is activated,
producing the ripple from the left to the right.

If we compare NeuroVis to cross-correlation (Lechner et al.,
2019) and mutual information (Shwartz-Ziv and Tishby, 2017)
analysis, which are the typical methods for analyzing neural
activity patterns, NeuroVis can also be used to analyze the neural
activity patterns in a similar way. This is due to the fact that cross-
correlation and mutual information (Equations 12–14) are both
proportional to the number of times when such patterns occurs
(n(x) and n(x, y)).

CC(x, y) =
∑

x

∑

y

xyp(x)p(y) (12)

I(X;Y) =
∑

x

∑

y

p(x, y)log
p(x, y)

p(x)p(y)
(13)

p(x) =
n(x)

∑

x n(x)
and p(x, y) =

n(x, y)
∑

x

∑

y n(x, y)
(14)

X and Y denote the discretized activity patterns, x ∈ X and
y ∈ Y . CC(x, y) and I(X;Y) denote the cross-correlation value
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FIGURE 6 | (A) Time intervals when pairs of neurons displayed in NeuroVis become active together. (B) Correlation values when pairs of neurons activate

[CC(Ki [t] > 0.05,Kj [t] > 0.05)]. (C) Mutual information between pairs of neurons [I(Ki ,Kj )]. The greenish color indicates a longer time interval where two neurons

activate together, higher mutual information value, and higher correlation value, while the blueish color indicates a shorter time interval where two neurons activate

together, lower mutual information value, and lower cross-correlation value. Note that a neuron is considered active when its absolute activity is above 0.05. A video of

this use case can be seen at Supplementary Video 11.

when event x and y occur and mutual information between the
two variables, respectively. n(x) denotes the number of times
when x occurs. n(x, y) denotes the number of times when both
x and y occur.

According to the result obtaining from the demonstration in
this experiment (see Figure 6 and the Supplementary Video 13),
the time intervals of neural activities (fromNeuroVis) can be also
used to analyze the neural activity patterns since it has the same
trend as the correlation values from Equation (12) and mutual
information from Equation (13). For example, the time interval
when K2 and K3 activate together is greater than when K2 and K4
activate together (2.3 and 1.4 s, respectively, see the red squares in
Figure 6A). This is comparable to the cross-correlation analysis
demonstrating that the correlation value of K2 and K3 is also
greater than that of K2 and K4 (0.1 and 0.02, respectively, see the
red squares in Figure 6B). In addition, with mutual information
analysis, the mutual information between K2 and K3 is greater
than that of K2 and K4 (1.39 and 0.78, respectively, see the red
squares in Figure 6C).

3.1.3. Neural Plasticity
The NP represents neural temporal information and enables
connection weight adaptation according to the ND, leading
to long-term NM. Accordingly, NeuroVis employs the update
of connection weight to track NP (Chatzimparmpas et al.,
2020). The NP is usually considered to be quantitative data
(Cashman et al., 2017; Ming et al., 2017), indicating the degree of
weight change. NeuroVis thus presents weight updates indicated
by Equation (10) using time evolution of the connection
size/thickness and highlighting it with a luminous yellow outline
(Alexandre and Tavares, 2010).

As depicted in Figure 4C and in Supplementary Video 13,
when a connection weight becomes more positive or negative,
the thickness enlarges and casts a luminous yellow glow. At 0:18
min (Figure 5A), a significant error between O and T exists (i.e.,

–0.4). As a result, the connections from K2 to O and K3 to O
cast a luminous glow as they are being updated/thickened. Later,
at 1:42 min (Figure 5C), the error between O and T reduces to
-0.1, and the weights converge. This is indicated by a lack of
luminous outline, representing no weight change. Besides, the
connection from K2 to O changes from a thin red (Figure 5A)
to thick red connection (Figure 5C), indicating a change from
a small negative to a large negative (inhibitory) weight. This
demonstrates that NeuroVis can visualize and analyze temporal
and maximal weight updates over time (Cashman et al., 2017;
Ming et al., 2017).

