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Abstract

The chemical identity of RNA molecules beyond the four standard ribonucleosides

has fascinated scientists since pseudouridine was characterized as the

“fifth” ribonucleotide in 1951. Since then, the ever-increasing number

and complexity of modified ribonucleosides have been found in viruses

and throughout all three domains of life. Such modifications can be as

simple as methylations, hydroxylations, or thiolations, complex as ring

closures, glycosylations, acylations, or aminoacylations, or unusual as

the incorporation of selenium. While initially found in transfer and ribo-

somal RNAs, modifications also exist in messenger RNAs and noncoding

RNAs. Modifications have profound cellular outcomes at various levels,

such as altering RNA structure or being essential for cell survival or

organism viability. The aberrant presence or absence of RNA modifica-

tions can lead to human disease, ranging from cancer to various meta-

bolic and developmental illnesses such as Hoyeraal–Hreidarsson

syndrome, Bowen–Conradi syndrome, or Williams–Beuren syndrome. In

this review article, we summarize the characterization of all 143 cur-

rently known modified ribonucleosides by describing their taxonomic

distributions, the enzymes that generate the modifications, and any

implications in cellular processes, RNA structure, and disease. We also

highlight areas of active research, such as specific RNAs that contain a

particular type of modification as well as methodologies used to identify

novel RNA modifications.
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1 | INTRODUCTION

Adenosine (A), guanosine (G), cytidine (C), and uridine (U) comprise the four ribonucleosides typically found in
ribonucleic acid (RNA) molecules. These four ribonucleosides were divided into two categories based on the shape and
chemical properties of the nucleobases: pyrimidines and purines. Pyrimidines, composed of C and U (represented as Y),
feature a six-membered heterocyclic configuration, similar to pyridine. Purines, composed of A and G (represen-
ted as R), possess a heterocyclic configuration of a pyrimidine fused to an imidazole ring. The pyrimidines and
purines can be added to ribose molecules, forming ribonucleosides (Figure 1). From these pyrimidines and
purines, several derivatives such as thiamin pyrophosphate (TPP), flavin mononucleotide (FMN), and cyclic di-
guanosine monophosphate (c-di-GMP) are thought to belong to the RNA world, a world in which genes,
genomes, and enzymes were composed solely of RNA (Crick, 1968; Joyce & Szostak, 2018; Nelson &
Breaker, 2017; Orgel, 1968; Robertson & Joyce, 2012; Woese, 1967). However, pyrimidines and purines have also
been discovered to be the precursors for numerous modifications (Cohn & Volkin, 1951; Dunn, 1960; Hall, 1963;
Holley, 1965; Iwanami & Brown, 1968; D. A. Smith & Visser, 1965; reviewed in Boccaletto et al., 2018; Cantara
et al., 2011). The discovery and characterization of RNA modifications underscore their biological significance
and embody exciting strides throughout RNA biology (Boccaletto et al., 2018; Jung & Goldman, 2018; Shi, Wei, &
He, 2019; Thapar et al., 2019).

Ribonucleoside modifications encompass a myriad of chemical moieties, which are added to adenosine, guano-
sine, cytidine, or uridine. From simple methylations or hydrations of double bonds to ring closures of the nitroge-
nous base or the addition of large groups such as amino acids or monosaccharides, almost all modifications are
catalyzed by an enzyme. Some enzymes form multimers with auxiliary proteins (e.g., helper methyltransferases),
expanding the range of applicable substrates or allowing for the integration of cellular activities and enzymatic
processes (Guy & Phizicky, 2014). However, a few modifications arise from nonenzymatic processes or oxidative
damage (Figure 2, Table 1). A further distinction pertains to RNA editing, which was originally described as a pro-
cess of adding polyuridine residues within the coding region of select RNAs (Grosjean & Benne, 1998). RNA
editing has since been expanded to include RNA base excisions or additions (e.g., deletion of uridine residues in
pre-mRNAs or addition of G to select tRNAs) (Benne, 1994; Jackman & Phizicky, 2006) as well as RNA base con-
versions (e.g., A-to-I or C-to-U editing), although further distinctions have remained somewhat incoherent
(Grosjean & Benne, 1998). While there are 111 modifications that can be found within transfer RNAs (tRNAs),
33 modifications can be found in ribosomal RNAs (rRNAs), 17 in messenger RNAs (mRNAs), and 11 in long non-
coding RNAs (lncRNAs) and other noncoding RNAs (ncRNAs) (Figures 3 and 4, Table 2) (Boccaletto et al., 2018;
Cantara et al., 2011; Lorenz et al., 2017).

In this review article, we summarize all currently known ribonucleoside modifications. Each
section highlights one or more modifications that are structurally or functionally related to each other or belong
to established biosynthetic pathways. Each section begins with the full chemical name of the ribonucleoside
modification(s) and the corresponding IUPAC abbreviation(s), domain-of-life assignments, and RNA classes.
Domain assignments refer to the domain-of-life of the host organisms that harbor a modification, using
the abbreviations “A” for archaeal organisms, “B” for bacterial organisms, and “E” for eukaryotic
organisms. Within the text, usage of the term “prokaryote” encompasses both archaeal and bacterial species
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FIGURE 1 Ribonucleoside numbering of adenine, guanine, cytosine, uracil bases and numbering of the ribose sugar for adenosine (A),

guanosine (G), cytidine (C), and uridine (U). Carbon atoms are in gray, oxygen atoms are in red, and nitrogen atoms are in blue. Single lines

between atoms depict single bonds, double lines between atoms depict double bonds, and hydrogens are not depicted for simplicity
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FIGURE 2 Chemical structures of all currently known RNA modifications. Adenosine-derived (yellow), guanosine-derived

(pink), uridine-derived (purple), and cytidine-derived (cyan) modifications are classified based on the parent ribonucleoside. Red

moieties indicate which portion of the modified ribonucleoside is different from the parent ribonucleoside, whose structures are

shown in the central circle. A poster-size image is available as Figure S1
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TABLE 1 All 143 presently known modifications and their abbreviations

Count RNA modification Symbol New symbol Original NT

Adenosine A A A

1 N6-methyladenosine or 6-methyladenosine m6A 6A A

2 N1-methyladenosine or 1-methyladenosine m1A 01A A

3 N2-methyladenosine or 2-methyladenosine m2A 2A A

4 20-O-methyladenosine Am 0A A

5 2-Methylthio-N6-methyladenosine ms2m6A 621A A

6 N6-isopentenyladenosine i6A 61A A

7 N6-(cis-hydroxyisopentenyl)-adenosine io6A 60A A

8 2-Methylthio-N6-isopentenyladenosine ms2i6A 2161A A

9 2-Methylthio-N6-(cis-hydroxyisopentenyl)-adenosine ms2io6A 2160A A

10 N6-glycinylcarbamoyladenosine g6A 65A A

11 N6-threonylcarbamoyladenosine t6A 62A A

12 2-Methylthio-N6-threonylcarbamoyl-adenosine ms2t6A 2162A A

13 N6-methyl-N6-threonylcarbamoyladenosine m6t6A 662A A

14 N6-hydroxynorvalylcarbamoyladenosine hn6A 63A A

15 2-Methylthio-N6-
hydroxynorvalylcarbamoyladenosine

ms2hn6A 2163A A

16 20-O-ribosyladenosine (phosphate) Ar(p) 00A A

17 Inosine I 9A A

18 N1-inosine or 1-methylinosine m1I 19A A

19 1,20-O-dimethylinosine m1Im 019A A

20 N6,N6-dimethyladenosine m6
2A or m6,6A 66A A

21 20-O-methylinosine Im 09A A

22 N6,20-O-dimethyladenosine m6Am 06A A

23 N6,N6,20-O-trimethyladenosine m6
2Am or m6,6Am 066A A

24 N1,20-O-dimethyladenosine m1Am 01A A

25 N6-acetyladenosine ac6A 64A A

26 8-Methyladenosine m8A 8A A

27 N6-formyladenosine f6A 67A A

28 Cyclic N6-threonylcarbamoyladenosine ct6A 69A A

29 N6-hydroxymethyladenosine hm6A 68A A

30 2,8-Dimethyladenosine m2,8A 28A A

31 Cyclic 2-methylthio-N6-threonylcarbamoyladenosine ms2ct6A 2164A A

32 N6-hydroxythreonylcarbamoyladenosine ht6A 2165A A

33 2-Methylthiomethylenethio-N6-isopentenyl-
adenosine

msms2i6A None A

Cytidine C C C

34 3-Methylcytidine m3C 3C C

35 5-Methylcytidine m5C 5C C

36 20-O-methylcytidine Cm 0C C

37 2-Thiocytidine s2C 2C C

38 N4-acetylcytidine ac4C 42C C

39 5-Formylcytidine f5C 71C C
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TABLE 1 (Continued)

Count RNA modification Symbol New symbol Original NT

40 5,20-O-dimethylcytidine m5Cm 05C C

41 Lysidine k2C 21C C

42 N4-methylcytidine m4C 4C C

43 4,20-O-dimethylcytidine m4Cm 04C C

44 5-Hydroxymethylcytidine hm5C 51C C

45 5-Formyl-20-O-methylcytidine f5Cm 071C C

46 N4,N4,20-O-trimethylcytidine m4
2Cm or m4,4Cm 044C C

47 Agmatidine C+ 20C C

48 5-Hydroxycytidine ho5C 50C C

49 N4-acetyl-20-O-methylcytidine ac4Cm 042C C

50 N4,N4-dimethylcytidine m4,4C 44C C

51 2-Methylthiocytidine ms2C None C

52 20-O-methyl-5-hydroxymethylcytidine hm5Cm None C

Guanosine G G G

53 1-Methylguanosine m1G 1G G

54 N2-methylguanosine m2G 2G G

55 7-Methylguanosine m7G 7G G

56 20-O-methylguanosine Gm 0G G

57 N2,N2-dimethylguanosine m2,2G 22G G

58 N2-20-O-dimethylguanosine m2Gm 02G G

59 N2,N2,20-O-trimethylguanosine m2,2Gm 022G G

60 20-O-ribosylguanosine (phosphate) Gr(p) 00G G

61 Wybutosine yW 3483G G

62 Peroxywybutosine o2yW 34832G G

63 Hydroxywybutosine OHyW 34830G G

64 Undermodified hydroxywybutosine OHyWx or OHyW* 3470G G

65 Wyosine imG 34G G

66 Methylwyosine mimG 342G G

67 Queuosine Q 10G G

68 Epoxyqueuosine oQ 102G G

69 Galactosyl-queuosine galQ 104G G

70 Mannosyl-queuosine manQ 106G G

71 Glutamyl-queuosine gluQ 105G G

72 Pre-queuosine0 preQ0 100G G

73 Pre-queuosine1 preQ1 101G G

74 Archaeosine G+ 103G G

75 N2,7-dimethylguanosine m2,7G 27G G

76 N2,2-7-trimethylguanosine m2,2,7G 227G G

77 1,20-O-dimethylguanosine m1Gm 01G G

78 4-Demethylwyosine imG-14 4G G

79 Isowyosine imG2 42G G

80 N2,20-O-7-trimethylguanosine m2,7Gm 027G G

(Continues)
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TABLE 1 (Continued)

Count RNA modification Symbol New symbol Original NT

81 7-Aminocarboxypropylwyosine methyl ester yW-58 348G G

82 7-Aminocarboxypropyl-demethylwyosine yW-86 47G G

83 7-Aminocarboxypropylwyosine yW-72 347G G

84 Methylated undermodified hydroxywybutosine OHyWy 3480G G

85 2-Hydroxymethylguanosine hm2G None G

Uridine U U U

86 Pseudouridine ψ 9U U

87 Dihydrouridine D 8U U

88 5-Methyluridine, ribosylthymine,
or ribothymidine

m5U or rT 5U U

89 20-O-methyluridine Um 0U U

90 5,20-O-dimethyluridine m5Um or Tm 05U U

91 1-Methylpseudouridine m1ψ 19U U

92 20-O-methylpseudouridine ψm 09U U

93 2-Thiouridine s2U 2U U

94 4-Thiouridine s4U 74U U

95 2-Thio-20-O-methyluridine s2Um 02U U

96 3-(3-Amino-3-carboxypropyl)uridine acp3U 30U U

97 5-Hydroxyuridine ho5U 50U U

98 5-Methoxyuridine mo5U 501U U

99 Uridine 5-oxyacetic acid cmo5U 502U U

100 Uridine 5-oxyacetic acid methyl ester mcmo5U 503U U

101 5-Carboxyhydroxymethyluridine chm5U 520U U

102 5-Carboxyhydroxymethyluridine methyl ester mchm5U 522U U

103 5-Methoxycarbonylmethyluridine mcm5U 521U U

104 5-Methoxycarbonylmethyl-20-O-methyluridine mcm5Um 0521U U

105 5-Aminomethyl-2-thiouridine nm5s2U 2,510U U

106 5-Methylaminomethyluridine mnm5U 511U U

107 5-Methylaminomethyl-2-thiouridine mnm5s2U 2,511U U

108 5-Methylaminomethyl-2-selenouridine mnm5se2U 20,511U U

109 5-Carbamoylmethyluridine ncm5U 53U U

110 5-Carbamoylmethyl-20-O-methyluridine ncm5Um 053U U

111 5-Carboxymethylaminomethyluridine cmnm5U 51U U

112 5-Carboxymethylaminomethyl-20-O-methyluridine cmnm5Um 051U U

113 5-Carboxymethylaminomethyl-2-thiouridine cmnm5s2U 251U U

114 3-Methyluridine m3U 3U U

115 1-Methyl-3(3-amino-3-carboxypropyl)
pseudouridine

m1acp3ψ 1309U U

116 5-Carboxymethyluridine cm5U 52U U

117 3,20-O-dimethyluridine m3Um 03U U

118 5-Methyldihydrouridine m5D 58U U

119 3-Methylpseudouridine m3ψ 39U U
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(Woese & Fox, 1977). RNA modifications in different RNA classes are denoted as follows: a black cloverleaf ( )
for modifications in tRNAs, a red square ( ) for modifications in rRNAs, a green dot ( ) for modifications in
mRNAs, and a blue triangle ( ) for modifications in ncRNAs. Instances where two or more modifications are
grouped in a section but are found in different domains of life will be noted in parentheses. Next, we provide a
description of which enzymes or pathways are involved in the synthesis of the modification. Also, we provide
any additional data or discoveries associated with the modification, including impact on RNA structure, func-
tional significance, disease relevance, or any other notable findings. We initially describe the pseudouridine (Ψ),
inosine (I), and dihydrouridine (D) modifications for historical purposes, as these were among the first modifi-
cations to be found in RNA. We then characterize all adenosine-, guanosine-, cytidine-, and uridine-based modi-
fications followed by ribose modifications. We conclude the review by summarizing the most recent
technological advances in finding novel modifications, while also describing conflicting experimental evidence
for the existence of select modifications.

