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Objective. Renal tubular injury is an early characteristic of diabetic nephropathy (DN) that is related to mitochondrial dysfunction.
In this study, we explore the effects and mechanisms of mitochondria-targeted peptide SS31 on renal tubulointerstitial injury in
DN. Method. 40 C57BL/6 mice were randomly divided into control group, STZ group, STZ+SS31 group, and STZ+normal
saline group. SS31 was intraperitoneally injected to the mice every other day for 24 weeks. Renal lesions and the expression of
Drp1, Mfn1, Bcl-2, Bax, Caspase1, IL-1β, and FN were detected. In in vitro studies, HK-2 cells were incubated with different
concentrations of D-glucose (5, 30 mM) or combined with SS31 and Drp1 inhibitor Midivi1. Mitochondrial ROS, membrane
potential, and morphology have been detected to evaluate the mitochondrial function. Results. Compared with diabetic mice, the
levels of serum creatinine and microalbuminuria were significantly decreased in the SS31 group. Renal tubulointerstitial fibrosis,
oxidative stress, and apoptosis were observed in diabetic mice, while the pathological changes were reduced in the SS31-
treatment group. SS31 could decrease the expression of Drp1, Bax, Caspase1, IL-1β, and FN in the renal tissue of diabetic mice,
while increasing the expression of Mfn1. Additionally, mitochondria exhibit focal enlargement and crista swelling in renal
tubular cells of diabetic mice, while SS31 treatment could partially block these changes. An in vitro study showed that
pretreatment with SS31 or Drp1 inhibitor Mdivi1 could restore the level of mitochondrial ROS, the membrane potential levels,
and the expressions of Drp1, Bax, Caspase1, IL-1β, and FN in HK-2 cells under high-glucose conditions. Conclusion. SS31
protected renal tubulointerstitial injury in diabetic mice through a decrease in mitochondrial fragmentation via suppressing the
expression of Drp1 and increasing the expression of Mfn1.

1. Introduction

Diabetic nephropathy (DN) is a severe complication of dia-
betic patients [1, 2]; it not only decreases the quality of life
in DN patients but also brings serious economic burden on
society. Unfortunately, the pathogenesis of DN is still not
fully understood. Conventional wisdom suggested that glo-
merular lesions played the major roles in the progression
of DN, while tubulointerstitial injury was regarded as a
secondary lesion. But recent studies have shown that

tubulointerstitial injury could serve as a primary pivotal
site for the development of DN [3, 4]. As renal tubular
reabsorption required a large amount of adenosine tri-
phosphate (ATP) from mitochondria, it indicated that
normal mitochondrial function was of greatest importance
for maintaining a good functionality kidney. The applica-
tion of mitochondrial dysfunction in DN tubulointerstitial
damage is now receiving more and more recognition [5],
and potential new pharmacological therapy that targeted
on mitochondria may be effective in fighting DN.
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Recently, a novel antioxidative peptide targeted on mito-
chondria named MTP131 or SS31 was designed [6]. SS31
peptide (H-D-Arg-Dmt-Lys-Phe-NH2) could specially con-
centrate in the inner mitochondrial membrane. It has been
demonstrated that SS31 has excellent therapeutic efficacy in
myocardial injury, neurodegeneration injury, and diabetic
complications [7–10]. Our previous study demonstrated that
mitochondria-targeted peptides (MTP131 and SPI20) could
prevent contrast-induced acute kidney injury in rats [11].
In addition, in vitro experiments showed that SS31 could
attenuate hypoxia-induced renal tubular epithelial cell apo-
ptosis [12]. Furthermore, Hou et al. found that SS31 attenu-
ated renal injury via decreasing mitochondrial ROS in
diabetic mice [13]. However, the protective effect of these
peptides on diabetes-induced renal tubulointerstitial injury
was incompletely understood. Therefore, we performed this
study to explore the effects and mechanisms of SS31 on DN
both in vivo and in vitro.