3.1.4. Neural Memory
The NM consists of long-term NM and short-term NM.

3.1.4.1. Long-Term NM
Long-term NM is the ability to store certain neural information
as connection weight. Since connection weight is considered
quantitative data, being proportional to the amount of
information that one neuron propagates to another, NeuroVis
maps the measured connection weight value to connection
thickness (Alexandre and Tavares, 2010) as depicted in
Figure 7. With this principle, large/thick connections are
those with strong influence. For instance, in Figure 5C or
Supplementary Video 13 at 1:42 min, the path from C2 to K2
and O mainly contributes to the network output since it is the
thickest/largest. Hence, this example shows that NeuroVis can
be used to simply monitor and analyze NM instead of looking at
only the weight values as usually done (Pau and Johansen, 1990).

Apart from this, NeuroVis also provides insight into how the
ND in time space is memorized in weight space. Considering
Figure 7 along with Supplementary Video 13 after 1:40 min,
NeuroVis shows that the converged weights are the direct
representation of the output/target for this neural network. The
outputs/targets are encoded as the connections with various
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FIGURE 7 | Snapshots of the networks trained with (A) the first and (B) the second target functions. Snapshots are from Supplementary Video 13 after the training

end. The relationship between the converged weights, output, target, and neural visualization is depicted. Scatter plots and their color represent the weight magnitude

and the sign of information transmitted through the connections, respectively. Note that wi,j denotes the connection weight from neuron i to neuron j. A video of this

use case can be seen at Supplementary Video 11.

thicknesses as shown in Figure 7. Different thicknesses are also
mapped to their corresponding bars (in Figures 7A,B) to present
the relationship between the neural visualization and graph.

3.1.4.2. Short-Term NM
Short-term NM is the ability of the ND to retain neural
activity for a certain period of time, which can be visualized
via the neural color gradient of NeuroVis (in Figure 8

and Supplementary Video 24. The video is available at
www.manoonpong.com/NeuroVis/video2.mp4). At 0:10
min, the activity of neuron I transmits to neuron O. As a result,
O becomes active and turns green. Later, from 0:11 to 0:13
min, the ND of O with the recurrent connection provides the
recurrent input that prolongs the activity even if the input signal
from I has vanished.

3.2. Use Case 2: Robot Locomotion Control
and Learning
In Supplementary Videos 35, the second use case demonstrates
the NeuroVis-ROS interface tomonitor and analyze an embodied
neural locomotion control implemented on a hexapod robot
(Figure 9) (Thor and Manoonpong, 2019; Thor et al., 2020). The
neural architecture used in the first use case is still employed here,
but its weights are optimized with reinforcement learning (i.e.,

4 The video is available at www.manoonpong.com/NeuroVis/video2.mp4.
5The video of the second experiment is available at

www.manoonpong.com/NeuroVis/video3.mp4.

FIGURE 8 | Snapshots from Supplementary Video 24 showing the neural

visualization of the ANN with two neurons (i.e., I and O). (A) At 0:10 min, the

activity of I transmits to O, causing O to become active (turn green). (B,C) At

0:11 and 0:13 min, O remains active due to its recurrent connection. This

shows the ND as the short-term NM. A video of this use case can be seen at

Supplementary Video 24.

advantage policy gradient Sutton et al., 1999) to automatically
generate robot locomotion with optimal swing and stance
patterns under a fast tripod gait. The learning objective was
to let the robot learn to speedily walk forward, with forward
displacement acting as a reward function for adapting the

Frontiers in Neural Circuits | www.frontiersin.org 8 December 2021 | Volume 15 | Article 743101

www.manoonpong.com/NeuroVis/video2.mp4
www.manoonpong.com/NeuroVis/video2.mp4
www.manoonpong.com/NeuroVis/video3.mp4
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Srisuchinnawong et al. NeuroVis

FIGURE 9 | The second use case showing the use of NeuroVis for robot locomotion control and reinforcement learning in a closed-loop embodied neural network.