TABLE 1 (Continued)

Count RNA modification Symbol New symbol Original NT

120 5-Taurinomethyluridine τm5U 54U U

121 5-Taurinomethyl-2-thiouridine τm5s2U 254U U

122 5-(Isopentenylaminomethyl)uridine inm5U 583U U

123 5-(Isopentenylaminomethyl)-2-thiouridine inm5s2U 2583U U

124 5-(Isopentenylaminomethyl)-20-O-methyluridine inm5Um 0583U U

125 5-Cyanomethyluridine cnm5U 55U U

126 5-(Carboxyhydroxymethyl)-20-O-methyluridine
methyl ester

mchm5Um 0522U U

127 5-Carboxymethylaminomethyl-2-selenouridine cmnm5se2U 2051U U

128 5-Carboxymethylaminomethyl-2-geranylthiouridine cmnm5ges2U 2151U U

129 5-Methylaminomethyl-2-geranylthiouridine mnm5ges2U 21511U U

130 5-Aminomethyl-2-geranylthiouridine nm5ges2U 21510U U

131 5-Methoxycarbonylmethyl-2-thiouridine mcm5s2U 2521U U

132 5-Carbamoylmethyl-2-thiouridine ncm5s2U 253U U

133 3(3-Amino-3-carboxypropyl)-5,6-dihydrouridine acp3D 308U U

134 5-Aminomethyl-2-selenouridine nm5se2U 20510U U

135 5-Carbamoylhydroxymethyluridine nchm5U 531U U

136 5-Carboxymethyl-2-thiouridine cm5s2U 2540U U

137 5-Methyl-2-thiouridine m5s2U 25U U

138 2-Geranylthiouridine ges2U 21U U

139 2-Selenouridine se2U 20U U

140 5-Aminomethyluridine nm5U 510U U

141 20-O-methyluridine 5-oxyacetic acid methyl ester mcmo5Um 0503U U

142 3-(3-Amino-3-carboxypropyl)pseudouridine acp3ψ 309U U

143 5-Cyanomethyl-2-thiouridine cnm5s2U None U

Note: The column labeled “RNA modification” lists the modification name. The column labeled “Symbol” lists the tra-
ditionally named abbreviations or symbols for the modification. Nonalphanumeric characters seen in abbreviations,
such as plus signs, commas, parentheses, asterisks, and other such characters, significantly complicate regular expres-
sion scripting in Linux-based environments. To mitigate this problem, the column labeled “New symbol” lists a new set
of symbols for these modifications that is easier for regular expressions to use (Boccaletto et al., 2018; Jonkhout
et al., 2017). The column labeled “Original NT” indicates which nucleotide (A, C, G, or U) is the ultimate originating
nucleotide for the modification.
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FIGURE 3 Euler diagrams showing the currently known phylogenetic distribution of ribonucleoside modifications in tRNA, rRNA,

mRNA, and ncRNA classes. Archaeal modifications are in pink, bacterial modifications are in blue, and eukaryotic modifications are in

yellow
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8 of 71 MCCOWN ET AL.



TABLE 2 Modifications at known nucleotide positions in tRNAs

tRNA position Modification(s)

1 Ψ

4 Am, Cm

8 s4U

9 m1A, m1G, s4U

10 m2G, m2,2G, m2Gm, m2,2Gm

12 ac4C

13 Ψ

15 G+, preQ0

16 D

17 D, Gm

19 D

20 D, acp3U

21 Ψ

26 m2G, m2,2G, m2Gm, m2,2Gm

27 Ψ

28 Ψ

31 Ψ

32 Ψ, m3C, Cm, s2C, s2U, ms2C

33 s2U

34 Ψ, cnm5U, ho5U, mo5U, cmo5U, mcmo5U, mcmo5Um, m3U, I, f5C, m5C, m3C, preQ0, preQ1, Q, oQ, galQ,
manQ, gluQ, Cm, s2U, s2Um, nm5s2U, mnm5s2U, cmnm5s2U, C+, k2C, ac4C, Gm, mcm5U, mcm5Um,
ncm5U, ncm5Um, τm5U, τm5s2U, cmnm5U, cmnm5s2U, mnm5se2U, cmnm5ges2U, mnm5ges2U,
cmnm5se2U, mnm5se2U, mnm5U, nm5U, nchm5U, se2U, ges2U, chm5U, mchm5U, mcm5s2U, ncm5s2U,
cm5s2U

35 Ψ

36 Ψ

37 i6A, io6A, ms2i6A, ms2io6A, t6A, g6A, ht6A, m6t6A, ct6A, ms2t6A, ms2ct6A, I, m1A, m1I, m2A, m1G, imG-
14, imG, imG2, mimG, yW-86, yW-72, yW-58, yW, OHyW*, OHyWy, o2yW, OHyW, m6A, s2C

38 Ψ

39 Ψ, Um

40 m5C

46 m7G

47 acp3U

48 m5C

49 m5C

52 Ψ

53 Ψ

54 Ψ,m1Ψ, m5U, m5s2U

55 Ψ

56 Cm

57 m1A, m1I, I

58 m1A, m1I

64 Ar(p), Gr(p)

65 Ψ

(Continues)
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2 | ABBREVIATIONS USED IN THIS WORK

Throughout this work, we use abbreviations that are commonplace or from publications that we reference. In addition
to the ribonucleoside abbreviations that we catalog in Table 1, the following abbreviations appear in the text.

ABH1: alpha-ketoglutarate-dependent dioxygenase 1 or AlkB Homolog 1

ACP: 3-amino-3-carboxypropyl

ADAR: adenosine deaminase acting on RNA

ADAT: adenosine deaminase acting on tRNA

AHK3: histidine kinase 3

AHK4: histidine kinase 4

AID: activation-induced cytidine deaminase

ALKB: alpha-ketoglutarate-dependent dioxygenase

ALKBH1: alkylated DNA repair protein (AlkB) homolog 1

ALKBH3: alkylated DNA repair protein (AlkB) homolog 3

ALKBH5: alkylated DNA repair protein (AlkB) homolog 5

ALKBH8: alkylated DNA repair protein (AlkB) homolog 8

AML: acute myeloid leukemia

ArcS/arcTGT: archaeosine synthase

AroD: 3-dehydroquinate dehydratase

Atm1: mitochondrial iron–sulfur clusters transporter

BMT5/6: 25S rRNA (uridine(2634)-N3)-methyltransferases 5 and 6

Bud23: rRNA methyltransferase and ribosome maturation factor

c-di-GMP: cyclic di-guanosine monophosphate

CDK5RAP1: cyclin-dependent kinase 5 regulatory subunit associated protein 1

CDKAL1: threonylcarbamoyladenosine tRNA methythiotransferase or cyclin-dependent kinase (CDK) 5-regulatory subunit
associated protein 1 like 1

cDNA: complementary DNA

CDS: coding sequence

Cfr: chloramphenicol-florfenicol resistance

CMC: N-cyclohexyl-N0-(2-morpholinoethyl)-carbodiimide

CMCT: N-cyclohexyl-N0-(2-morpholinoethyl)-carbodiimide metho-p-toluenesulphonate

c-myc: cellular avian myelocytomatosis viral oncogene homolog

CmoABM: carboxy-S-adenosyl-L-methionine synthase A, B, or M

COG1738: conserved protein domain 1738

CRE1: cytokinin response element 1

TABLE 2 (Continued)

tRNA position Modification(s)

66 Ψ

Unknown location msms2i6A, ac6A, hn6A, ms2hn6A, m6,6A, acp3D, m3Ψ, m4,4Cm, m6Am, m6,6Am, m1Am, Im, m1Im,
m1Gm, m2,7Gm, m4Cm, m5Cm, f5Cm, ac4Cm, mchm5Um, mcmo5Um, inm5Um

Note: Specific positions within tRNAs, labeled “tRNA position,” indicate which nucleotide is modified (related to
Figure 4). The column labeled “Modification(s)” indicates which modification(s) can be found at a given nucleotide
position. All modifications are abbreviated as indicated in “Symbol” column of Table 1.
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CsdAE: cysteine desulfurase A or E

Ctu1-2: cytoplasmic tRNA 2-thiolation proteins 1 or 2

DDX6: DEAD-box helicase 6

Dim1: dimethyladenosine transferase 1

DKC1: dyskerin pseudouridine synthase 1

DNMT3A: DNA methyltransferase 3 alpha or DNA (cytosine-5-)-methyltransferase 3 alpha

dpCoA: 30-dephospho-coenzyme A

DROSHA: double-stranded RNA-specific endoribonuclease

DTWD1-2: DTW (aspartate-threonine-tryptophan) domain-containing proteins 1 or 2

Dus: dihydrouridine synthase

Dus1-4p: dihydrouridine synthase proteins 1–4

DusABC: dihydrouridine synthase A, B, or C

eEF1A: eukaryotic elongation factor 1A

EF-Tu: elongation factor thermo unstable

EGFR: epidermal growth factor receptor

eIF3H: eukaryotic translation initiation factor 3 subunit H

eL41: eukaryotic ribosomal protein L41

Elp1-6: Elongator proteins 1–6

Emg1: N1-specific pseudouridine methyltransferase

FICC-seq: fluorouracil-induced-catalytic-crosslinking-sequencing

FMN: flavin mononucleotide

FTO: fat mass and obesity-associated related

Fur: ferric uptake regulator

GAT-QueC: glutamine amidotransferase class-II-7-cyano-7-deazaguanine synthase fusion protein

GCD: tRNA (adenine-N1-)-methyltransferase

Gcd10p/
Gcd14p:

tRNA (adenine-N1-)-methyltransferases 10 and 14 proteins or tRNA (adenine(58)-N(1))-methyltransferase noncatalytic
subunit Trm6 and Trm61

GidA: uridine 5-carboxymethylaminomethyl modification enzyme

GluQRS: glutamyl-Q tRNA(Asp) synthetase

GRIA2: glutamate ionotropic receptor alpha-amino 3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) type subunit 2

GTPBP3: guanosine triphosphate binding protein 3

H/ACA: H- and ACA-box-containing small nucleolar RNA

HER2+: human epidermal growth factor receptor 2 positive

hDus2p: human dihydrouridine synthase protein 2

hnRNP: heterogeneous nuclear ribonucleoprotein

hTRMT10A
or B:

human tRNA methyltransferase 10 A or B

IGF2BP: insulin-like growth factor 2 mRNA-binding protein

IPP: isopentenyl pyrophosphate

IscS: iron–sulfur cluster S or cysteine desulfurase

IscU: iron–sulfur cluster assembly enzyme

Isu1/2: iron–sulfur cluster assembly proteins 1 and 2

KEOPS: kinase, putative endopeptidase and other proteins of small size

KsgA: rRNA adenine dimethyltransferase or ribosomal RNA small subunit methyltransferase A

(Continues)
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L7Ae: 50S ribosomal protein

LC–MS: liquid chromatography–mass spectrometry

MALAT1: metastasis-associated lung adenocarcinoma transcript 1

MAT2A: methionine adenosyltransferase 2A

MELAS: mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes

MERRF: myoclonus epilepsy associated with ragged-red fibers

METTL: methyltransferase-like protein

METTL2: methyltransferase-like protein 2

METTL3/14: methyltransferase-like proteins 3 and 14

METTL5: methyltransferase-like protein 5

METTL6: methyltransferase-like protein 6

METTL8: methyltransferase-like protein 8

METTL15: methyltransferase-like protein 15

METTL16: methyltransferase-like protein 16

MiaA: tRNA delta(2)-isopentenylpyrophosphate transferase A or tRNA dimethylallyltransferase A

MiaB: tRNA delta(2)-isopentenylpyrophosphate transferase B or tRNA dimethylallyltransferase B

MiaE: tRNA delta(2)-isopentenylpyrophosphate transferase E or tRNA dimethylallyltransferase E

miR/miRNA: microRNA

MK2: MAPK activated protein kinase 2 or mitogen-activated protein kinase-activated protein kinase 2 or MAPKAPK2

MLASA: mitochondrial myopathy and sideroblastic anemia

MnmACEGH: tRNA-specific 2-thiouridylase A, C, E, G, or H

MnmC(m): tRNA-specific 2-thiouridylase C, methyltransferase domain

MnmC(o): tRNA-specific 2-thiouridylase C, oxidoreductase domain

Moco: molybdenum cofactor

Mod5: tRNA isopentenyltransferase 1

MtaB: threonylcarbamoyladenosine tRNA methylthiotransferase or TcdA

mTOR: mammalian target of rapamycin

MTO1: mitochondrial tRNA translation optimization 1

MTU1: mitochondrial tRNA-specific 2-thiouridylase 1 or TRMU

NAD+: nicotinamide adenine dinucleotide (oxidized form)

NADH: nicotinamide adenine dinucleotide (reduced form)

NAP57: nucleolar and coiled-body phosphoprotein 57 or dyskerin

NAT10: N-acetyltransferase 10

Ncs6: cytoplasmic tRNA 2-thiolation protein 1

Nep1/Emg1: N1-specific pseudouridine methyltransferase

NFS1: mitochondrial cysteine desulfurase

NifZ: nitrogen fixation protein

Nm: 20-O-methyl mark

NML: nucleomethylin

NOP56: nucleolar protein 56

NOP58: nucleolar protein 58

NRF2: nuclear factor erythroid 2 like 2

NSUN: nucleolar protein 22/Sun domain RNA methyltransferase
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Nt: Nucleotide

Opa1: optic atrophy 1

P body: processing body

PAR: poly(ADP-ribose)

PAR-CLIP: photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation

PCIF1: phosphorylated C-terminal domain-interacting factor 1

PKR: interferon-inducible double-stranded RNA-activated protein kinase or eIF-2A protein kinase 2

pri-miRNA: primary microRNA transcripts

PRC2: polycomb responsive complex 2

PRPP: phosphoribosylpyrophosphate

PrrC: anticodon nuclease

PRRC2A: proline-rich coiled-coil 2A

PTC: peptidyl transferase center

Pus: pseudouridine synthase

Pus1p: pseudouridine synthase 1 protein

Pus10: pseudouridine synthase 10

QueA: S-adenosyl-L-methionine-dependent tRNA ribosyltransferase-isomerase

QueCDE: 7-cyano-7-deazaguanine synthase, 6-carboxy-5,6,7,8-tetrahydropterine synthase, and 7-carboxy-7-deazaguanine
synthase

QueF: NADPH-dependent 7-cyano-7-deazaguanine reductase

QueF-like: similar to NADPH-dependent 7-cyano-7-deazaguanine reductase

QueG: epoxyqueuosine reductase

QueH: epoxyqueuosine reductase

QueT: queuosine precursor transporter

RaSEA: radical SAM enzyme for archaeosine formation

Rit1: ribosylation of initiator tRNA 1

RlhA: 23S rRNA 5-hydroxycytidine C2501 synthase

RlmA: ribosomal RNA large subunit methyltransferase A or 23S rRNA (guanine(745)-N(1))-methyltransferase

RlmC: ribosomal RNA large subunit methyltransferase C or 23S rRNA (uracil(747)-C(5))-methyltransferase

RlmD: ribosomal RNA large subunit methyltransferase D or 23S rRNA (uracil(1939)-C(5))-methyltransferase

RlmF: ribosomal RNA large subunit methyltransferase F

RlmFO: ribosomal RNA large subunit methyltransferase FO or methylenetetrahydrofolate-tRNA-(uracil-5-)-methyltransferase

RlmG: ribosomal RNA large subunit methyltransferase G

RlmH: ribosomal RNA large subunit methyltransferase H

RlmJ: ribosomal RNA large subunit methyltransferase J

RlmL: ribosomal RNA large subunit methyltransferase L

RlmN: 23S rRNA m2A2503 methyltransferase/tRNA or dual-specificity RNA methyltransferase

RluA: ribosomal large subunit pseudouridine synthase A or dual-specificity RNA pseudouridine synthase

RluD: ribosomal large subunit pseudouridine synthase D

RNMT: RNA guanine-7 methyltransferase

RRF: ribosome release factor

RsmA: ribosomal RNA small subunit methyltransferase A

RsmC: ribosomal RNA small subunit methyltransferase C

RsmD: ribosomal RNA small subunit methyltransferase D

(Continues)
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RsmE: ribosomal RNA small subunit methyltransferase E

RsmH: ribosomal RNA small subunit methyltransferase H

RsmI: ribosomal RNA small subunit methyltransferase I

RsuA: ribosomal small subunit pseudouridine synthase A

SAH: S-adensoyl-L-homocysteine

SAM: S-adenosyl-L-methionine

SCARLET: site-specific cleavage and radioactive labeling followed by ligation-assisted extraction and thin-layer chromatography