2. Research Design and Methods

2.1. Cell Lines and Reagents.Human proximal tubular epithe-
lial cells (HK-2 cells) were cryopreserved at the Institute of
Kidney Disease, Central South University. SS31 was synthe-
sised and provided by Chinapeptide Co. Ltd. (Shanghai,
China). Streptozocin (STZ) was obtained from Sigma-
Aldrich (USA). The selective Drp1 inhibitor Mdivi1
(ab144589) was obtained from Abcam (UK). Anti-
fibronectin (FN) antibody (sc-52331), anti-Bcl-2 antibody
(sc-56015), anti-IL-1β antibody (sc-52012), and anti-Bax
antibody (sc-20067) were obtained from Santa Cruz Biotech-
nology (Santa Cruz, CA). Anti-Drp1 rabbit monoclonal anti-
body (ab184247), anti-Mfn1 mice monoclonal antibody
(ab57602), and Caspase1 antibody (ab138483) were pur-
chased from Abcam (UK). The TUNEL assay kit (ab66110)
and anti-β-actin antibody (ab8226) were purchased from
Abcam (UK). Secondary antibodies in this study were pur-
chased from KangChen Bio-tech (Shanghai, China). Other
materials, including bovine serum albumin and low-glucose
DMEM medium, were purchased from Gibco (USA).

2.2. Animal Experimental Design. A total of 40 eight-week-
old C57BL/6 mice (about 20 g body weight) were purchased
from Slyke Jingda Biotechnology Company (Hunan, China),
then they were divided into 4 groups. The control group was
injected with sodium citrate buffer only (n = 10). The second
group was injected intraperitoneally with STZ (40 mg/kg
body weight) for 5 consecutive days (n = 10), and mice with
glucose levels > 16 7mmol/l were considered a diabetic
model. If the level of blood glucose did not meet the standard,
the mice had to resume taking injection of STZ until reaching
blood glucose levels > 16 7mmol/l. The third group of STZ-
induced diabetic mice was injected with normal saline (NS)
(5 ml/kg) (n = 10). The fourth group of diabetic mice was
intraperitoneally injected with SS31 (3 mg/kg body weight)
every other day for 24 weeks. They were killed at 24 weeks
following the onset of STZ-induced diabetes. The sera and
kidneys were harvested for further detection. The animal

experiments were approved by the Ethics Review Committee
of the Third Xiangya Hospital, Central South University.

2.3. Morphological Studies. Renal tissue sections were cut for
hematoxylin-eosin (H&E), periodic acid-Schiff (PAS), and
Masson's staining as described previously; glomerular and
tubular injury was analyzed using a semiquantitative scoring
system as previously described [14].

2.4. Assessment of Biochemical Index. Blood glucose was
tested using a blood glucose monitor (Roche Accu-Chek,
Germany) every two weeks. Mice were placed in individual
metabolic cages for a 24-hour urine collection. A mouse
urine albumin ELISA kit (Bethyl Laboratories, USA) was
used to measure urine albumin concentrations. Serum creat-
inine, triglyceride, and cholesterol levels were measured by
an automated biochemical analyzer (Hitachi 7600, Japan).

2.5. Renal Tissue Immunohistochemistry (IHC) and Apoptosis
Assessment. Mouse renal tissue sections (3 μm thick) was
prepared; after deparaffinization, rehydration, and antigen
retrieval, the sections were incubated with various primary
antibodies FN (1: 100 dilution), Bcl-2 (1:100 dilution), Bax
(1:100 dilution), IL-1β (1:100 dilution), Caspase1 (1:100 dilu-
tion), Mfn1 (1:100 dilution), and Drp1 (1:100 dilution) and
then incubated with secondary antibodies; the sections were
finally prepared for DAB reaction. Renal cell apoptosis
assessment was performed using TUNEL staining as previ-
ously described [15].