(A) Neural visualization of NeuroVis. (B) Neural control that is used in the second use case and visualized in (A). (C) Simulated and physical robots. (D) Learned

optimal output signal for optimal swing and stance patterns. (E) Example of the reward signal for learning the connection weights between K1-8 and O to obtain the

optimal output signal. A video of this use case can be seen at Supplementary Video 35.

connection weights between K1-8 and O (see Equation 15).

wKiO[b+ 1] = wKiO[b]

+η(r[b]− ravg[b])
∑

t

π[t]Ki[t](π[t]− O[t])

(15)

b denotes the number of training iteration. t denotes the number
of timestep in one training iteration. wKiO[b] denotes the weight
of the connection from the kernel neuron Ki to the output neuron
O at training iteration b. r[b] denotes the distance that the robot
walks in iteration b. ravg[b] denotes the moving average of such.
η denotes the learning rate which is set to 0.01. π[t] denotes the
stochastic control policy under normal distribution (O[t]+noise)
at timestep t. Ki[t] and O[t] denote the activities of Ki and O
at timestep t.

After the learning, the network was transferred to a physical
hexapod robot. During all these processes, the controller
(Figure 9B) published all the neural information via ROS
messages to NeuroVis, which created the neural visualization
accordingly (Figure 9A). With this use case, NeuroVis displayed
the neural visualization of the small-scale neural control
with 12 neurons and 28 connections at a frequency of 40
frames per second under the ROS interface. According to
Supplementary Video 35, one can observe the NS, activity
pattern and signal propagation (ND), the evolution of connection
weights (NP), and how the ND of the output is memorized
in weight space (long-term NM), using the same approach as
discussed in the first use case.

3.3. Use Case 3: Robot Locomotion Control
and Online Adaptation
The final use case, presented in Supplementary Video 46 and
Figure 10, further demonstrates the NeuroVis-ROS interface
and the interpretation of neural ingredients on a larger-scale
neural network (Figure 10B). The neural network, consisting
of 150 neurons with 200 connections, takes feedback (i.e.,
torque feedback) to generate adaptive locomotion pattern of
a hexapod robot in order to cope with unseen environments.
The network can demonstrate all neural ingredients: NS (all
neurons and their connections), ND (highlighted in blue), NP
(highlighted in red), and short-term NM (highlighted in green).
This use case mainly presents the ability of NeuroVis to track
and analyze (1) the ND during robot locomotion with different
gaits, (2) the NP during the learning to step over an obstacle,
and (3) the NM during leg adaptation to different terrains,
underlying the control network. Here we aim to only show the
performance of the visualization of NeuroVis rather than the
control. Thus, the details of the control and its performance
are not included here (see Homchanthanakul and Manoonpong,
2021 for more details).

Overall, the visualization operates as a python ROS node on a
computer, receiving messages from another c++ ROS node of the
neural network running on the robot. In this use case, NeuroVis
can achieve a display rate of 40 frames per second. Apart from
showing the NeuroVis-ROS interface, this use case presents an
example of a general interpretation of complex neural control.

6 The video is available at www.manoonpong.com/NeuroVis/video4.mp4.
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FIGURE 10 | Neural visualization from NeuroVis showing the overview of the NS of the adaptive neural control network (A). This neural visualization is created based

on information published through ROS messages from the adaptive neural control. The ND is presented by the neurons C0, C1, DL0-DL11, CF0-CF5, and FT0-FT5

which are highlighted in blue. The NP is presented by the neurons d0-d11, which are highlighted in red. The NM is represented by the neurons S0-K0 to S5-K5, which

are highlighted in green. (B) The diagram of the adaptive neural control with the highlighted neural components that are employed to present the ND, NP, and NM. (C)

Simulated robot. (D) Physical robot (Thor and Manoonpong, 2019). A video of this use case can be seen at Supplementary Video 46.

Note that Supplementary Video 46 is used in conjunction with
the descriptions below.