SCM-SAH: S-carboxy-S-adenosyl-L-homocysteine

SELEX: systematic evolution of ligands by exponential enrichment

SelU: tRNA 2-selenouridine synthase

snoRNA: small nucleolar RNA

snoRNP: small nucleolar ribonucleo protein

SNP: single nucleotide polymorphism

snR35: small nucleolar RNA 35

snRNA: small nuclear RNA

snRNP: small nuclear ribonucleoprotein

SNU13: small nuclear ribonucleoprotein 13 or 15.5K

SOS: inducible DNA repair system

SRA: steroid receptor RNA activator

T: thymidine

Tad1p: tRNA-specific adenosine deaminase 1 protein

Tad2p: tRNA-specific adenosine deaminase 2 protein

Tad3p: tRNA-specific adenosine deaminase 3 protein

TadA: tRNA-specific adenosine deaminase

Tan1: tRNA acetyltransferase 1

TapT: tRNA aminocarboxypropyltransferase

Taw1-3: SAM-dependent tRNA 4-demethylwyosine synthases 1–3

Taw22: SAM-dependent tRNA 4-demethylwyosine synthase 22

TAZ: tafazzin

TCD1/2: threonylcarbamoyladenosine dehydratase 1 or 2

TcdA: threonylcarbamoyladenosine dehydratase A

Tcs1/2: threonylcarbamoyladenylate synthase 1 or 2

TermY: tRNA m1Ψ54-methyltransferase

TET: ten-eleven translocation methylcytosine dioxygenase

TET1: ten-eleven translocation methylcytosine dioxygenase 1

Tgs1: trimethylguanosine synthase 1

TGT: queuine tRNA-ribosyltransferase

ThiI: tRNA sulfurtransferase

TiaS: tRNAIle-agmatidine synthetase

TilS: tRNAIle-lysidine synthetase

Tit1: tRNA isopentenyltransferase 1

tmRNA: transfer-messenger RNA

TOR: target of rapamycin
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TP53: tumor protein P53

TPA: 12-O-tetradecanoylphorbol-13-acetate

TPP: thiamin pyrophosphate

TrhOP: metallophos domain-containing protein O or P

TRIT1: tRNA isopentenyltransferase 1

Trm-G10: tRNA (guanine-10-N2)-dimethyltransferase

Trm1: tRNA methyltransferase 1

Trm1p: tRNA methyltransferase 1 protein

TRM4B: tRNA cytosine-C5-methyltransferase

Trm5: tRNA methyltransferase 5

Trm6-Trm61: tRNA methyltransferases 6 and 61

Trm8p/
Trm82p:

tRNA (guanine-N7-)-methyltransferase

Trm9/
Trm112:

tRNA (carboxymethyluridine(34)-5-O)-methyltransferase protein

Trm10: tRNA (guanine(9)-N1)-methyltransferase

Trm11p/112p: tRNA (guanine(10)-N2)-methyltransferase

Trm140: tRNA(Thr) (cytosine(32)-N3)-methyltransferase

TrmA: tRNA/tmRNA (uracil-C5)-methyltransferase

TrmD: tRNA (guanine-N1-)-methyltransferase

TrmFO: methylenetetrahydrofolate-tRNA-(uracil-5-)-methyltransferase

TrmI: tRNA m1A58/m7G46 methyltransferase

TrmM: tRNA (adenosine(37)-N6)-methyltransferase or YfiC or TrmN6

TrmO: tRNA methyltransferase O or tRNA (adenine(37)-N6-methyltransferase

TrmU: tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase

TRMT: tRNA methyltransferase

TRMT1: tRNA methyltransferase 1 or tRNA (guanine(26)-N(2))-dimethyltransferase

TRMT10: tRNA methyltransferase 10

TRMT2A: tRNA methyltransferase 2A or tRNA (uracil-5-)-methyltransferase

TRMT6: tRNA methyltransferase 6 or tRNA (adenine(58)-N(1))-methyltransferase

TRMT12: tRNA methyltransferase 12 homolog or tRNA wybutosine-synthesizing protein 2 homolog

TRMT61A: tRNA methyltransferase 61A or tRNA (adenine(58)-N(1))-methyltransferase

TRMT61B: tRNA methyltransferase 61B or tRNA (adenine(58)-N(1))-methyltransferase

TRMT112: tRNA methyltransferase 112

TruA: tRNA pseudouridine synthase A or Pus1

TruB: tRNA pseudouridine synthase B or Pus4

TruD: tRNA pseudouridine synthase D or Pus7

TtcA: tRNA-cytidine-32 2-sulfurtransferase

TsaBCDE: tRNA adenosine(37) threonylcarbamoyltransferase complex, dimerization subunit type 1; threonylcarbamoyladenylate
synthase; tRNA adenosine(37) threonylcarbamoyltransferase complex, transferase subunit; tRNA adenosine
(37) threonylcarbamoyltransferase complex, ATPase subunit type 1

TsaC2: threonylcarbamoyladenylate synthase

Tsr3: acp transferase ribosome maturation factor

TuaA: tRNA U47 acp transferase A or YfiP

(Continues)
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Tum1: thiosulfate sulfurtransferase

Tus: sulfur carrier protein or Moa

TYW1-5: SAM-dependent tRNA 4-demethylwyosine synthases 1–5

UTR: untranslated region

WBSCR22: Willams–Beuren syndrome chromosomal region 22 protein

WTAP: Wilms Tumor 1-Associating Protein

X-DC: X-linked dyskeratosis congenita

YbbB: tRNA 2-selenouridine/geranyl-2-thiouridine synthase

YbeA: m3Ψ synthase or RlmH

YhhQ: queuosine precursor transporter

YrvO: cysteine desulfurase

YTH: YT521-B protein domain

YTHDF1-3: YTH N6-methyladenosine RNA binding proteins 1–3

ZCCHC4: zinc finger CCHC-type containing 4

3 | DISCOVERY OF MODIFIED RIBONUCLEOSIDES: AN HISTORICAL
RETROSPECTIVE ON PSEUDOURIDINE, INOSINE, AND DIHYDROURIDINE

Nucleoside modification (IUPAC abbreviation): pseudouridine (Ψ); inosine (I); dihydrouridine (D).
Domain assignments: A, B, E.
RNA classes: , , (Ψ and I), (Ψ and I).
tRNAs play a central role in translation. These adaptor molecules serve as links between the informational level of

codons in mRNA and the functional level of amino acids incorporated into a growing polypeptide chain (Lorenz
et al., 2017). From the initial total sequence determination of tRNAAla, the specific locations of seven different modified
nucleosides, including Ψ, inosine, and D, were described by Holley (1965). Since then, tRNAs have been recognized as
the RNA class containing the highest percentage of post-transcriptional modifications (Figure 4, Table 2), which are
mostly found in the tRNA loops (D- and TΨC-loops) and the tRNA anticodon loop. Currently, 111 distinct modifica-
tions have been identified in tRNAs from all three domains of life (Figure 3, Table 2). One such modification, and the
first RNA modification to be discovered, is Ψ.

In 1951, Ψ was discovered as the first post-transcriptional modification in RNA and today is recognized as the most
abundant RNA modification (Cohn & Volkin, 1951; reviewed in Spenkuch, Motorin, & Helm, 2014). Ψ is an isomer of
uridine, where the nitrogen–carbon glycosidic bond is replaced by a carbon–carbon bond and an imine group is projec-
ted into the major groove (Figure 2). Ψ and U have identical molecular weights, making discerning Ψ and U problem-
atic using size-based methods (L. Johnson & Söll, 1970). However, the use of CMCT and reverse transcription or the
use of SCARLET are two methods frequently used to find Ψ in RNAs (Adachi, DeZoysa, & Yu, 2019; X. Li et al., 2015;
N. Liu et al., 2013; Penzo, Guerrieri, Zacchini, Treré, & Montanaro, 2017). Ψ-seq uses CMCT to modify Ψ into N3-CMC-
Ψ, which can terminate reverse transcription when preparing RNAs for RNA-seq (Carlile et al., 2014; Schwartz
et al., 2014; B. S. Zhao & He, 2015). Because N3-CMC-Ψ blocks reverse transcription, the Ψ nucleotide is identified as
one nucleotide downstream of the 30 end of the fragment (Ofengand, Del Campo, & Kaya, 2001).

Pseudouridine synthases isomerize the U incorporated within RNA transcripts rather than individual ribonucleo-
sides (L. Johnson & Söll, 1970). The synthases known to date are divided into five families (RluA, RsuA, TruA, TruB,
and TruD) in bacteria. In archaeal and eukaryotic organisms, Pus family enzymes write pseudouridine marks
(Hamma & Ferré-D'Amaré, 2006). The Pus enzymes have a conserved enzymatic core and use various protein domains
to recognize different RNA targets (Hamma & Ferré-D'Amaré, 2006). However, the pseudouridine synthase NAP57,
dyskerin, and other homologs of pseudouridine synthase, coupled with other core proteins, use H/ACA snoRNAs as
guides to position a uridine at the active site of the machinery which introduces Ψ marks in rRNA and snRNAs (Ganot,
Bortolin, & Kiss, 1997; reviewed in Y. T. Yu & Meier, 2014). Ψ is found nearly ubiquitously throughout various classes

16 of 71 MCCOWN ET AL.



of RNAs (lncRNAs, mRNAs, miRNAs, mitochondrial tRNAs, rRNAs, small Cajal-body specific RNAs, snRNA,
snoRNAs, and tRNAs) and in all three domains of life (reviewed in Penzo et al., 2017). However, it is unknown if any
enzymes exist that revert Ψ back to U or completely remove Ψ from RNAs (reviewed in Eyler et al., 2019).

Nearly all tRNAs are populated with some abundance of Ψ, although some exceptions exist, such as the initiator
tRNA in Saccharomyces cerevisiae (Boyer et al., 1970). Ψ55 is found in nearly all tRNAs within the TΨC stem-loop while
other sites, such as the anticodon stem-loop and D-arm, also possess Ψ (Charette & Gray, 2000) (Figure 4, Table 2). U55
is modified to Ψ55 by tRNA Ψ55 synthase, an enzyme from the TruB family (Nurse, Wrzesinski, Bakin, Lane, &
Ofengand, 1995). Ψ55 is proposed to stabilize the tertiary structure of tRNA, particularly under extreme thermal stress
(Kinghorn, O'Byrne, Booth, & Stansfield, 2002). Within rRNA, Ψ can be found in both the small and large subunits of
the ribosome in prokaryotes and eukaryotes as well as in chloroplasts and mitochondria (Charette & Gray, 2000). Ψ can
be found in locations crucial for peptide bond formation, such as the PTC region (Ofengand, 2002). The inclusion of Ψ
in various regions of tRNA and rRNA provides structural stabilization to enable the formation of highly ordered struc-
tures. snRNAs have Ψ within both the major (U1, U2, U4, U5, and U6) and minor (U12, U4atac, and U6atac)
spliceosomal complexes (A. T. Yu, Ge, & Yu, 2011). Ψ in spliceosomal RNAs plays a crucial role in the assembly and
function of snRNPs or the spliceosome via intermolecular RNA–RNA and RNA–protein interactions (A. T. Yu
et al., 2011).

Ψ can be found in mRNA (50 UTRs, coding sequences, and 30 UTRs) (Carlile et al., 2014). Additionally, pseudo-
uridylation of mRNA was found to have a role in translation. Ψ-containing mRNA impede Escherichia coli translation
elongation by preventing the canonical interactions between the CCA-end of a tRNA and the A site of the PTC in ribo-
some (Eyler et al., 2019). Further, Ψ promoted aberrant amino acid substitutions, yielding multiple peptide products
from one luciferase transcript in E. coli and human cells (Eyler et al., 2019). While many of these substitutions were
anticipated not to have deleterious effects on luciferase, the authors also hypothesized that these substitutions could be
harmful to host organisms under stress conditions (Eyler et al., 2019). As pseudouridylation helps stabilize RNA struc-
tures, Ψ is crucial in forming the active structure of the SRA lncRNA, which promotes transcription of several genes
(X. Zhao et al., 2007; Y. Zhao, Dunker, Yu, & Karijolich, 2018). Moreover, mutating the pseudouridylation site to adeno-
sine in mice causes SRA to become hyperpseudouridylated and act as a dominant negative suppressor of gene transcrip-
tion, notably c-myc (X. Zhao et al., 2007; Y. Zhao, Dunker, et al., 2018).

Ψ has relevance in human disease, but its roles are not clearly defined in most diseases. Urine samples contain Ψ
and could be used as a potential biomarker for cancer due to elevated levels in some cancer patients (Penzo et al., 2017;
Seidel, Brunner, Seidel, Fritz, & Herbarth, 2006). Correlations between defects in Ψ formation and X-DC and Hoyeraal–
Hreidarsson syndrome have been characterized (Penzo et al., 2017). Both diseases involve a mutation in the dkc1 gene,
leading to a decrease of Ψ in mRNA and many epidermal complications such as unusual skin pigmentation and white
patches lining the oral cavity (leukoplakia) (Penzo et al., 2017). However, some individuals with either disease have
been found to have normal levels of Ψ in mRNA, while telomerase impairment and shortened telomeres result in the
diseases (Penzo et al., 2017). Separately, abrogation of Pus1p-mediated pseudouridylation of SRA has also been linked
to MLASA in humans (Bykhovskaya, Casas, Mengesha, Inbal, & Fischel-Ghodsian, 2004; X. Zhao et al., 2007). Further
studies are required to determine if pseudouridylation has a direct role in these diseases.

As early as 1957, inosine was discovered as a biosynthetic precursor to purine synthesis in every domain of life
(Brown, Hoopes, White, & Sarisky, 2011; Graupner, Xu, & White, 2002; Hartman & Buchanan, 1958; Levin &
Magasanik, 1961; Marolewski, Smith, & Benkovic, 1994; E. Meyer, Leonard, Bhat, Stubbe, & Smith, 1992;
Nygaard & Saxild, 2000; Ownby, Xu, & White, 2005; L Warren, Flaks, & Buchanan, 1957). Inosine, which occurs in
RNA and DNA, is the product of hydrolytic deamination at the C6 position of adenosine (Alseth, Dalhus, &
Bjørås, 2014). In DNA, inosine formation can be caused by nonenzymatic processes, such as spontaneous hydroly-
sis, endogenous or environmental factors, or exposure to nitrosative compounds (Alseth et al., 2014). While these
nonenzymatic processes can also occur in RNA, deaminase enzymes can also introduce inosine into RNAs (Alseth
et al., 2014). In DNA, inosine preferentially base pairs with cytidine, where A-to-I deamination results in mis-
coding and is considered a premutagenic event (Alseth et al., 2014; Nordmann, Makris, & Reznikoff, 1988). In
RNA, inosine can base pair to A, C, or U, allowing inosine to function as a Wobble base in the anticodon loop of
tRNA or within other RNAs, such as mRNAs (reviewed in Wright, Force, & Znosko, 2018). Inosine was found in
the Wobble position (I34) of tRNAAla (Holley, 1965) and in several tRNAs (Figure 4) (reviewed in Rubio
et al., 2017; Torres et al., 2014). I34 was later determined to be essential in bacteria and eukaryotes, but not in
archaea (reviewed in Rubio et al., 2017; Torres et al., 2014).