2.6. Cell Culture and Treatment. HK-2 cells were maintained
in media containing 5-30 mM D-glucose and other interven-
tions: HK-2 cells maintained in 5 mM D-glucose (LG), HK-2
cells maintained in 30 mM D-glucose (HG), HK-2 cells
treated with HG plus SS31 (100 nM), HK-2 cells treated with
HG plus Mdivi1 (50 μM), and HK-2 cells maintained in HG
medium and normal saline. HK-2 cells treated with various
agents were incubated for the indicated time (72 h).

2.7. Western Blotting Studies. Briefly, after the fractionated
proteins were transferred onto a nitrocellulose membrane,
they were incubated with various primary antibodies anti-
FN (1:1,000), anti-Bcl-2 (1:1,000), anti-Bax (1:1,000), anti-
IL-1β (1:1000), anti-Caspase1 (1:1,000), anti-Mfn1
(1:1,000), anti-Drp1 (1:1,000), and anti-β-actin (1:1,000);
the membranes were then immersed in solutions containing
secondary antibodies. The ECL system (Amersham, USA)
was used for autoradiograms [16].

2.8. Cell Immunofluorescence. After HK-2 cells were treated
with various agents, the cells were first immersed in Mito-
Tracker Red (1:1000) solution, then the cells were fixed and
permeabilized. After that, the cells were incubated with pri-
mary antibody (Drp1, 1:100 dilution). The cells were then
incubated with FITC-conjugated secondary antibody and
DAPI, and finally a confocal laser scanning microscope was
used to capture images (Zeiss LSM 780).

2.9. Confocal Microscopy. A LSM 780 META laser scanning
microscope (Zeiss LSM780) was used to complete the
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confocal microscopy examination. The LSM 510 software
(Zeiss) was used for image analysis [17].

2.10. Examination of Mitochondrial Morphology Using
Electron Microscopy. We used transmission electron micros-
copy (EM) to observe mitochondrial morphology. Briefly,
renal cortices were minced into 1 mm3 pieces, then renal cor-
tices were fixed with 2.5% glutaraldehyde; lastly, thin sections
were prepared for EM to delineate the mitochondrial mor-
phology in tubules.

2.11. Assessment of Mitochondrial ROS and Mitochondrial
Membrane Voltage Potential (MMP, ΔΨm). HK-2 cells were
incubated with MitoSOX and examined by confocal

microscopy to assess mitochondrial ROS levels. The cells
were stained with TMRE and examined by confocal micros-
copy to evaluate the perturbations of MMP (ΔΨm). Mean
fluorescence intensity was calculated based on 10 randomly
selected fields.

2.12. Measurement of Oxidative and Antioxidative Biomarkers.
MDA content as well as SOD and GSH-PX activities were
determined by chemiluminescence methods as previously
described [11].

2.13. Statistical Analysis.We used SPSS 16.0 software to ana-
lyze the experimental results. The results were expressed as
mean ± standard deviation (SD). To assess for the results of
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Figure 1: Effects of SS31 on biochemical index in diabetic mice. (a–c) Body weight, blood glucose, and proteinuria levels in mice from 0 to 24
weeks. (d) Renal malondialdehyde (MDA) concentrations of various groups. (e) Renal superoxide dismutase (SOD) concentrations of various
groups. (f) Renal glutathione peroxidase (GSH-PX) concentrations of various groups. Data are presented as mean ± SD, ∗P < 0 01 vs. STZ
groups, #P < 0 01 vs. control groups. n = 10.
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Figure 2: Effects of SS31 on renal tubulointerstitial damage in diabetic mice. (a) Renal tissue stained with HE, PAS, Masson trichrome, and
immunohistochemical analysis of fibronectin (FN) (magnification ×400). (b) Tubulointerstitial damage scores, ∗P < 0 01 vs. STZ groups,
#P < 0 01 vs. control groups, n = 3. (c) Glomerular damage scores, ∗P < 0 01 vs. STZ groups, and #P < 0 01 vs. control groups, n = 3. (d)
Western blot analysis of FN protein. (e) Each bar graph represents the ratios of FN to β-actin, ∗P < 0 01 vs. STZ groups, #P < 0 01 vs.
control groups, n = 3.
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Figure 3: Effects of SS31 on apoptosis in renal tissue of diabetic mice. (a) TUNEL-IHC staining (upper panels) and immunohistochemical
analysis of Bcl-2 (middle panels) and Bax (lower panels) in mouse renal tissue in various groups (magnification ×400). (b) Bar graphs
represent quantification of tissues stained with TUNEL, ∗P < 0 01, vs. STZ groups, #P < 0 01, vs. control groups, n = 3. (c) Western blot
analysis of Bcl-2 (upper panel) and Bax (middle panel) protein expression. (d and e) Each bar graph represents the densitometric analyses
of Bcl-2 to β-actin (d) and Bax to β-actin (e). ∗P < 0 01 vs. STZ groups, #P < 0 01 vs. control groups, n = 3.
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Figure 4: Continued.