3.3.1. Neural Structure
The NS of the adaptive neural control network presented by
NeuroVis is shown in Figure 10A and Supplementary Video 46.
The network consists of three main neural components with
respect to the neural diagram shown in Figure 10B.

The first component, highlighted by the blue middle box
(Figure 10A), includes C0, C1, and DL0-DL11 with feedforward
and recurrent connections. It exploits the neural dynamics of a

central pattern generator (C0 and C1) to generate basic rhythmic
leg movement patterns for basic locomotion without sensory
feedback (operating in an open-loop manner). The rhythmic
patterns then propagate to the corresponding legs, highlighted by
the blue ellipses, including CF0-CF5 and FT0-FT5 (Figure 10A).
This neural component is used to present the ND.

The second component, highlighted by the red boxes
(Figure 10A), includes d0-d11 with feedforward connections. It
operates in a closed-loop manner with torque feedback for leg
adaptation during a swing phase. It allows the robot to learn to
proactively swing its middle and hind legs across an obstacle after
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the front leg hits it. The adaptation is done by a neural plasticity
mechanism (see Manoonpong et al., 2013; Homchanthanakul
andManoonpong, 2021 for details). Thus, this component is used
to present the NP and long-term NM.

The third component, highlighted by the green boxes
(Figure 10A), includes S0-K0 to S5-K5 with feedforward
and recurrent connections. It also operates in a closed-
loop control manner with torque feedback for leg adaptation
during a stance phase. It allows the robot to adapt its
leg extension to walk on uneven terrain. The adaptation
is done by artificial hormone mechanisms with embedded
short-term neural memory (see Homchanthanakul et al., 2019;
Homchanthanakul and Manoonpong, 2021 for details). This
component is used to present the short-term NM.

3.3.2. Neural Dynamics
According to Supplementary Video 46, C0 and C1 (Figure 10A)
blink alternately and generate a rhythmic pattern. The
pattern then propagates through the delay line (DL6-DL11
in Figure 10A) and to the motor neurons that are responsible for
leg lifting (CF0-CF5 and FT0-FT5). Between 0:38 and 0:46 min,
the rhythmic pattern has a low frequency, resulting in a ripple
appearing at DL6-DL11; thereby the robot uses a wave gait (one
leg lifts at a time). Between 0:47 and 0:58 min, the pattern has
a moderate frequency, leading to two ripples, so the robot uses
a caterpillar gait (two legs lift at a time). Between 1:06 and 1:09
min, the pattern has a high frequency, causing three ripples, so
the robot uses the tripod gait (three legs lift at a time).

3.3.3. Neural Plasticity and Long-Term NM
With correlation-based neural learning (see Manoonpong et al.,
2013; Homchanthanakul andManoonpong, 2021 for details), the
robot learns to predict the time that it should proactively swing
its middle and hind legs across an obstacle after the front leg
hits it. The robot learns to prolong the hitting signal from the
front leg by increasing the connection weights (NP) between
d6-d11 (Figure 10A). In Supplementary Video 46 between 1:13
and 1:24 min, the signal from the front propagates too fast, so
the mismatch activates the increasing of connection thickness.
As the connections thicken, and the signal propagates slower.
Finally, between 1:25 and 1:37 min, the signal reaches the middle
and hind legs nearly at the same time when the middle and
hind legs reach the obstacle. The connections remain the same
afterward as the swing pattern is remembered through the
connection weights.

3.3.4. Short-Term NM
For online adaptation to deal with unexpected terrains
(Homchanthanakul et al., 2019), the robot takes the difference
between the expected foot contact signal and the real one as
its input (i.e., S0–S5 in Figure 10A) and produces the signal
controlling leg stretching (i.e., K0-K5 in Figure 10A). Thank to
the short-term NM of this mechanism, the activities of K0-K5
are nearly the same even though the activities of S0-S5 abruptly
changes for a short period as shown in Supplementary Video 46.
Between 1:42 and 1:47 min, the right front leg is on a rigid
floor. S1 has a particular pattern; consequently, K1 activates at

a certain level, and the leg stretches to such level. The activity of
K1 is nearly the same even if S1 vanishes for a short period (see
Supplementary Video 46). Between 1:47 and 2:04 min, the robot
is fully on a soft floor. The S1 pattern changes, resulting in a new
K1 activity level and new stretching length.