MCCOWN ET AL. 17 of 71



In contrast to DNA, enzymatically derived inosine modifications found in double-stranded RNA (dsRNA) occur via
ADARs (Bass et al., 1997; Bass & Weintraub, 1988; Rebagliati & Melton, 1987) or ADATs (Bass et al., 1997; Danan-
Gotthold & Levanon, 2017). Deamination of A-to-I has been reported in tRNAs (reviewed in Torres et al., 2014),
recently for the first time in the small subunit of mitochondrial rRNA from the eukaryote Diplonema papillatum
(Moreira, Valach, Aoulad-Aissa, Otto, & Burger, 2016), mRNAs (Paul & Bass, 1998), ncRNAs (Kawahara et al., 2007;
Luciano, Mirsky, Vendetti, & Maas, 2004; Y. Yang, Zhou, & Jin, 2013), and viral RNAs (Samuel, 2011). Translational
and splicing machinery recognize inosine as G, resulting in the altered informational content of the RNA. When A-to-I
editing occurs in the coding region of an mRNA, the corresponding codon is altered, which can change the sequence of
an encoded protein. Though recoding is rare, A-to-I editing events predominantly occur in the noncoding intronic or
untranslated terminal regions of mRNAs and in ncRNAs (Athanasiadis, Rich, & Maas, 2004; D. D. Y. Kim et al., 2004;
E. Y. Levanon et al., 2005; Y. Yang et al., 2013). For example, A-to-I editing events have been observed at repeated Alu-
rich regions in RNAs from multiple classes (Levanon et al., 2004). Additionally, with several A-to-I editing events in the
primary transcript of mouse miRNA-142 (pri-miR-142), both pri-miR-142 and the mature miR-142 levels are repressed
(W. Yang et al., 2006). Consequently, in adar1 or adar2 null mice, both pri-miR-142 and mature miR-142 are increased
(W. Yang et al., 2006). Interestingly, ADAR-catalyzed A-to-I conversion of DNA bases in DNA/RNA hybrids has been
recently described, which may expand the spectrum of biological functions of ADARs (Y. Zheng, Lorenzo, &
Beal, 2017).

While A-to-I editing is widespread across Metazoa, the number of edits can vary considerably across species
(Porath, Knisbacher, Eisenberg, & Levanon, 2017). Three classes of ADAR proteins are involved in the regulation of
pre-mRNA A-to-I editing in vertebrates. ADAR1 and ADAR2 are expressed in most tissues, while ADAR3 is expressed
only in the central nervous system (C. X. Chen et al., 2000; Oakes, Anderson, Cohen-Gadol, & Hundley, 2017). Impor-
tantly, while ADAR1 and ADAR2 catalyze A-to-I editing (Zinshteyn & Nishikura, 2009), ADAR3 competitively inter-
feres with the activity of RNA-bound ADAR1 and ADAR2, suggesting ADAR3 has a regulatory role (C. X. Chen
et al., 2000). ADAT, a class of deaminases that are specific to tRNAs, are related to ADAR but are inactive on known
pre-mRNA substrates and extended dsRNAs (Maas, Gerber, & Rich, 1999; Torres et al., 2014). ADAT1, or its homolog
Tad1p, catalyzes the A-to-I conversion at position 37 in the anticodon loop of eukaryotic tRNAAla (Figure 4, Table 2)
(A. Gerber, Grosjean, Melcher, & Keller, 1998), while the ADAT2/ADAT3 heterodimer or its homolog heterodimer
Tad2p/Tad3p catalyzes the Wobble position A-to-I conversion of eukaryotic tRNAs (A. P. Gerber & Keller, 1999). The
formation of I34 in bacterial tRNAArg is catalyzed by the TadA enzyme (A. A. H. Su & Randau, 2011; Wolf, Gerber, &
Keller, 2002). Inosine at position 57 in the TΨC loop of tRNA has been reported for only archaea, where it occurs as N1-
methylinosine (m1I57) (Figure 4) (Yamaizumi et al., 1982). Here, the first step of A-to-I conversion involves methylation
of A57 by the SAM-dependent methyltransferase TrmI; this methylated adenosine is then deaminated to m1I57 by an
unknown enzyme (Grosjean, Constantinesco, Foiret, & Benachenhou, 1995; Roovers et al., 2004; reviewed in Torres
et al., 2014).

The effects of A-to-I editing have been observed primarily in brain tissue or neurons and can exhibit different phe-
notypes in these organs or cellular environments. A-to-I editing can affect brain tissue or neurons through dampening
signaling through G-protein receptors, enhancing the activity of voltage-gated ion channels, promoting proper brain
and neuron function, or proper splicing of glutamate-gated cation selective channels, among other observed functions
(Burns et al., 1997; Hoopengardner, Bhalla, Staber, & Reenan, 2003; Levanon et al., 2005; Seeburg, Higuchi, &
Sprengel, 1998; Sommer, Köhler, Sprengel, & Seeburg, 1991). ADAR activity plays an essential role in nervous system
function by restoring or establishing neuronal growth (Benowitz, Goldberg, & Irwin, 2002). Further, mutations in
ADARs have been shown to cause neural and behavioral defects in Drosophila melanogaster and Caenorhabditis elegans
(Goldstein et al., 2017). Disrupted ADAR activity is associated with brain cancers, prostate cancer, hepatocellular carci-
noma, and chronic myeloid leukemia (Fritzell, Xu, Lagergren, & Öhman, 2018; L.-D. Xu & Öhman, 2018). ADAR2 is
essential for editing some mature miRNAs in glioblastoma cells and ADAR2 can also reduce the expression of numer-
ous oncogenic miRNAs (Tomaselli et al., 2015). Astrocytoma and glioblastoma in humans have been correlated with an
overexpression of ADAR3, in which ADAR3 likely competes with ADAR2 for a binding site in the gria2 mRNA (Oakes
et al., 2017). This competition prevents RNA editing and promotes cell migration as well as tumor invasion in glioblas-
toma (Oakes et al., 2017). A-to-I editing involvement in cancer, as well as neuronal behavior studies, remains an area of
active research and could potentially lead to drug targets for cancer or behavioral treatments.

Another modification that was among the first found in total RNA was D in 1952 from beef spleen, though D had
been synthesized previously (Funk, Merritt, & Ehrlich, 1952; Weidel & Roithner, 1896). D is a product of the post-
transcriptional enzymatic reduction of the C5–C6 double bond in uridine to a single bond (Figures 1 and 2). Present in
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all three domains of life, D is a common modification in tRNA, where the D-loop was aptly named because it has sev-
eral D modifications (Figure 4) (Sprinzl, Horn, Brown, Ioudovitch, & Steinberg, 1998). However, D also resides in the
variable loop (V-loop) of tRNAs and in the E. coli 23S rRNA (Bishop, Xu, Johnson, Schimmel, & de Crécy-Lagard, 2002;
Kowalak, Bruenger, & McCloskey, 1995; Xing, Hiley, Hughes, & Phizicky, 2004). D typically destabilizes stacking inter-
actions with other nucleosides and D destabilizes the C30-endo sugar conformation of its ribose, which is a hallmark for
the formation of the A-RNA double helix (J. Dalluge, Hashizume, Sopchik, McCloskey, & Davis, 1996). Instead, D pre-
fers a C20-endo conformation, resulting in increased flexibility and dynamic motion where RNA tertiary interactions
need to be accommodated (J. Dalluge et al., 1996). In psychrophiles, the increased usage of D is thought to be helpful in
maintaining conformational flexibility of RNA under instances where thermal-based motion is limited or compromised
(J. J. Dalluge et al., 1997). Finally, D is an important factor in ensuring the recognition of tRNA by specific aminoacyl-
tRNA synthetases and the fidelity of translation (Hendrickson, 2001).

Though D is an abundant modification in all three domains of life, Dus enzymes that catalyze the formation of D
belong to a broad family of FMN-dependent enzymes (Bishop et al., 2002). Three classes of Dus enzymes are found in
E. coli (DusA, DusB, and DusC), four classes are found in S. cerevisiae (Dus1p, Dus2p, Dus3p, and Dus4p), and one class
is archaeal (Dus) (Bishop et al., 2002; Kasprzak, Czerwoniec, & Bujnicki, 2012). Thus far, one homolog has been discov-
ered in humans (hDus2p), though homologs for Dus1, Dus3, and Dus4 may also exist in humans (Kasprzak et al., 2012;
Whelan et al., 2015). By conducting a structural analysis of bacterial DusABC, it was determined that DusB is the ances-
tral Dus enzyme (Bou-Nader et al., 2018). Additional structural analyses of DusABC proteins revealed that each Dus
enzyme has distinct substrate specificity on tRNAs (Bou-Nader et al., 2018). Further analysis of the otherwise evolution-
arily conserved double-stranded RNA-binding domain of hDus2p revealed a novel N-terminal extension in the hDus2p
enzyme, which confers the ability to recognize specifically tRNAs, instead of nonspecifically recognizing double-
stranded RNAs (Bou-Nader et al., 2019).

Because elevated levels of dihydrouridine were correlated with Novikoff hepatoma and in Ehrlich ascites previously
(Kuchino & Borek, 1978), subsequent research sought to determine involvement of hDus2p in cancer (T. Kato
et al., 2005). In lung cancer, there is an increased amount of hDus2p, leading to greater amounts of D, which in turn
increases conformational flexibility of tRNAs and enhances translational efficiencies (T. Kato et al., 2005). Concor-
dantly, overexpression of hDus2p was correlated with a poor prognosis in lung cancer patients (T. Kato et al., 2005).
Separately, hDus2p interacts with PKR, inhibiting its kinase activity and interferon-induced antiviral innate immunity
(Mittelstadt et al., 2007). Overexpression of hDus2p also inhibits stress-induced apoptosis in sarcoma cells (Mittelstadt
et al., 2007). The discovery of additional Dus homologs in humans may provide further clues in its involvement in
human health. Moreover, the natural occurrence of D in psychrophilic organisms may provide useful applications or
insights into synthetic biological applications at colder temperatures. The discovery and characterization of the modifi-
cations Ψ, I, and D served as a basis for the subsequent discovery and characterization of modifications in RNA from all
three domains of life.

4 | ADENOSINE-DERIVED MODIFICATIONS

4.1 | The roles of m6A in biology and its metabolic breakdown products of hm6A
and f6A

Nucleoside modification (IUPAC abbreviation): N6-methyladenosine (m6A); N6-hydroxymethyladenosine (hm6A); N6-
formyladenosine (f6A).

Domain assignments: A (m6A), B (m6A), E.
RNA classes: (m6A), (m6A), , (m6A).
The biological function of N6-methyladenosine (m6A) represents one of the most prolific areas of recent research in

modified ribonucleosides. Although m6A was originally discovered in 1974 in mRNA (Perry & Kelley, 1974), it was
25 years later when the first enzyme that could synthesize m6A (known as an m6A writer) was discovered. For eukary-
otic mRNAs, this writer was identified as METTL3, which exists in a complex with the catalytically inactive METTL14
and WTAP (Bokar, Shambaugh, Polayes, Matera, & Rottman, 1997; Ping et al., 2014; Shi et al., 2019). METTL3/14
methylate RNAs at a consensus nucleotide sequence: 50-RRACH-30 (R = purine, H = A, C, or U nucleotides)
(Dominissini et al., 2012; K. D. Meyer et al., 2012). Subsequent m6A methyltransferases were discovered in humans and
E. coli acting on different RNA classes. One of these methyltransferases is human METTL16, which modifies the U6

MCCOWN ET AL. 19 of 71



snRNA, the MAT2A mRNA, and likely other RNAs (Koh, Goh, & Goh, 2019; Pendleton et al., 2017; Warda et al., 2017).
Recently, the heterodimer complex METTL5 and Trmt12 was characterized as an m6A methyltransferase that modifies
A1832 in the human 18S rRNA (van Tran et al., 2019) and ZCCHC4 was recently characterized as an m6A methyl-
transferase that modifies A4220 in the human 28S rRNA (Pinto et al., 2020; van Tran et al., 2019). RlmF and RlmJ place
two distinct m6A marks (A1618 and A2030, respectively) on the E. coli 23S rRNA (Golovina et al., 2012; Sergiev,
Serebryakova, Bogdanov, & Dontsova, 2008). Although m6A is present in bacterial mRNAs, the methyltransferase(s)
that confer m6A marks remains elusive. The consensus sites for E. coli and Pseudomonas aeruginosa, respectively, are
50-UGCCAG-30 or 50-GGYCAG-30, which are distinct from the 50-RRACH-30 sequence recognized by METTL3/14 in
humans (Deng et al., 2015). Moreover, m6A modifications have been detected in one tRNAVal species in E. coli
(Saneyoshi, Harada, & Nishimura, 1969) and its writer was determined to be TrmM (Golovina et al., 2009). Further, an
m6A modification at A1500 has been detected in the small ribosomal subunit of the crenarchaeote Sulfolobus solfataricus
and Haloferax volcanii (Kowalak, Bruenger, Crain, & McCloskey, 2000; Noon, Bruenger, & McCloskey, 1998), although it
is currently unknown which enzymes confer these modifications.

For some RNAs from bacterial and eukaryotic organisms, there are validated demethylases that can remove m6A
marks from RNAs (known as m6A erasers) (Fedeles, Singh, Delaney, Li, & Essigmann, 2015). One such demethylase is
the ALKBH5 protein, which specifically removes m6A marks from mRNAs (G. Zheng et al., 2013). Another
demethylase is the FTO protein, which demethylates m6A, m6Am, and m1A marks in mRNA, snRNA, and tRNA,
respectively (Shi et al., 2019; Wei et al., 2018; X. Zhang, Wei, et al., 2019). Instead of a direct demethylation reaction,
human and mouse FTO can demethylate m6A marks by oxidizing them to yield hm6A, which is further oxidized to
yield f6A (Fu et al., 2013). The half-lives of these modifications, whose biological roles remain unexplored, is ~3 hr
in vitro, and then both modifications nonenzymatically decompose back to adenosine (Fu et al., 2013). The reversibility
of m6A marks in mRNAs remains controversial, for a small percent of m6A marks vary during the life of an mRNA
(Darnell, Ke, & Darnell, 2018; Zaccara, Ries, & Jaffrey, 2019; B. S. Zhao, Nachtergaele, Roundtree, & He, 2018). Further,
the role of m6A in splicing has been questioned because mouse embryonic stem cells without Mettl3 continue to grow
and properly splice mRNAs (Darnell et al., 2018). However, there is agreement that nascent mRNAs are cot-
ranscriptionally modified with m6A marks and that m6A-containing mRNAs are more expeditiously turned over than
non-m6A mRNAs (Darnell et al., 2018; B. S. Zhao, Nachtergaele, et al., 2018). Regardless, the removal of m6A is a con-
trolled process, though it is unclear what significance hm6A and f6A have in biology.

In addition to m6A writers and erasers, several proteins have been characterized whose binding activity depends on
the presence or absence of an m6A mark (known as m6A readers). For example, m6A marks may weaken secondary
structure to create new protein-binding sites, such as hnRNPC binding to a U-rich loop in an m6A-disrupted hairpin
(Alarcón, Goodarzi, et al., 2015; N. Liu et al., 2015, 2017; Shi et al., 2019; B. Wu et al., 2018). These findings led to the
model of an m6A switch, whereby the absence of an m6A mark may result in a stable hairpin that obscures protein
binding sequences (N. Liu et al., 2015, 2017; X. Wang et al., 2014). Another possible m6A switch regulates miRNA-
binding site accessibility in MALAT1. Here, the absence of an m6A mark in MALAT1 may prevent the formation of a
long-range pseudoknot and, concordantly, expose two miRNA-binding sites that could sequester miRNAs away from
their oncogenic mRNA targets (McCown, Wang, Jaeger, & Brown, 2019). Proteins containing the YTH domain, such as
YTHDF2, can recognize and bind to m6A marks on mRNAs and ncRNAs in humans. These binding events destabilize
the structure of their RNA targets and then lead these YTHDF2-bound RNAs to P bodies for degradation (H. Du
et al., 2016; Shi et al., 2017, 2019; X. Wang et al., 2014, 2015). IGF2BP1–3 proteins increase the mRNA half-life of
mRNAs with m6A marks, while PRRC2A also increases mRNA half-life of an m6A-containing transcript that is neces-
sary for myelination (H. Huang et al., 2018; Shi et al., 2019; R. Wu et al., 2019). The binding of the splicing-factor
hnRNPA2B1 enables m6A-dependent nuclear processing, especially for pri-miRNAs (Alarcón, Goodarzi, et al., 2015).
METTL3 and its corresponding m6A marks are sufficient to permit proper pri-miRNA processing by DROSHA in a
non-cell-type specific fashion in human cells (Alarcón, Lee, Goodarzi, Halberg, Tavazoie, 2015). hm6A and f6A are not
recognized by the YTHDF2 protein, suggesting that they could either bind to different RNA-binding proteins or serve
as markers for newly synthesized RNAs, among other possibilities (Fu et al., 2013). Recently, it was discovered that
YTHDF1–3 facilitates phase separation of m6A-marked mRNAs and influences the transport of these mRNAs into dif-
ferent phase-separated compartments: P bodies for nonstress conditions, or stress granules for heat shock or arsenite
stress (Ries et al., 2019).