7Oxidative Medicine and Cellular Longevity



between-group differences, analysis of variance with post hoc
Tukey test was used. P < 0 05 was considered statistically
significant.

3. Results

3.1. Effects of SS31 on Biochemical Parameters in Diabetic
Mice. At the end of 24 weeks, 3 mice in the STZ group died,
3 mice in the STZ+SS31 group died, and 2 mice in the STZ
+NS group died. Administration of SS31 for 24 weeks had
no effect on body weight and blood glucose levels (Table 1,
Figures 1(a) and 1(b)), while it decreased the level of protein-
uria in STZmice (Table 1, Figure 1(c)). Similarly, the levels of
serum creatinine (Scr) and blood urea nitrogen (BUN) were
increased in STZ mice, and SS31 treatment could restore
these changes (Table 1). In addition, renal malondialdehyde
(MDA) level was increased, while renal superoxide dismutase
(SOD) and glutathione peroxidase (GSH-PX) levels were
significantly decreased in diabetic mice; these changes were
significantly reversed by SS31 treatment (Figures 1(d)–1(f)).

3.2. Effects of SS31 on Glomerular Injury and
Tubulointerstitial Damage in Diabetic Mice. It showed that
SS31 treatment significantly alleviated mesangial matrix pro-
liferation compared with untreated diabetic mice as indicated
by HE, PAS staining, and glomerular damage scores
(Figures 2(a) and 2(c)). In addition, increased renal intersti-
tial fibrosis and tubulointerstitial matrix deposition were
observed in the kidney of STZ-induced diabetic mice at the
end of 24 weeks (Figures 2(a) and 2(b)). Furthermore, the
expression of FN was significantly increased in the renal
tubular interstitial region of STZ induced diabetic mice
(Figures 2(a), 2(d), and 2(e)), while SS31 administration

could markedly decrease these tubulointerstitial lesions
(Figures 2(a), 2(d), and 2(e)).

3.3. Effects of SS31 on Renal Apoptosis in Diabetic Mice. As
shown in Figure 3, TUNEL-IHC staining showed that tubu-
lar epithelial cell apoptosis was observed in the kidney of
STZ-induced diabetic mice, which was notably alleviated
following SS31 treatment (Figures 3(a) and 3(b)). Further-
more, immunohistochemistry and Western blotting analysis
showed that the expression of Bax in renal tissue from the
STZ group was increased compared with that from the con-
trol group. Conversely, the expression of Bcl-2 was signifi-
cantly decreased in the STZ group. SS31 treatment
significantly increased the expression of Bcl-2 and decreased
the expression of Bax protein in diabetic mice, respectively
(Figures 3(a) and 3(c)–3(e)).

3.4. Effect of SS31 on the Expression of IL-1β, Caspase1, Mfn1,
and Drp1 in Diabetic Kidneys. IHC staining showed that
renal IL-1β, Caspase1, and Drp1 expression was notably
increased in diabetic mice; conversely, the expression of
Mfn1 was decreased in STZ mice (Figure 4(a)). In addition,
we found that Drp1 andMfn1 were mainly expressed in renal
tubules; however, after SS31 treatment for 24 weeks, these
changes were significantly reversed. To confirm the above
results, Western blot analysis was performed; similar results
were observed regarding IL-1β, Caspase1, Mfn1, and Drp1
protein expression (Figures 4(b)–4(f)).