4. DISCUSSION AND CONCLUSION

Although several existing approaches have been employed for
presenting and analyzing the measured neural information of
embodied neural systems, none of these has fully included the
combined representations of the NS, ND, NP, and NM for real-
time analysis (see Table 1 for the summary) (Pau and Johansen,
1990; Rusu et al., 2003; Capriglione et al., 2016; Cashman et al.,
2017; Falotico et al., 2017; Lechner et al., 2019; Rudin, 2019;
Chatzimparmpas et al., 2020; Mehmood et al., 2020; Simon,
2020; Tang et al., 2020). Therefore, NeuroVis is proposed as a
tool/method to address this issue.

NeuroVis translates the measured neural information to
online NS, ND, NP, and NM visualization based on the degree of
perceptiveness (Alexandre and Tavares, 2010). It firstly converts
the connection matrix into a diagram of the NS. After that,
information propagation, neural activities (ND), and weight
change (NP) are projected onto the NS. Short-term NM is
represented by retained neural activity due to the ND, while long-
term NM is represented by converged connection thickness due
to the NP.

In this work, the three use cases present the contribution and
features of NeuroVis as follows:
(i) This method provides the visualization of all the spatial-
temporal neural ingredients (i.e., NS, ND, NP, and NM) of
various embodied neural systems with different network
topologies and different applications (subsections 2.1, 3.1–3.3,
Table 1).
(ii) Using solely NeuroVis, one can analyze all of the spatial-
temporal neural ingredients. In contrast to analyzing the NS,
ND, NP, and NM of an embodied neural system using node-link
diagram, cross-correlation, and graph of connection weights
and their update, respectively, all the analysis can be done using
single visualization from NeuroVis (subsections 2.2, 3.1).
(iii) The proposed method can be used to simply explain and
understand the overview and dynamics of neural systems in
real-time by encoding neural activity and synaptic temporal
dynamics into dynamic color gradients of connections and
highlighting the change of connection weight with a luminous
outline. As a result, the method facilitates the presentation of
embodied neural systems by providing a more straightforward
interpretation (subsection 2.3, subsection 3.1-3.3).
(iv) NeuroVis delivers real-time neural information
measurement and visualization under the ROS framework.
It can therefore visualize an embodied neural network in
real-time (display freqeuncy ≥ 20Hz) while a robot is running
(subsections 2.4, 3.2, 3.3).

It is important to note that the NeuroVis real-time
visualization is constrained by network size or complexity (i.e.,
number of neurons and connections) and computing power. In
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TABLE 1 | Comparison of different methods, where ✔, ●, and ✘ denote inclusion, partial inclusion, and exclusion.

Method NS ND NP NM ROS real-time

● XAI

Post-hoc (Rudin, 2019) ✘ ✘ ✘ ✘ ✘ ✘

Feature importance (Tang et al., 2020) ✘ ●A ✘ ✘ ✘ ✘

● Information Analysis

Connection matrix (Capriglione et al., 2016) ✔ ✘ ✘ ✘ ✘ ✘

Cross-correlation (Lechner et al., 2019) ✘ ●A ✘ ✘ ✘ ✘

Mutual information (Shwartz-Ziv and Tishby,

2017)

✘ ●A ✘ ✘ ✘ ✘

Gradient (Cashman et al., 2017) ✘ ✘ ✔ ✘ ✘ ✘

Weight analysis (Pau and Johansen, 1990) ✘ ✘ ✘ ●B ✘ ✘

● Visualization

Graph (Mehmood et al., 2020) ✘ ●C ●C ●C ✘ ✘

Node-link diagram (Rusu et al., 2003) ✔ ●B ✘ ●B ✘ ✘

Topography map (Mehmood et al., 2020) ✔ ●A ✘ ✘ ✘ ✘

Neurorobotics (Falotico et al., 2017) ✔ ●A ✘ ✘ ✔ ✘

Visualization (Lechner et al., 2019) ✔ ✔ ✘ ●B ✘ ✔

Brain simulator (Simon, 2020) ✔ ●C ●D ●D ✘ ✔

NeuroVis ✔ ✔ ✔ ✔ ✔ ✔

●A : It presents only the activity pattern without activity propagation.