The involvement of m6A in human health is a highly active area of research that cannot be adequately addressed in
this review. Several recent reviews capture the trends on m6A in disease (X.-Y. Chen, Zhang, & Zhu, 2019; K. Du,
Zhang, Lee, & Sun, 2019; Lan et al., 2019; Tong, Flavell, & Li, 2018). Nonetheless, we highlight some of the more
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striking discoveries involving m6A in human disease. In select cancer cells, an abundance of METTL3 was found to pro-
mote A549 lung adenocarcinoma cancer cell growth, survival, and invasion phenotypes, while the methylation activity
of METTL3 was found to regulate the protein expression of several oncogenes, including EGFR, TAZ, MK2, and
DNMT3A (S. Lin, Choe, Du, Triboulet, & Gregory, 2016). METTL3 enhances the translation of these oncogenes
and others by physically interacting with eIF3H, which increases the formation of polysomes on the EGFR, TAZ, MK2,
and DNMT3A mRNAs (Choe et al., 2018). Small molecule ligands that bind to the METTL3–METTL14–WTAP complex
activate this complex and may aid in cell survival after UV exposure (Selberg et al., 2019; Xiang et al., 2017). YTHDF2 is
often overexpressed in AML and is required for AML initiation and propagation (J. Paris et al., 2019). YTHDF2 was
found to be dispensable in noncancerous hematopoietic stem cell function, yet essential for leukemic stem cell function.
Concordantly, YTHDF2 represents an attractive therapeutic target for AML, which also permits hematopoietic stem cell
expansion after treatment (J. Paris et al., 2019). Small molecule inhibitors targeting FTO have eradicated AML cells
in vitro and in mouse xenograft models of AML (Y. Huang et al., 2019). In neurology, m6A marks were shown to
shorten the radial glial cell cycle, while also extending cortical neurogenesis beyond birth in mouse brains (Yoon
et al., 2017). Moreover, m6A marks are significant in memory formation in mice, as a knockout of the ythdf1 gene in
mice showed learning and memory deficits (Shi et al., 2018). In cardiology, m6A marks have been shown to be crucial
in proper heart development and in heart function; for an siRNA knockdown of METTL3 and a cardiomyocyte-specific
knockout mouse line of mettl3 resulted in the depletion of m6A, which also resulted in increased rates of heart failure
in mice and possibly in humans (Dorn et al., 2019). Much research has been conducted on the significance of the pres-
ence or absence of m6A marks to human health. However, further research is needed to determine precisely how m6A,
hm6A, and f6A affect human health instead of correlative observations based on their global alterations in knocking
down or overexpressing enzymes that write or erase these modifications. Also, research into the significance of hm6A
and f6A remains almost nonexistent and may further elucidate the temporal presence of m6A in RNAs.

4.2 | The methyl groups of m1A and its derivative m1I disrupt hydrogen bonding along
the Watson–Crick face of their host ribonucleotides

Nucleoside modification (IUPAC abbreviation): N1-methyladenosine (m1A); N1-inosine (m1I).
Domain assignments: A, B, E.
RNA classes: , (m1A), (m1A), (m1A).
m1A is a prevalent, dynamic base modification found in tRNAs, rRNAs, mRNAs, and ncRNAs (Bar-Yaacov

et al., 2016, 2017; Dominissini et al., 2016; Khoddami et al., 2019; Kirpekar, Hansen, Rasmussen, Poehlsgaard, &
Vester, 2005; Koscinski, Feder, & Bujnicki, 2007; X. Li et al., 2016; Maden, 1990; McCown et al., 2019; Oerum, Dégut,
Barraud, & Tisné, 2017; Roovers et al., 2004; Safra et al., 2017; Schwartz, 2018; Sharma, Watzinger, Kötter, &
Entian, 2013; Wachino et al., 2007). m1A disrupts U-A Watson–Crick base pairing and introduces a positive charge at
physiological pH (Dominissini et al., 2016; Parsyan et al., 2011; Roundtree, Evans, Pan, & He, 2017; Zur &
Tuller, 2013). m1A marks have been found at several positions in tRNAs in all three domains of life (Figure 4, Table 2)
(Oerum et al., 2017; Roovers et al., 2008; Sprinzl et al., 1998). The two most well-studied m1A modifications in tRNA
are m1A9 and m1A58, which have been related to proper tRNA folding and structural stability (reviewed in Oerum
et al., 2017). The m1A9 modification has been found in archaeal and mitochondrial mammalian tRNAs (reviewed in
Oerum et al., 2017). In human mitochondrial tRNALys, tRNALeu(UUR), and tRNAAsp, the m1A9 modifications disrupt
Watson–Crick interactions that would otherwise render these tRNAs as hairpins. Instead, these tRNAs possess the
functional L-shape structure seen in other tRNAs (Figure 4, Table 2) (Helm et al., 1998; Helm, Giegé, & Florentz, 1999;
Helm & Attardi, 2004; Oerum et al., 2017; Voigts-Hoffmann et al., 2007). Recently, the enzyme hTRMT10B was indi-
cated as the tRNAAsp-specific m1A9 methyltransferase in humans (Howell, Jora, Jepson, Limbach, & Jackman, 2019).
The m1A58 modification in tRNAs can be found in all three domains of life, though it is found in both cytosolic and
mitochondrial tRNAs of eukaryotes (reviewed in Oerum et al., 2017). For the tRNA-specific m1A58 modification, pro-
karyotes use the enzyme TrmI to methylate A58, while the enzyme complex Trm6–Trm61 (previously known as
Gcd10p/Gcd14p) methylates this adenosine in S. cerevisiae (Droogmans et al., 2003; Oerum et al., 2017; Roovers et al.,
2004). Among prokaryotic organisms such as Thermus thermophilus, m1A58, Gm18, and m5s2U54 have been linked to
the structural thermostability of tRNA as these modifications increase the melting temperature of tRNA by 10�C when
compared with unmodified tRNAs (Droogmans et al., 2003; Oerum et al., 2017; Yokoyama, Watanabe, &
Miyazawa, 1987). In S. cerevisiae, m1A58 has been shown to be important for the maturation of the initiator tRNAMet
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(Anderson et al., 1998). In humans, m1A58 situated in tRNALys3 appears to be essential for the fidelity and efficiency of
plus-strand DNA transfer during HIV-1 reverse transcription (Auxilien, Keith, Le Grice, & Darlix, 1999). m1A marks
have also been discovered in rRNA in archaeal and aminoglycoside-resistant bacteria. The m1A1408 modification in
16S rRNA disrupts the binding of aminoglycosides to rRNA in E. coli (Kirpekar et al., 2005; Koscinski et al., 2007;
Wachino et al., 2007). Like prokaryotes, m1A modifications can be found in eukaryotic rRNA, such as A645 in
S. cerevisiae 25S rRNA and A1322 in human 28S rRNA. This modification functions in the biogenesis of the human 60S
ribosome through methylation of A1322, as catalyzed by NML (Peifer et al., 2013; Sharma et al., 2018; Waku
et al., 2016). In the mitochondrial 16S rRNA, the enzyme TRMT61B confers this methyl mark (Bar-Yaacov
et al., 2016, 2017).

For m1A modifications in human mRNAs, TRMT6/TRMT61A has been shown to confer this mark
(Schwartz, 2018). For m1A erasers, FTO and ALKBH3 have been shown to demethylate m1A marks in human tRNAs
and mRNAs (Wei et al., 2018; Woo & Chambers, 2019). The presence of m1A in mRNAs increases the efficiency of
translation initiation, early elongation, and enhances translation rates (Dominissini et al., 2016; Roundtree et al., 2017).
m1A has been determined to be involved in cancer, as either drastic upregulation or downregulation of m1A levels and
m1A writer proteins are found in patients with poor prognoses in several cancer types, including gastrointestinal can-
cers, hepatocellular carcinoma, pancreatic adenocarcinoma, and colorectal adenocarcinoma (Y. Zhao et al., 2019).

In archaeal tRNAs, m1A marks are present at positions 57 and 58, where m1A57 is an obligatory precursor in the
formation of m1I (Droogmans et al., 2003; Grosjean et al., 1995; Roovers et al., 2004; Yamaizumi et al., 1982). Adenosine
methylation occurs first via the TrmI enzyme to form the m1A marks; m1A57 is further deaminated by an unknown
enzyme to form m1I (Grosjean et al., 1995, 1996; Roovers et al., 2004). m1I has also been found in eukaryotic cytosolic
tRNAAla at position m1I37 (Grosjean et al., 1995, 1996; Holley, 1965). The synthesis of m1I in eukaryotes differs from
archaea, however. In S. cerevisiae and animal cells, the homodimeric Tad1p and ADAT1 enzymes, respectively, catalyze
the conversion of A37 to I37 (A. Gerber et al., 1998; Maas et al., 1999). I37 is then methylated to m1I by Trm5 in a
SAM-dependent reaction (Björk et al., 2001). In the autoimmune disease polymyositis, antibodies were detected and
could target m1I-containing tRNAs and stem-loops (Grosjean et al., 1996). Though m1A-related health research is being
conducted, further m1I-related research may also yield interesting discoveries in human health that are currently
unknown.

4.3 | i6A and the related ribonucleosides io6A, ms2i6A, ms2io6A, and msms2i6A have roles
in tRNA formation, translation, cytokinin formation, and prion development

Nucleoside modification (IUPAC abbreviation): N6-isopentenyladenosine (i6A); N6-(cis-hydroxyisopentenyl)-adenosine
(io6A); 2-methylthio-N6-isopentenyladenosine (ms2i6A); 2-methylthio-N6-(cis-hydroxyisopentenyl)-adenosine (ms2io6A);
2-methylthiomethylenethio-N6-isopentenyl-adenosine (msms2i6A).

Domain assignments: B, E (not msms2i6A).
RNA classes: .
i6A appears at position 37 in many tRNA molecules, corresponding to the anticodon loop (nt 37 in Figure 4)

(U. Schweizer, Bohleber, & Fradejas-Villar, 2017). In bacteria and eukaryotes, the synthesis of i6A within a tRNA is
accomplished by conjugating an isopentenyl pyrophosphate (IPP) molecule to A37 via the bacterial miaA enzyme, the
S. cerevisiae mod5 enzyme, the human TRIT1 enzyme, or organism-relevant homologs (Figure 5a) (U. Schweizer
et al., 2017). In select plants, i6A can also exist as an unincorporated ribonucleoside excised from a recycled tRNA mole-
cule or synthesized as a ribonucleotide for use as a hormone (Hwang & Sakakibara, 2006; Riefler, Novak, Strnad, &
Schmülling, 2006). i6A can be hydroxylated by the bacterial MiaE enzyme and its eukaryotic homologs to yield io6A
(U. Schweizer et al., 2017).

Further modifications of i6A are established by bacterial MiaB and mammalian CDK5RAP1 enzymes, which per-
form a thiomethylation of i6A to form ms2i6A (U. Schweizer et al., 2017). ms2i6A can be further modified by the miaE
enzyme, which hydroxylates the ms2i6A modification to form ms2io6A. While ms2io6A is chemically distinct from
ms2i6A, the two appear to be functionally interchangeable in stabilizing weak base pairing between the mRNA codon
and the tRNA anticodon (Persson, Esberg, Ólafsson, & Björk, 1994). The sulfur in ms2i6A and ms2io6A comes from cys-
teine and is delivered by the cysteine desulfurase IscS, itself a hub of seven different pathways in which sulfur can be
utilized in the biogenesis of ms2i6A/ms2io6A, s2U, s4U, s2C, thiamin, Moco, and additional Fe-S proteins (Shigi, 2014).
msms2i6A, predominantly found in E. coli tRNASer and tRNATyr, was determined to be synthesized from the MiaB
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enzyme in a sequential thioacetylation reaction using ms2i6A as a precursor in vitro (Dal Magro et al., 2018). However,
it is unknown whether msms2i6A is found in other organisms and its function remains unknown.

At position 37 in the anticodon loop, the modified ribonucleosides i6A, ms2i6A, m1G, inosine, m1A, m1I, m2A, and
yW and its derivatives disrupt potential base pairing with a neighboring uridine residue (U33) that is close to A37 in
the tertiary structure of several tRNA species (U. Schweizer et al., 2017). These modifications also strengthen
anticodon–codon pairings of adjacent tRNA nucleotides to their cognate mRNA targets (U. Schweizer et al., 2017). i6A
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and ms2i6A have significant roles in proper codon recognition in tRNA molecules, particularly in the stationary phase
sigma factor in E. coli (U. Schweizer et al., 2017). Moreover, i6A formation on tRNATrp was shown to optimize trp
operon attenuation in bacteria (Eisenberg, Yarus, & Soll, 1979). In bacteria, ms2i6A limits P-site slippage in the ribo-
some, while also increasing the synthesis of an iron chelator (Buck & Griffiths, 1982; reviewed in Pollo-Oliveira & De
Crécy-Lagard, 2019; Urbonavicius, Qian, Durand, Hagervall, & Björk, 2001). On elucidating its role in iron chelation, it
was discovered that MiaB is dependent upon an iron–sulfur cluster (Pierrel, Björk, Fontecave, & Atta, 2002). Further,
the translation of the major iron homeostasis regulator in E. coli, Fur, is coupled to translation of a leader peptide that
is properly decoded by a tRNASer-UGA which is modified at A37 to contain an ms2i6A mark (Pollo-Oliveira & De
Crécy-Lagard, 2019; Veĉerek, Moll, & Bläsi, 2007). In S. cerevisiae, a reduction in the efficiency of the tRNATyr(UAA) sup-
pressor was attributed to lack of i6A (Laten, Gorman, & Bock, 1978; U. Schweizer et al., 2017). Further, S. cerevisiae
strains that were homozygous for a deletion of mod5 fail to sporulate (Laten et al., 1978). The mod5 protein in
S. cerevisiae can also form prions, which were shown to regulate the sterol biosynthesis pathway and ultimately led to
an acquired resistance against several azole-derived antifungal agents (G. Suzuki, Shimazu, & Tanaka, 2012). Prion for-
mation of mod5 also resulted in a decrease of i6A production (G. Suzuki et al., 2012). In Schizosaccharomyces pombe,
the mod5 homolog tit1 renders resistance to rapamycin, an inhibitor of mTOR (U. Schweizer et al., 2017).