3.5. SS31 Restored Mitochondrial Morphology and Mitigated
Mitochondrial ROS Generation. As shown in Figure 5, elec-
tron microscopy (EM) observation showed that the tubular
mitochondria exhibit deformations in diabetic mice, such as
mitochondrial crista swelling and focal disruption of the
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Figure 4: Renal IL-1β, Caspase1, Mfn1, and Drp1 expression in diabetic mice following SS31 treatment. (a) Renal immunohistochemical
staining with anti-IL-1β antibody (upper panel), anti-Caspase1 antibody (middle panel), anti-Drp1 antibody (middle panel), and anti-
Mfn1 (lower panel) (magnification ×400). (b) Western blot analysis of Mfn1 (upper panel), Drp1 (middle panel), Caspase1 (middle
panel), and IL-1β (bottom panel) protein expression. (c–f) Densitometric analyses of the Western blotting results: IL-1β to β-actin (c),
Caspase1 to β-actin (d), Drp1 to β-actin (e), and Mfn1 to β-actin (f). Values are mean ± SD, ∗P < 0 01, vs. STZ groups, #P < 0 01 vs.
control groups, n = 3.
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inner mitochondrial membranes (Figure 5(a)); SS31 treat-
ment could obviously reverse these changes (Figures 5(a)
and 5(c)). In vitro studies showed that HK-2 cells under an
HG environment reduced mitochondrial membrane poten-
tial (MMP) and increased mitochondrial ROS levels, as indi-
cated by TMRE and MitoSOX Red staining, respectively
(Figures 5(b), 5(d), and 5(e)), these changes were reversed
in cells pretreated with SS31. Interestingly, pretreatment with
Drp1 inhibitor Mdivi1 also decreased the level of mitochon-
drial ROS in HK-2 cells exposed to an HG environment
(Figures 5(b), 5(d), and 5(e)), and the MMP level was
restored in HK-2 cells exposed to HG condition pretreatment
with Mdivi1 (Figures 5(b), 5(d), and 5(e)).

3.6. SS31 Downregulated Drp1, Caspase1, and IL-1β
Expression in HK-2 Cells Exposed to HG Conditions. Immu-
nofluorescence studies indicated that HG increased Drp1
expression; additionally, MitoTracker staining showed
increased mitochondrial fragmentation in HK-2 cells
exposed to HG conditions (Figure 6(a)). These effects were
reversed by SS31 treatment. In addition, we also found that
pretreatment with Mdivi1 could decrease Drp1 expression
in HK-2 cells under HG concentration (Figure 6(a)), then
we investigated the effects of SS31 on Drp1, Mfn1, Caspase1,
and IL-1β protein expression using Western blot analysis; as
shown in Figure 6(b), increased expression of Drp1,
Caspase1, and IL-1β were found in HK-2 cells exposed
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Figure 5: Effects of SS31 on mitochondrial morphology in the kidney of diabetic mice and mitochondrial ROS and mitochondrial membrane
potential in HK-2 cells exposed to HG after SS31 administration. (a) EM analysis showed that the diabetic mouse renal tissues displayed
obvious mitochondrial morphological changes; these changes were reversed by SS31 treatment (magnification ×5,000). (b) Representations
of mitochondrial ROS levels (upper panel) and mitochondrial membrane potential (MMP, bottom panel) in HK-2 cells exposed to HG
treatment with SS31 or Mdivi1 pretreatment (magnification ×400). (c) Relative percentages of fragmented mitochondria in the four
groups. ∗P < 0 01 vs. STZ groups, #P < 0 01 vs. control groups, n = 3. (d, e) Quantification of mitochondrial ROS production as measured
with MitoSox Red staining (d) and MMP as measured with TMRE staining (e). ∗P < 0 01 vs. HG groups, #P < 0 01 vs. LG groups, n = 3.
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Figure 6: Continued.
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to HG condition, while the expression of Mfn1 was
decreased in HK-2 cells under HG ambience. In addition,
Western blot analysis showed that SS31 or Mdivi1 treat-
ment could decrease the expression of Drp1, Caspase1,
and IL-1β induced by HG; conversely, SS31 treatment
could increase the expression of Mfn1 (Figures 6(b)–6(f)).