●B : It is a static representation.

●C : It is suitable for a small amount of information.

●D : It discretizes information into certain intervals (non-continuous).

this study, NeuroVis achieves a display frequency of 40 Hz (or
40 frames per second) to visualize a neural control network,
having a size of approximately 150 neurons and 200 connections,
running on a standard computer (Window 10, Intel R© CoreTM i7-
8750H CPU @ 2.20 GHz 2.21 GHz, NVIDIA GeForce GTX 1050
GPU). The display frequency can increase up to approximately
60 Hz with a smaller size neural network (< 50 neurons and
< 200 connections). Increasing the number of neurons to
200 and connections to 400 reduces the display frequency to
approximately 20 Hz. An approximation of NeuroVis’s display
frequency in relation to the number of neurons and connections
is shown in Figure 11.

Taken altogether, NeuroVis is an alternative method for
understanding and improving embodied neural mechanisms. It
can be used to present novel neural systems and provide an
explanation of such. For example, one can use NeuroVis to
analyze and comprehend the underlying mechanisms of a neural
system in order to 1) efficiently reduce/optimize its size, e.g., by
removing unimportant (less active) neurons/connections (Han
et al., 2015) and/or 2) efficiently scale it up by introducing new
neural modules for new functions without destroying existing
functions (Grinke et al., 2015; Thor et al., 2021). This will shape
the way we build a neural system shifting from purely black
box to white box or their combination toward explainable and
understandable AI systems with trust and transparency (Loyola-
Gonzalez, 2019).

Moreover, the potential of this method is not limited to
non-spiking ANNs and 2D visualization. NeuroVis can also be
applied to a spiking or hybrid network where the spiking activity
information of a spiking neuron can be read and displayed as

FIGURE 11 | An approximation of NeuroVis’s display frequency in relation to

the number of neurons and connections. It should be noted that the

approximation is based on NeuroVis running on a standard computer (Window

10, Intel® CoreTM i7-8750H CPU @ 2.20 GHz 2.21 GHz, NVIDIA GeForce GTX

1050 GPU). The display frequency can be increased by using a computer with

high computing power.

the neural activity information of a non-spiking neuron. We
can visualize the (average) spiking activity and resting state of a
spiking neuron through, e.g., green and red colors, respectively.
However, to visualize the neural dynamics of a spiking or hybrid
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network properly, a computer with high computing power may
be required to obtain a high display frequency. Besides, NeuroVis
can be extended to 3D visualization with a hierarchical view of
network activities and applied to other information visualization,
e.g., the biological neural networks, brain models, and their
signals (Falotico et al., 2017; Mehmood et al., 2020), where the
brain structure can be the analogy of the NS, the activity/signal
in a particular neuron/region could be modeled as the ND, and
the relationship between the neurons and evolution of such
relationship could be modeled as the NM and NP. When using
NeuroVis for large-scale (biological or brain) network models,
a higher level visualization (Mehmood et al., 2020) condensing
the activity of groups of neurons and limiting the amount of
information available will be required to aid in network behavior
analysis. Accordingly, we will further investigate on applying
mean-field and small-world network approaches (Dasgupta et al.,
2011; Grabow et al., 2012; Gabrié, 2019; Kawamoto et al.,
2019) to NeuroVis for implementing higher-level visualization.
Last but not least, because of NeuroVis’s real-time visualization
capability, we can utilize it as a tool for developing and
assessing embodied autonomous lifelong (continuous) learning
and adaptation systems with robust and versatile behaviors
(Homchanthanakul and Manoonpong, 2021; Logacjov et al.,
2021).
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