Within other eukaryotes, mod5 or its homologs can modify cytosolic and mitochondrial tRNAs. Both S. cerevisiae
and S. pombe retain a preference for using i6A in mitochondrial tRNAs. However, the preferential modification in mam-
mals shifts to using the ms2i6A modification in mitochondrial tRNAs; ms2i6A may also be absent in cytosolic tRNAs.
Finally, in mammals, selenoprotein expression is dependent upon proper formation of i6A and mcm5U in tRNA[Ser]Sec

(U. Schweizer et al., 2017; Sierant et al., 2018).
Within plants, i6A functions as a cytokinin, a plant hormone with regulatory roles in plant growth and proper plant

development (Riefler et al., 2006). The i6A receptors CRE1/AHK4 and AHK3 are expressed significantly in root tissue
and aerial portions of Arabidopsis, respectively (Riefler et al., 2006). CRE1/AHK4 has roles in phosphate starvation
responses and sulfate acquisition, in addition to the formation of significant defects in the formation and development
of plant vascular tissues (Riefler et al., 2006). Further, these receptors have roles in regulating germination rates, light
needed for germination, and sensitivity to far-red light (Riefler et al., 2006). Within humans, the role of i6A as a cytoki-
nin has been investigated as a potential antitumor treatment for the last 50 years (Dassano et al., 2014). Though the ini-
tial investigation into i6A in clinical trials failed, the development of i6A analogs has yielded compounds that inhibit
growth of the MCF7 breast cancer cell line and activate the NRF2-mediated oxidative stress response, which is triggered
typically by hydrogen peroxide or TPA (Dassano et al., 2014). What roles i6A or its derivatives may have as an antican-
cer drug remain unknown but are quite exciting. Further, while IPP is used to generate i6A, it remains unknown if any
additional IPP derivatives are used in organisms to modify adenosine molecules. Specifically, as a geranyl moiety can
be used in modifying uridine molecules (Sierant et al., 2016), it would be fascinating to see if geranyl pyrophosphate or
another lipid molecule can similarly be incorporated into an adenosine molecule.

4.4 | The biological roles of t6A and its derivatives or relatives: ct6A, m6t6A, ms2t6A,
ms2ct6A, ht6A, ac6A, g6A, hn6A, and ms2hn6A

Nucleoside modification (IUPAC abbreviation): N6-threonylcarbamoyladenosine (t6A); cyclic N6-threonylcarbamoyladenosine
(ct6A); N6-methyl-N6-threonylcarbamoyladenosine (m6t6A); 2-methylthio-N6-threonylcarbamoyladenosine (ms2t6A);
cyclic 2-methylthio-N6-threonylcarbamoyladenosine (ms2ct6A); N6-hydroxythreonylcarbamoyladenosine (ht6A); N6-
acetyladenosine (ac6A); N6-glycinylcarbamoyladenosine (g6A); N6-hydroxynorvalylcarbamoyladenosine (hn6A);
2-methylthio-N6-hydroxynorvalylcarbamoyladenosine (ms2hn6A).

Domain assignments: A (t6A, ac6A, hn6A, ms2t6A, and ms2hn6A), B (not g6A, ht6A), E (not ac6A, hn6A, and ms2hn6A).
RNA classes: .
t6A and subsets of its derivatives (Figure 5b) are essential modified bases found in all three domains of life at posi-

tion 37 of tRNAs (Figure 4, Table 2), comparable with i6A and its derivatives above (Kang et al., 2017). Several tRNAs
that read codons starting with a U residue are universally modified to contain t6A or its derivatives, while various
tRNAs that read codons that start with an A residue are modified to contain i6A or its derivatives (U. Schweizer
et al., 2017). To create t6A, all three domains of life undergo a two-step process to covalently attach threonine to the N6
position of A37 in tRNA molecules. In bacteria, the TsaC or the TsaC2 protein adds a threonylcarbamoyl group onto an
ATP molecule, whereas archaea and eukaryotes use Tcs1 or Tcs2 (reviewed in Thiaville, Iwata-Reuyl, & de Crécy-
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Lagard, 2014). Once the resulting threonylcarbamoyl-AMP molecule is formed, bacteria use the TsaBDE proteins to
transfer the threonylcarbamoyl moiety into A37 to form t6A37, while archaea and eukaryotes use the KEOPS macromo-
lecular complex to form t6A37 (reviewed in Thiaville et al., 2014; Wan et al., 2013). Instead of incorporation with threo-
nine into A37 in tRNAs, a glycine residue can occasionally be placed on the tRNA instead, generating g6A through an
unknown enzymatic process (M. P. Schweizer, McGrath, & Baczynskyj, 1970; Wan et al., 2013). t6A can be cyclized into
ct6A by the E. coli enzymes TcdA, CsdA, and CsdE or the S. cerevisiae homologs TCD1-TCD2 (Miyauchi, Kimura, &
Suzuki, 2013). t6A can also be further methylated or hydroxylated, forming m6t6A or ht6A via the enzyme TrmO and by
an unknown enzyme, respectively (Figure 5b) (Kang et al., 2017; Nagao et al., 2017). In all three domains of life, a
thiomethyl group from SAM can also be added onto t6A by the bacterial MtaB enzyme or the eukaryotic enzyme
CDKAL1, forming ms2t6A (Arragain et al., 2010). ms2t6A can be further cyclized into ms2ct6A by the enzyme TcdA
(Kang et al., 2017). However, ms2ct6A can be generated directly from ct6A by CDKAL1, as the necessary
2-methylthiolation and cyclization events are independent of each other (Kang et al., 2017). Further, while the cyclic
modifications ct6A and ms2ct6A can be artificially synthesized in an oxazolone isoform, the hydantoin isoforms are the
biologically relevant forms (Figure 5b) (Kang et al., 2017). ct6A, m6t6A, ms2t6A, ms2ct6A, ht6A, and g6A do not appear
to be found in archaeal species (Boccaletto et al., 2018; Kang et al., 2017).

While archaeal tRNAs contain t6A and some related derivatives, ac6A has been hypothesized to be a structural analog of
t6A and related molecules within archaeal tRNA (Sauerwald, Sitaramaiah, McCloskey, Söll, & Crain, 2005). ac6A is the most
abundant modified t6A-like derivative in tRNA molecules from Methanopyrus kandleri (Sauerwald et al., 2005). Further, the
t6A derivative hn6A and its relative ms2hn6A were also present in the characterization studies of ac6A (Reddy et al., 1992;
Sauerwald et al., 2005). As was seen with ac6A, both hn6A and ms2hn6A were found in thermophilic archaeal species
(Sauerwald et al., 2005). However, their roles and precise nucleotide positions within archaea tRNA remain unknown.

As with i6A, t6A and its derivatives are essential in decoding and recognizing codons. However, each t6A derivative
has unique specificity. t6A and ct6A decode ANN (N represents any nucleotide) codons, m6t6A decodes ACY codons,
ms2t6A and ms2ct6A decode AAR codons, and ht6A decodes the AAA codon in sea urchins and reads as asparagine
instead of lysine (Kang et al., 2017; Miyauchi et al., 2013; Nagao et al., 2017). t6A is necessary for proper and efficient
aminoacylation of tRNAs, efficient translocation, proper scanning of initiation codons, and proper read-through of stop
codons (Kang et al., 2017). While t6A is essential in E. coli and many bacteria, it is not essential to Deinococcus radio-
durans, Thermus thermophilus, Synechocystis PCC6803, and Streptococcus mutans (Thiaville et al., 2015). While dispens-
able in D. radiodurans, t6A-deficient strains of D. radiodurans were more sensitive to the DNA crosslink inducing drug
mitomycin C and had a marked increase in protein expression of stress response genes related to protein homeostasis
(Onodera, Satoh, Ohta, & Narumi, 2013; Thiaville et al., 2015). In E. coli and S. mutans, it was determined that t6A was
a positive determinant for the PrrC toxins in both organisms (Bacusmo et al., 2017). In S. cerevisiae, t6A37 is not essen-
tial, though lack of t6A results in substantial growth defects. These defects include an increase in sensitivity to select
stresses (i.e., heat, ethanol, and salt), an increase in sensitivity to TOR pathway inhibitors, and an increase in rates of
translation at non-AUG start codons upstream of the actual translation start site (Thiaville et al., 2016). In D. melano-
gaster, a homozygous mutation of one component of the KEOPS complex results in larvae that are significantly smaller
than wild type and which do not pupate, ultimately dying in larval stages (Rojas-Benitez, Thiaville, Valérie De Crécy-
Lagard, & Glavic, 2015). In humans, mutations in CDKAL1 revealed a risk association with type 2 diabetes (Kang
et al., 2017). Further, mutations in several KEOPS genes result in Galloway–Mowat syndrome, a disease characterized
by microcephaly and nephrotic syndrome (Arrondel et al., 2019; Braun et al., 2017; Edvardson et al., 2017). Further, t6A
deficiency in human mitochondria due to TsaC knockout results in a MERRF-like phenotype (H. Lin et al., 2018). What
additional roles or modifications may be generated from t6A remain an unclear, though some comparisons of t6A and
its derivatives may be made with k2C and C+, as k2C and C+ are composed of cytidine residues that have been attached
to a lysine or an arginine, respectively (Phillips & de Crécy-Lagard, 2011; Soma et al., 2003). This strategy of attaching
an amino acid to the nitrogenous base of a ribonucleotide may be a relic from the RNA world (Ikeuchi et al., 2010;
Soma et al., 2003) and may be used as a strategy for finding additional unknown modifications throughout biology.

4.5 | m6,6A plays an important structural role in rRNA and can be found in tRNAs

Nucleoside modification (IUPAC abbreviation): N6,N6-dimethyladenosine (m6,6A or m6
2A).

Domain assignments: A, B, E.
RNA classes: , .
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In its capacity as a structurally importantmodification,m6,6A can be found in the final helix (helix 45) at A1518 andA1519 of
the small ribosome subunit of E. coli and T. thermophilus. m6,6A1518 and m6,6A1519 are formed by RsmA (previously KsgA) in
prokaryotes. In eukaryotes, the corresponding enzyme is Dim1 (Chan et al., 2011; Demirci et al., 2010; Seistrup et al., 2017).
RsmA/Dim1 catalyze both dimethylation events at m6,6A1518 and m6,6A1519, which are necessary for assembling the minimal,
functional ribosome (Grosjean et al., 2014; Seistrup et al., 2017). Owing to the steric interference of the dimethyl groups and the
removal of hydrogen bond donors at m6,6A1518 and m6,6A1519, the normally structured tetraloop of helix 45 is weakened and
results in decreased errors in translation and decreased non-AUG translation initiation (Demirci et al., 2010). However, inactiva-
tion of RsmA can occur in some organisms, resulting in impaired organismal growth and the removal of a late-stage checkpoint
in 30S ribosome biosynthesis. In mammalian cells, a buildup of unprocessed small ribosomal subunits that occurs with Dim1
inactivation is lethal to the cells (Seistrup et al., 2017). However, there are a few archaeal organisms that do not have RsmA/
Dim1 and have fully functional ribosomes, though RsmA/Dim1 is normally found in archaeal species (Seistrup et al., 2017).
Whilem6,6Amodificationswere initially found in the ribosome,m6,6A has also been found in tRNA from the bacteriaMycobacte-
rium bovis, though its location within tRNA and its function remain presently unsolved (Chan et al., 2011). Moreover, while the
loss of a hydrogen bond donor in m6,6A is exploited in the ribosome for proper function, it remains to be seen if the loss of the
hydrogen bond donor has similar effects in other RNAs, such asmRNAs and other ncRNAs.

4.6 | The roles of m2A, m8A, and m2,8A in translational fidelity and antibiotic resistance
in bacteria

Nucleoside modification (IUPAC abbreviation): 2-methyladenosine (m2A); 8-methyladenosine (m8A);
2,8-dimethyladenosine (m2,8A).

Domain assignments: B.
RNA classes: (m2A), .
The adenosine modifications m2A and m8A are conferred by RlmN and Cfr, respectively. In some RNAs, m2A and

m8A can be further methylated at either position 8 or position 2 by Cfr or RlmN, respectively. Regardless of which sin-
gly methylated adenosine precursor is methylated, this additional methylation results in the formation of m2,8A. The
methylation order of m2,8A is currently not known to be of biological significance (Yan & Fujimori, 2011). RlmN con-
fers an m2A mark on tRNA species in E. coli at position 37 (Benítez-Páez, Villarroya, & Armengod, 2012). m2A37 is
reported to occur in at least six E. coli tRNAs (tRNAArg

ICG, tRNAAsp
QUC, tRNAGln

cmnm5sUUG, tRNAGln
CUG,

tRNAGlu
mnm5s2UUC, and tRNAHis

QUG) (Schwalm, Grove, Booker, & Boal, 2016). Also, m2A, m8A, and m2,8A can be
found, separately, at A2503 in the PTC of the 23S rRNA (Yan & Fujimori, 2011). RlmN and Cfr can utilize protein-free
23S rRNA as a substrate, but the enzymes cannot utilize the fully assembled large ribosomal subunit. This observation
suggests that methylation events occur during formation of the ribosome instead of after its full assembly (Yan
et al., 2010). The presence of a methyl group on C2 of A2503 improves translational fidelity (Schwalm et al., 2016). The
presence of a methyl group on A2503 confers resistance to more than five classes of ribosomal-targeting antibiotics
(Long, Poehlsgaard, Kehrenberg, Schwarz, & Vester, 2006). As A2503 is located at the PTC of the ribosome, m2A may
influence contacts between the exit tunnel and the nascent peptide chain and further strengthens the structure of the
PTC (Polikanov, Melnikov, Söll, & Steitz, 2015; Toh, Xiong, Bae, & Mankin, 2008). Also, it is not specifically indicated
if the dimethylation seen in m2,8A exerts both translational fidelity and antibiotic resistance effects. It is known that
antibiotic resistance from C8 methylation is independent of methylation of C2 (Giessing et al., 2009). While there has
not been further experimentation that has been published about these methylation marks, the methylases that confer
these marks are potentially interesting antibiotic targets of interest that may be of use in future drug discovery.

5 | GUANOSINE-DERIVED MODIFICATIONS

5.1 | Alterations of the base-pairing capabilities of RNAs by m2G and m2,2G may be
crucial in proper translation, while m2G can undergo hydroxymethylation to form hm2G

Nucleoside modification (IUPAC abbreviation): N2-methylguanosine (m2G); N2, N2-dimethylguanosine (m2,2G or m2
2G);

N2-hydroxymethylguanosine (hm2G).
Domain assignments: A (not hm2G), B (not hm2G), E.
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RNA classes: (not hm2G), .
m2G and m2,2G are two common modifications. m2G marks can be frequently found in archaeal and eukary-

otic tRNAs but more rarely found in bacterial tRNAs at positions 10 or 26 (Table 2). However, the role of m2G
within tRNA remains elusive (Purushothaman, Bujnicki, Grosjean, & Lapeyre, 2005; Roovers et al., 2012). While
the methyl mark on m2G is found on the Watson–Crick face of guanosine, m2G base pairing to C in an RNA
duplex occurs with the same energetics as G base pairing to C (Rife, Cheng, Moore, & Strobel, 1998). However,
m2G-U Wobble base pairs are slightly more energetically stabilizing than G-U Wobble base pairs and do not affect
the energetics of GNRA tetraloops (Rife et al., 1998). One methyltransferase complex that is known to form
m2G10 marks in eukaryotes is the Trm11p/Trm112p complex (Purushothaman et al., 2005). The methyl-
transferase Trm-G10 was characterized in Pyrococcus furiosus to confer m2G marks, while homologs of the trm-
G10 gene were determined to be nearly ubiquitous in archaea and eukaryotes (Armengaud et al., 2004). Homologs
of the Trm-G10 methyltransferase could also confer m2,2G marks, as seen in Pyrococcus abyssi (Gabant
et al., 2006). A separate methyltransferase, Trm1, was found to confer m2G marks in Aquifex aeolicus, though
Trm1 also conducts a second methylation event to confer m2,2G marks (Awai et al., 2009). In S. cerevisiae and
other eukaryotes, the enzyme Trm1p or its homologs writes an m2,2G mark at G26 on numerous tRNAs (Dewe,
Fuller, Lentini, Kellner, & Fu, 2017; Hopper, Furukawa, Pham, & Martin, 1982; K. Zhang et al., 2020). m2,2G pre-
vents a potential G26-A44 base pair in tRNAs that could form with unmodified guanosine (Figure 4, Table 2)
(Pallan, Kreutz, Bosio, Micura, & Egli, 2008). The dimethyl modification at G26 permits base pairing with any
nucleotide except cytidine, thereby allowing base pairing between the m2,2G-D pair (D representing every nucleo-
tide other than cytidine, not the modification dihydrouridine). m2,2G also prohibits the misfolding of eukaryotic
tRNAs containing this modification (Figure 4) (Pallan et al., 2008).