3.7. Discussion. The present study indicates that SS31 amelio-
rates renal tubulointerstitial injury in diabetic mice, which might
be due to an antioxidant action, as well as decreasing mitochon-
drial fragmentation then restoration of mitochondria morphol-
ogy via suppressing the expression of Drp1 and increasing the
expression of Mfn1 in renal tubular epithelial cells.

The mitochondria target peptides included SS01, SS02,
SS20, and SS31; the structural motif of these peptides was
an alternation of aromatic residues and basic amino acids.
It has been shown that SS31 could concentrate more than
1000-fold in the mitochondria [6]. The structure of these
peptides includes tyrosine-containing analogs; they could
scavenge free radicals (e.g., H2O2 and ONOO-). It was
reported that SS31 might be beneficial for diseases associated
with oxidative stress [18–20]. In addition, in vitro studies also
demonstrated that these peptides could significantly attenu-
ate the mitochondrial permeability transition (MPTP),
cytochrome-C release, and mitochondrial swelling [21].
Our study found that long-term treatment with SS31 in dia-
betic mice could reduce renal oxidative stress levels, and
more importantly, we found that SS31 treatment might alle-
viate renal tubulointerstitial injury induced by high glu-
cose via regulating mitochondrial fragmentation for the
first time.

Conventional wisdom suggested that glomerular injury
was the major source of DN; however, recent studies indi-
cated that tubulointerstitial lesions also closely correlated
with the progression of DN, and the tubulointerstitial injury
has been described as diabetic tubulopathy [16, 22, 23]. It has

been found that renal tubular damage markers appeared
before microalbuminuria; it indicated that tubular injury
contributed to the primary renal injury in the pathogenesis
of DN [24, 25]. In this study, notable changes including apo-
ptosis and fibrosis in the tubulointerstitial were also observed
in 24-week STZ-induced diabetic mice. The mechanisms of
renal tubulointerstitial injury were not fully clear; previous
research has shown that mitochondrial dysfunction played
a crucial role in this process [15, 26]. This raised an interest-
ing question of whether alleviation of mitochondrial dys-
function by exogenous therapeutic agents could delay the
progression of DN. Our findings indicated that SS31, a mito-
chondrial ROS inhibitor, not only ameliorated morphologi-
cal mitochondrial abnormalities but also reduced diabetic
tubular injury.

The kidney is an organ needing continuous energy con-
sumption due to the excretion and reabsorption process that
existed in the renal tubule; there was a large amount of mito-
chondria both in the tubular and glomerular cells, particu-
larly in the proximal tubular cells [5], and, notably, normal
mitochondrial function was very critical for kidney cells.
However, increasing in vivo and in vitro studies indicated
that mitochondrial dysfunction played a critical biological
role in the progression of various kidney diseases, including
DN [5, 27], such as mitochondrial dynamic disorders and
elevated mitochondrial oxidative stress. For instance, Yiu
et al. found that the oxidative markers were significantly
increased in the kidney of diabetic mouse, and reduced
ROS generation could attenuate renal fibrosis [28]. In line
with these observations, this research also confirmed that
excessive mitochondrial ROS in the renal tissue of STZ
induced diabetic mice.