The E. coli methyltransferases RlmG, RlmL, RsmC, and RsmD and their bacterial homologs are responsible for for-
ming m2G in rRNA, where m2G occurs at five different positions in E. coli rRNA (Pallan et al., 2008; Sergiev,
Bogdanov, & Dontsova, 2007). m2G marks in rRNA are hypothesized to be involved in codon–anticodon recognition,
formation of the binding pocket for A-site-bound tRNA, translocation, overall ribosome structure formation, and forma-
tion of the PTC within the large ribosomal subunit (Polikanov et al., 2015; Sergiev et al., 2007). In E. coli, Clostridium
acetobutylicum, and T. thermophilus 16S rRNA, the m2,2G966 mark contacts the Wobble base pair and enhances transla-
tion initiation (Burakovsky et al., 2012; Emmerechts, Barbé, Herdewijn, Anné, & Rozenski, 2007; Polikanov et al., 2015;
Woese, Gutell, Gupta, & Noller, 1983).

Recently, a total RNA extraction from HEK293T cells resulted in the discovery of hm2G (You et al., 2019). While it is
unclear which RNAs contain hm2G, which enzymes synthesize hm2G, and what additional organisms may have hm2G, it
was discovered that hm2G levels are statistically higher in thyroid carcinoma samples compared to tumor-adjacent non-
cancerous thyroid tissue (You et al., 2019). This finding suggests that hm2G may be useful as a cancer biomarker, but also
that cancer-related processes may drive hm2G expression. In humans, RNA Pol III mutations associated with
hypomyelinating leukodystrophy result in an increase in the presence of m2,2G in tRNAs, yet also a decrease in overall
tRNA transcription that can be mimicked by addition of rapamycin (Arimbasseri et al., 2015). Further, a missense variant
of TRMT1, the human homolog of Trm1p, resulted in a deficiency of m2,2G marks in tRNAs and may be linked to intellec-
tual disability, developmental delay, and epilepsy in some patients (K. Zhang et al., 2020). Additional studies in this area
of human health and in discovering the functionalities of m2G, m2,2G, and hm2G in other organisms may yield additional
functionalities of these modifications and their cognate enzymes.

5.2 | The many roles of m7G: from capping mRNAs and presence in mRNAs, to their
presence in rRNAs and tRNAs, to forming the precursor molecule for m2,7G and m2,2,7G
within spliceosomal snRNAs

Nucleoside modification (IUPAC abbreviation): 7-methylguanosine (m7G); N2,7-dimethylguanosine (m2,7G); N2,2-
7-trimethylguanosine (m2,2,7G).

Domain assignments: A, B (m7G), E.
RNA classes: (m7G), (m7G), (m7G), .
50-capping of mRNAs is usually accomplished by the addition of an m7G to the 50-most nucleotide of a nascent

mRNA transcript. The eukaryotic m7G-containing cap is used in the recruitment of pre-mRNA splicing and initiation
factors to further mature mRNA transcripts. The eukaryotic m7G-containing cap is added co-transcriptionally to the 50
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end of newly transcribed mRNA in an unusual inverted 50-50 triphosphate linkage with a GTP molecule that is subse-
quently methylated by RNMT or its homologs (reviewed in Galloway & Cowling, 2019; Topisirovic, Svitkin,
Sonenberg, & Shatkin, 2011). Once the m7G cap is added, the next first nucleotide in the nascent transcript is methyl-
ated to contain an Nm mark (Akichika et al., 2019; Boulias et al., 2019; Sendinc et al., 2019). The cap also allows for fur-
ther maturation of mRNAs by polyadenylation and eventually nuclear export. Once successfully spliced and formed as
mRNA, cap-dependent initiation of protein synthesis of mRNAs occurs. Further, this cap is used to protect mRNAs
from 50-to-30 exoribonuclease activity and degradation of mRNAs, while also looping mRNAs throughout translation
(Ramanathan, Robb, & Chan, 2016). While m7G is found in the majority of 50 caps in eukaryotic mRNAs, caps exist that
are formed from chemical groups other than m7G. These include NAD+, NADH, and dpCoA (Bird et al., 2016; Cahová,
Winz, Höfer, Nübel, & Jäschke, 2015; Y. G. Chen, Kowtoniuk, Agarwal, Shen, & Liu, 2009; Julius & Yuzenkova, 2017;
Kowtoniuk, Shen, Heemstra, Agarwal, & Liu, 2009).

Until 2019, m7G in mRNAs was thought to be found exclusively within the 50 cap of mRNAs. However, m7G marks
have since been identified in the CDS, 30 UTR, and more rarely in the 50 UTR of human mRNAs (L.-S. Zhang, Liu,
et al., 2019). Additionally, m7G marks have been found in human ncRNAs (McCown et al., 2019; L.-S. Zhang, Liu,
et al., 2019). At least 90 internal m7G methylation sites have been identified in human mRNA, with high degrees of con-
servation of the m7G marks found across murine and human cell lines (L.-S. Zhang, Liu, et al., 2019). While m7G marks
occur at several motifs within mRNA (AGm7GA, GGm7GAA, AUCGm7GA, and UUm7GAU), the enzyme or enzymes
that confer these marks remain uncharacterized (L.-S. Zhang, Liu, et al., 2019).

In bacteria and S. cerevisiae, m7G marks in tRNAs are conferred by Trm8p/Trm82p. The m7G mark at m7G46
extends tRNA half-life (Alexandrov et al., 2006). In archaeal tRNAs, m7G is present but the precise nucleotide location
and tRNA identity are unknown (Edmonds et al., 1991; Tomikawa, 2018). Within pre-rRNA transcripts in eukaryotes,
m7G marks are catalyzed by Bud23 (S. cerevisiae) (Létoquart et al., 2014) or WBSCR22 (human) (Zorbas et al., 2015). In
humans, m7G marks are required for proper nuclear export of premature 18S ribosome complexes (Sloan et al., 2017),
while rRNA is modified in the cytosol in S. cerevisiae (Létoquart et al., 2014).

Further hypermethylation of the guanosine in the 50 m7G cap can occur, as is the case in eukaryotic spliceosomal
snRNAs, some snoRNAs, and telomerase RNA (Monecke, Dickmanns, & Ficner, 2009). Sequential methylation of the
m7G cap via Tgs1 gives rise to m2,7G, then m2,2,7G (Monecke et al., 2009). The trimethylated guanosine residue marks
the maturation of spliceosomal RNAs, which has further roles in enhancing the nuclear receptor signal transduction
cascade, in enhancing transcriptional regulation, and in mitigating spinal muscular atrophy (reviewed in Monecke
et al., 2009). While it remains unknown whether these modifications affect the structural stability of mRNAs, m7G and
its derivatives have a few roles in human health. Overexpression of RNMT, which stimulates mRNA cap formation, is
sufficient to induce tumor formation in human mammary epithelial cells (reviewed in Galloway & Cowling, 2019).
Additional discoveries in characterizing writers of m7G may yield further insights into the significance of the m7G
marks in mRNAs and in human health.

5.3 | Biosynthetic pathways of Q and G+ and their function in tRNAs

Nucleoside modification (IUPAC abbreviation): pre-queuosine0 (preQ0); pre-queuosine1 (preQ1); epoxyqueuosine
(oQ); queuosine (Q); galactosyl-queuosine (GalQ); mannosyl-queuosine (ManQ); glutamyl-queuosine (GluQ); arch-
aeosine (G+).

Domain assignments: A (preQ0 and G+), B (not G+, ManQ, and GalQ), E (not preQ0, preQ1, oQ, G
+, and GluQ).

RNA classes: .
Q and G+ represent two modified ribonucleosides that are derived from a split in a central biosynthetic pathway in

archaea and bacteria, following the processing of guanosine into preQ0 via the QueCDE enzyme complex (Figure 6)
(Iwata-Reuyl, 2008; Reader, Metzgar, Schimmel, & de Crécy-Lagard, 2004). In bacterial species, the nitrile group on the
preQ0 molecule is reduced into an amine to form preQ1 by the QueF enzyme (Van Lanen et al., 2005). The resulting preQ1

molecule is incorporated into a tRNA molecule at position 34 by TGT synthase (Iwata-Reuyl, 2008; Reader et al., 2004).
Once incorporated, the preQ1 moiety on tRNA is further modified to contain a cyclopentane ring with two hydroxyl
groups and an epoxy ring into oQ34 by the enzyme QueA. The epoxide is removed from oQ34 by the enzyme QueG to
form Q34 (Miles, McCarty, Molnar, & Bandarian, 2011; Zallot, Ross, et al., 2017). Separately, Q34 was also determined to
be the product of a reaction catalyzed by a nonhomologous enzyme, QueH (Miles et al., 2011; Zallot, Ross, et al., 2017).
Once Q34 is formed, Q34 can be conjugated to a mannose (ManQ) or galactose (GalQ) via a Man/Gal-Q-transferase in
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eukaryotes, respectively (Okada & Nishimura, 1977). Q34 can also be further modified to contain a glutamine (GluQ) moi-
ety via the bacterial GluQRS enzyme (Campanacci et al., 2004; Ehrenhofer-Murray, 2017; Salazar, Ambrogelly, Crain,
McCloskey, & Soll, 2004). In some archaeal species, preQ0 is incorporated into a tRNA molecule at G15 and subsequently
modified to become G+15 by the enzymatic complex consisting of the ArcS/arcTGT enzyme and the RaSEA enzyme
(Mohammad et al., 2017; Phillips et al., 2010; Yokogawa et al., 2019). However, numerous Crenarchaeota species lack
ArcS and could instead form G+ with either the GAT-QueC or QueF-like protein families (Phillips et al., 2012).

While most bacteria and eukaryotes contain Q or its derivatives, Q biosynthesis genes are not found in many bacte-
rial species and are absent in eukaryotes. In bacteria that cannot synthesize Q and in eukaryotes, Q or its corresponding
nucleobase queuine are imported or salvaged. One class of bacterial transport proteins, known as COG1738, QueT, or
YhhQ, is involved in transporting preQ0 or preQ1 (reviewed in McCown, Liang, Weinberg, & Breaker, 2014; Zallot,
Yuan, & De Crécy-Lagard, 2017). Three additional transport proteins in Clostridioides difficile were also characterized in
transporting preQ1, queuine, and Q (Yuan et al., 2019). Owing to the incredible metabolic demand to synthesize Q, at
least two salvage pathways exist to salvage or scavenge Q from the gut microbiota. The first bacterial pathway involves
homologs of the YhhQ and TGT enzymes that transport or utilize queuine as a substrate (Yuan et al., 2019). The second
bacterial pathway utilizes a queuosine hydrolase to generate queuine from queuosine; the cyano group in queuine is
then converted into an aminomethyl group, forming preQ1 via a queuine lyase (Yuan et al., 2019). However, it is pres-
ently unknown how queuine or other Q-related molecules are transported into eukaryotes. Regardless of how Q or
related molecules enter into or are synthesized by organisms, the presence of Q34 in tRNAs improves their ability to
read degenerate codons (Meier, Suter, Grosjean, Keith, & Kubli, 1985). The absence of enzymes that incorporate Q into
tRNA or enzymes that synthesize preQ1 have different deleterious phenotypes in a wide array of bacterial and eukary-
otic organisms (Durand, Dagberg, Uhlin, & Bjork, 2000; Rakovich et al., 2011). Further, in S. pombe and in other
eukaryotes, Q-containing tRNAAsp further enhances rates of m5C38 formation, while enhancing the translation speed
for C-ending codons and reducing the translation speed for U-ending codons (Müller et al., 2019; Tuorto et al., 2018).
Separately, G+ is used in the D-loops of archaeal tRNAs to stabilize the overall tRNA structure (Iwata-Reuyl, 2008;
Lorenz et al., 2017).
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Several of the Q-derived modifications have effects on the health or functionality of organisms that use
Q. preQ1 and Q biosynthesis genes are required for effective nitrogen-fixing symbiosis between Sinorhizobium
meliloti and the barrel clover plant (Marchetti et al., 2013). Q deficiency halts tyrosine production in germ-free
mice (Rakovich et al., 2011). In several human and murine cancer cell lines, lack of Q modifications in tRNAs has
been associated with cell proliferation, anaerobic metabolism, and malignancy (Elliott, Katze, & Trewyn, 1984;
Pathak, Jaiswal, & Vinayak, 2008). The presence of Q was shown to directly affect m5C levels in S. pombe tRNAAsp

(Ehrenhofer-Murray, 2017). Further, a queuosine-deficient diet results in endoplasmic reticulum stress and an
unfolded protein response in HeLa cells and in germ-free mice (Tuorto et al., 2018). Additionally, Q-containing
tRNAs in HeLa cells were recently demonstrated to protect tRNA fragmentation from oxidative stress and
angiogenin (Xiaoyun Wang et al., 2018). As tRNA fragments generate functional small RNA molecules similar to
miRNAs, this protective mechanism may be helpful to cellular survival or a viable drug target in oncology studies
(Xiaoyun Wang et al., 2018). GluQ has been linked to effective stress response in Shigella flexneri (Caballero
et al., 2012). While previous experimental work has determined the biosynthetic enzymes involved in Q and G+

biosynthesis, the roles of ManQ and GalQ remain unknown. However, further appreciation of Q as a micronutri-
ent (Fergus, Barnes, Alqasem, & Kelly, 2015) may further elucidate the roles of these modified Qs and other mole-
cules in this pathway.

5.4 | m1G has effects in neurodegenerative diseases and glucose metabolism

Nucleoside modification (IUPAC abbreviation): 1-methylguanosine (m1G).
Domain assignments: A, B, E.
RNA classes: , .
m1G occurs in several paradigms. m1G acts as a precursor to yW and imG, as discussed below. At G9 in

tRNAs from all domains of life, the enzyme Trm10 or homologous enzymes confer the m1G mark (Howell
et al., 2019; Jackman, Montange, Malik, & Phizicky, 2003). Separately, m1G can also be found at G37 in
tRNAs. While m1G37 occurs in archaeal and eukaryotic tRNAs as a precursor for yW and imG, TrmD can also
confer an m1G37 mark in bacteria, though this mark is not further modified (Goto-Ito, Ito, &
Yokoyama, 2017). Despite this research on m1G marks in tRNAs, it is unclear what effects m1G has on tRNA
structure. In the E. coli 23S ribosome, an m1G mark was found at G745, which supports proper polysome for-
mation on mRNAs and sensitizes the E. coli ribosome to the ribosome-binding drug viomycin (Gustafsson &
Persson, 1998; Hsuchen & Dubin, 1980; Ishiguro, Arai, & Suzuki, 2019). The enzyme that confers the m1G745
mark was determined to be RlmA (Gustafsson & Persson, 1998). There are biologically relevant phenotypes
that are associated with m1G. In S. cerevisiae, deletion strains of Trm10 are hypersensitive to 5-fluorouracil
(Krishnamohan & Jackman, 2017). In humans, two mutations in hTRMT10A were determined to be causative
in neurodegenerative defects and in glucose metabolism disorders (Krishnamohan & Jackman, 2017). Further
effects of m1G in a biological context may further elucidate previously unknown mechanisms of neuron for-
mation and may be of significance in central metabolism.

5.5 | The yW and imG biosynthesis pathways start with m1G biosynthesis

Nucleoside modification (IUPAC abbreviation): 4-demethylguanosine (imG-14); wyosine (imG); isowyosine (imG2);
methylwyosine (mimG); 7-aminocarboxypropyl-demethylwyosine (yW-86); 7-aminocarboxypropylwyosine (yW-72);
7-aminocarboxypropylwyosine methyl ester (yW-58); wybutosine (yW); undermodified hydroxywybutosine
(OHyW*); methylated undermodified hydroxywybutosine (OHyWy); peroxywybutosine (o2yW);
hydroxywybutosine (OHyW).