Mitochondria are a class of highly shape-changed organ-
elles which constantly undergo fusion and fission. In physio-
logical conditions, they were elongated and filamentous, but
the shape changed to fragment under stress including various
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Figure 6: Effects of SS31 on Drp1, Mfn1, Caspase1, and IL-1β protein expression in HK-2 cells exposed to HG. (a) IF analysis of Drp1
expression and mitochondrial morphology in HK-2 cells exposed to HG conditions and pretreated with SS31 or Mdivi1. (b) Western blot
analysis of Mfn1 (upper panel), Drp1, Caspase1 (middle panel), and IL-1β (bottom panel) protein expression in HK-2 cells exposed to
HG conditions and pretreated with SS31 or Mdivi1. (c–e) Densitometric analyses of the Western blotting results: Drp1 to β-actin (c),
Mfn1 to β-actin (d), Caspase1 to β-actin (e), and IL-1β to β-actin (f). The data are presented as mean ± SD, ∗P < 0 01 vs. HG groups,
#P < 0 01 vs. LG groups, n = 3.
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kidney diseases [29–31]. Some key factors including fission
mediators (Fis1, Drp1, and Dnm1) and the fusion proteins
(Mfn1, Mfn2, and OPA1) controlled the balance of mito-
chondrial fusion and fission to maintain mitochondrial
homeostasis [31]. This balance was disrupted under
intracellular or extracellular stresses; mitochondria were
changed from an elongated network into short rod spheres;
this process is called mitochondrial fragmentation [32]. It
has been demonstrated that Drp1 is an important regulator
of mitochondrial fragmentation in diabetic conditions [33].
Importantly, excessive mitochondrial fission was related to
increased mitochondrial ROS production and cellular apo-
ptosis [34–36]. These previous findings suggested that Drp1
was a key regulatory factor for mitochondrial fragmentation
in the renal cells of DN, and Drp1 might be a novel therapeu-
tic target for DN. In this study, EM observation showed that
the tubular mitochondria were swelled, shorter, and dis-
rupted in 24-week diabetic mice, while treatment with SS31
could restore renal tubular mitochondria to be elongated
structures. In order to explore the protection mechanisms
of SS31, we found that SS31 treatment in STZ-induced dia-
betic mice could significantly attenuate renal oxidative stress
and apoptosis and reduce the expression of the mitochon-
drial fission factor, Drp1, while the mitochondrial fusion pro-
tein (Mfn1) was increased after SS31 treatment. To confirm
these findings, we performed an in vitro study using HK-2
cells. Increased expression of Drp1 and excessive mitochon-
drial ROS has been observed in the HK-2 cells exposed to
high glucose, while these changes were reversed by SS31
treatment. Interestingly, similar results were noted in the
group pretreatment with Mdivi1. It indicated that SS31 has
a similar effect with Mdivi1 on inhibiting the expression of
Drp1. In addition, in vitro studies showed that SS31 treat-
ment could increase the expression of Mfn1. These findings
indicated that SS31 mediated renal protection effects most
likely via inhibiting Drp1 and activating Mfn1.

Because of a variety of reasons, there still existed several
drawbacks in this study; first, we just examined the effects
of SS31 on oxidative stress and apoptosis, while other effects
such as anti-inflammatory effect had not been evaluated. Sec-
ond, as we discussed above, mitochondrial fusion and fission
were regulated by several factors (e.g., Drp1, Mfn1, OPA1,
Mfn2, and Fis1), but in this study, we just examined the inhi-
biting effect of SS31 on Drp1 and the increasing effect of SS31
on Mfn1. Third, in the vitro experiment, we found that SS31
could inhibit the expression of Drp1 in HK-2 cells under HG
condition, and the inhibiting effect was similar with Mdivi1;
however, the results were suggestive and not cause-and-
effect. In the future study, we will further investigate the more
detailed molecular mechanism about SS31 regulating mito-
chondrial dynamics.

4. Conclusion

In conclusion, our data showed that SS31 could protect renal
tubulointerstitial injury and reduce ROS and apoptosis in
diabetic mice, which might be due to the decrease in mito-
chondrial fragmentation via suppressing the expression of
Drp1 and increasing the expression of Mfn1.
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