Domain assignments: A (not yW-58, yW, OHyW*, OHyWy, o2yW, and OHyW), E (not imG2 and mimG).
RNA classes: .
yW and related analogs are essential in the stabilization of codon–anticodon pairing in tRNAPhe within eukaryotic

and archaeal species (Noma, Kirino, Ikeuchi, & Suzuki, 2006). Synthesis of yW and imG represents a complicated bio-
synthesis pathway within many archaeal and eukaryotic organisms (Figure 7). The biosynthesis pathway begins with
the formation of m1G at G37 in tRNAPhe, as catalyzed by the TRM5 protein (Urbonavičius, Meškys, & Grosjean, 2014).
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The subsequent reactions are catalyzed by TYW1-4 proteins in eukaryotes and Taw1-3 proteins in Euryarchaeota
(Noma et al., 2006; Urbonavičius et al., 2014). Further, the modifications imG-14, yW-86, yW-72, and yW-58 are abbre-
viated based on how many fewer Daltons of mass are observed with these modifications than imG or yW (Noma
et al., 2006). For example, imG-14 has 14 Da less mass than imG.

Using TYW1/Taw1 enzymes, a ring closure occurs on the nucleobase of m1G, forming imG-14 (Figure 7). From
here, there are no fewer than three outcomes of imG-14, due to the genetic differences in archaeal and eukaryotic
species. For eukaryotes (e.g., such as S. cerevisiae) and archaea of the phylum Euryarchaeota, imG-14 is methylated
by TYW3/Taw3 at N3 into imG or attached to an α-amino-α-carboxypropyl group from SAM by TYW2/Taw2 to
form yW-86. yW-86 can then be methylated at N3 into yW-72. Euryarchaeota do not appear to conduct any further
reactions on yW-72. All eukaryotes can carboxymethyate yW-72 to form yW-58 with the TYW3 enzyme. yW-58 can
then be carboxymethylated again by the enzyme TYW4 to form yW. However, in higher order eukaryotes, yW-72
can also be hydroxylated into OHyW* by the TYW4 and TYW5 enzymes. OHyW* is then further car-
boxymethylated into OHyW by TYW4 (M. Kato et al., 2011; Noma et al., 2010). While the synthesis reactions
involving OHyWy and o2yW have not been determined, these molecules may be precursors of OHyW. Separately,
Crenarchaeota conduct a completely different set of enzymatic reactions on imG-14. Instead, imG-14 is methylated
at a carbon placed next to position N1 by the enzymes aTrm5a/Taw22 to form imG2. Taw3 can subsequently meth-
ylate imG2 at position N3 to form mimG (Urbonavičius et al., 2014). Some of these enzymes or the overall yW bio-
synthetic process may be of significance to biology, as overexpression of the TYW2 gene was found in breast cancer
cell lines. However, yW-containing modifications were not significantly increased in tRNA modifications
(Rodriguez et al., 2012). This possibly means that TYW2 has additional functions in breast cancer that are presently
unknown (Rodriguez et al., 2012). Lack of yW modifications in tRNAPhe may cause an activation of the replication
of HIV RNA and human T-cell lymphotrophic virus 1 due to enhancing codon frameshifting in cells (Landgraf,
McCarthy, & Booker, 2016; Y. Suzuki, Noma, Suzuki, Ishitani, & Nureki, 2009). There have been instances where a
lack of yW modifications has been correlated with rat and mouse tumors and Ehrlich ascites in mice, and represent
a point of interest in future oncology research (reviewed in Landgraf et al., 2016). At present, none of the
yW-related modifications themselves are found to be directly culpable in any human diseases, though they may
have additional functions that are presently unknown. Moreover, given the complexity of the yW synthesis path-
way, it is also possible that additional yW-derived modifications exist which may reveal yW derivatives in bacteria
or may add to further complexity of yW biosynthesis.
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6 | CYTIDINE-DERIVED MODIFICATIONS

6.1 | The dual lives of m5C, hm5C, and f5C as DNA- and RNA-based modifications

Nucleoside modification (IUPAC abbreviation): 5-methylcytidine (m5C); 5-hydroxymethylcytidine (hm5C);
5-formylcytidine (f5C).

Domain assignments: A (m5C), B (m5C), E.
RNA classes: (m5C and f5C), (m5C), (m5C and hm5C), (m5C).
While the DNA forms of m5C, hm5C, and f5C have significant roles in epigenetics (Hashimoto, Zhang, Vertino, &

Cheng, 2015), the RNA forms of these nucleosides have distinct roles (Cui et al., 2017; Delatte et al., 2016; Nakano
et al., 2016; Trixl & Lusser, 2019; R. Wang et al., 2016). m5C can be found in archaeal and eukaryotic tRNAs
(Dunn, 1960; Helm, 2006; Motorin & Helm, 2010), rRNAs from all three domains of life (Edelheit, Schwartz, Mumbach,
Wurtzel, & Sorek, 2013; Squires & Preiss, 2010), archaeal and eukaryotic mRNAs (D. T. Dubin & Taylor, 1975; Edelheit
et al., 2013), human lncRNAs (Amort et al., 2013; McCown et al., 2019), human vault RNAs (Hussain et al., 2013;
Squires et al., 2012), and in the HIV-1 viral genome (Courtney et al., 2019). The TRM4B protein was determined to have
m5C RNA methyltransferase activity in S. pombe and Arabidopsis (Cui et al., 2017). NSUN1-6 and other close homologs
have also been attributed to the genesis of m5C in numerous eukaryotes, including humans (Heissenberger et al., 2019;
Van Haute, Powell, & Minczuk, 2017).

In tRNAs, it has been proposed that the formation of m5C48 contributes to the L-shape of tRNAs in vivo (Väre,
Eruysal, Narendran, Sarachan, & Agris, 2017). m5C2278 in the 25S rRNA of S. cerevisiae is one modification that serves as
an anchor for the ribosomal protein eL41. Once secured by m5C2278, eL41 forms a bridge between the large and small
ribosomal subunits (Sharma & Lafontaine, 2015). Loss of m5C2278 in S. cerevisiae results in oxidative stress-induced
refolding of rRNA (Schosserer et al., 2015). Recently, it was discovered that NSUN5 confers an m5C mark on C3782 in
human 28S rRNA, while the mouse homolog of NSUN5 confers a related m5C mark on C3438 in mouse 28S rRNA
(Heissenberger et al., 2019). It appears that the m5C3782 and m5C3438 marks in human and mice 28S rRNA are analo-
gous to m5C2278 in S. cerevisiae ribosomes. Likewise, m5C3782 in human 28S rRNA is necessary for anchoring the eL41
protein, which then forms a bridge between the large and small ribosomal subunits (Heissenberger et al., 2019). While the
precise number of m5C sites in mRNAs is currently under debate, its structural roles are less well-understood (reviewed in
Trixl & Lusser, 2019). In Arabidopsis, m5C is present in mRNAs that are associated with low translational activity during
the early stages of plant development, while mutated TRM4B proteins result in defects in root development and a
decreased abundance of m5C (Cui et al., 2017). In lncRNAs, m5C in the A-region of Xist interferes with binding to PRC2
via an unknown mechanism (Amort et al., 2013). m5C in vault RNAs is necessary for the maturation of smaller miRNA-
like RNAs, but it is unclear if m5C confers additional functionalities to vault RNAs (Hussain et al., 2013).

hm5C and f5C are oxidized from m5C in humans by TET or ABH1 enzymes (Van Haute et al., 2017; R. Wang
et al., 2016). Though it is unknown which enzymes generate hm5C, this modification is found in archaea and bacteria
(Huber et al., 2015). hm5C-containing mRNAs have increased rates of translation in vitro, while also promoting brain
development in D. melanogaster (Delatte et al., 2016). However, the recent discovery of hm5Cm has suggested that the
antibodies used in identifying hm5C marks may not be able to distinguish between hm5C or hm5Cm, as the anti-hm5C
antibody was not validated for being incapable of binding to hm5Cm (Huber, van Delft, Tanpure, Miska, &
Balasubramanian, 2017). f5C is necessary for deciphering the tRNAMet that aids in translating the AUA and AUG
codons in mitochondrial peptide synthesis (Van Haute et al., 2017).

Lack of appropriate methylation of C at target sites and/or oxidation of m5C marks results in mitochondrial-
associated diseases, Leber's hereditary optic neuropathy, myopathy, and hypotonia (reviewed in Van Haute
et al., 2017). These diseases occur concordantly with knockdown of either nsun3 or abh1 genes (Haag et al., 2016; Van
Haute et al., 2017). A knockout of nsun5 results in a decrease in mouse weight, lean mass, and overall protein synthesis,
while a depletion of NSUN5 in cancer cells results in a reduction of cell proliferation and size due to aberrant ribosome
formation (Heissenberger et al., 2019). Further, a heterozygous microdeletion within chromosome 7 that includes nsun5
results in Williams–Beuren syndrome, characterized by cardiac defects, lack of weight gain, and mental deficits
(Heissenberger et al., 2019). Deletion or mutation of nsun2 in T cells results in a loss of m5C marks on HIV-1 genomic
RNA that consequently inhibits HIV-1 mRNA translation, alternative splicing of viral RNAs, and viral replication
(Courtney et al., 2019). Further research into the roles of m5C in mRNAs, the roles of hm5C and f5C, and the impact of
the enzymes that generate these marks may glean further insights into areas of significant impact on human and organ-
ismal biology.
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6.2 | m3C marks are formed by four methyltransferases

Nucleoside modification (IUPAC abbreviation): 3-methylcytidine (m3C).
Domain assignments: E.
RNA classes: , .
m3C was first discovered in S. cerevisiae tRNA (Hall, 1963; Iwanami & Brown, 1968; Maden & Salim, 1974). Subse-

quently, m3C was found to be synthesized by at least four enzymes, with each enzyme having specificity for a particular
RNA class (Noma et al., 2011; L. Xu et al., 2017). METTL2 and METTL6 methylate C32 on tRNAThr(UGU), tRNAArg

(CCU), and several tRNASer eukaryotic isoacceptors (Noma et al., 2011; L. Xu et al., 2017). METTL6 interacts with seryl-
tRNA synthetase in an RNA-dependent fashion, which may mean that METTL6 is involved in the methylation of serine
tRNA isoacceptors (L. Xu et al., 2017). However, only METTL8 can form m3C marks on mRNA in murine and human
cell lines (L. Xu et al., 2017). ALKBH1 was subsequently identified as a demethylase for m3C marks on mRNAs (Ma,
Ding, Ye, Yuan, & Feng, 2019). Further, knockouts of mettl2, 6, and 8 did not demonstrate any observable developmen-
tal defects in mice (L. Xu et al., 2017). However, it is possible that deficiencies in METTL8 increase ribosome stalling in
colon cancer cells (L. Xu et al., 2017). METTL2 and METTL6 account for only 20–40% of m3C in tRNAs from HeLa and
HCT116 cells and mouse liver extracts, indicating that there are likely more than two enzymes that methylate cytidine
residues in tRNA (L. Xu et al., 2017). As METTL8 accounts for ~100% of m3C marks in mRNAs from HeLa and
HCT116 cells, it is very likely that METTL8 may be the major or the only methyltransferase that confers m3C marks in
mRNAs (L. Xu et al., 2017). Additionally, m3C levels in mRNAs were lower in hepatocellular carcinoma biopsied tis-
sues compared to noncancerous tissues, indicating m3C is a potential liver cancer diagnostic marker (Ma et al., 2019).
Moreover, the same study noted that m3C levels in cancerous and noncancerous tissues were significantly higher than
m3C levels in cultured cancerous and noncancerous human cell lines that they had examined (Ma et al., 2019), which
may indicate biological roles involving m3C may be missed in only examining human cell lines.

Above, A-to-I editing was discussed as one type of RNA editing. Another type of RNA editing is C-to-U editing,
which can use m3C as an intermediate modification. In Trypanosoma brucei, the enzyme TRM140 methylates C32 into
m3C in tRNAThr(AGU) as part of a pathway to convert C32 to U32 (Rubio et al., 2017). Co-expression of TRM140 and
ADAT2/3 prevents wholesale deamination of the trypanosomal genome, while also providing a key insight into the
functionality of AID in antibody class diversification (Rubio et al., 2017). While C-to-U editing has been observed in sev-
eral eukaryotes and archaea, it is unclear whether the trypanosomal process involving m3C is present in these organ-
isms (Rubio et al., 2017). While the structural roles of m3C in RNA remain unstudied, additional studies in how m3C
levels can be used as a cancer diagnostic and whether m3C is involved in C-to-U editing in other organisms remains
two areas of research that may elucidate more functions and unknown biology involved with m3C.

6.3 | s2C allows for anticodon flexibility and enhanced codon binding in bacterial and
archaeal tRNAs and can be methylated to form ms2C

Nucleoside modification (IUPAC abbreviation): 2-thiocytidine (s2C); 2-methylthiocytidine (ms2C).
Domain assignments: A (not ms2C), B.
RNA classes: .
s2C is present in archaeal and bacterial tRNAs, specifically tRNASer(GCU) and three tRNAArg molecules (Jager,

Leipuviene, Pollard, Qian, & Bjork, 2004; Shigi, 2014). The sulfur for s2C is derived from cysteine via the IscS enzyme,
which serves as a central sulfur hub. IscS then moves the cysteine-derived sulfur to the IscU enzyme and then the TtcA
enzyme. The thiolated TtcA incorporates sulfur into position C32 on tRNA, generating s2C32 (Shigi, 2014). While there
were no observed growth deficits found in mutagenized strains of E. coli or Salmonella enterica that lacked TtcA, s2C
modifications were determined to have a role in increasing the selection rate by ~30% of the ternary complex of
aminoacylated-tRNA/EF-Tu/GTP within the A-site of the ribosome (Jager et al., 2004). Further, s2C in tRNA interferes
with codon recognition in the A-site of the ribosome and decreases the translation rate of some mRNAs (Jager
et al., 2004). Lack of s2C corresponds to an increase in frameshifting rates during translation (Jager et al., 2004). Addi-
tional studies have determined that s2C modifications allow for flexibility in the anticodon stem and loop structures,
which is necessary for select tRNAs to properly decode mRNAs (Cantara et al., 2012).

ms2C was recently discovered in E. coli and P. aeruginosa tRNAs that had been previously determined to have s2C marks
(Reichle, Petrov, Weber, Jung, & Kellner, 2019). While it does not appear that there are any known methyltransferases that
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confer the ms2C mark, it appears that the modification is the result of methylating agents or damage that occurs on tRNAs
(Reichle et al., 2019). At present, it does not appear that all s2C marks have the capability of being methylated. Moreover,
AlkB seems to be at least one enzyme that can revert the ms2C mark back to s2C (Reichle et al., 2019). However, there is a
separate AlkB-independent process that removes the 2-methylthio group and rethiolates C to form s2C, though it is unclear
how this process occurs (Reichle et al., 2019). ms2C marks may reduce the structural flexibility in tRNAs that would other-
wise have the s2C mark and the presence of ms2C marks in tRNA reduces translational efficiency (Reichle et al., 2019). With
the presence of ms2C and the extensive modifications featuring s2U below, it is curious to see if a similar myriad of modifica-
tions can also be found with thiolated cytidine nucleotides.

6.4 | m4C, m4Cm, ac4C, and ho5C are within rRNA and m4,4C is present in viral-infected
human cells

Nucleoside modification (IUPAC abbreviation): N4-methylcytidine (m4C); 4,20-O-dimethylcytidine (m4Cm); N4,N4,20-O-
trimethylcytidine (m4,4Cm); N4-acetylcytidine (ac4C); 5-hydroxycytidine (ho5C); N4,N4-dimethylcytidine (m4,4C).

Domain assignments: A (m4,4Cm), B (m4C, m4Cm, and ho5C), E (ac4C, m4,4C, m4,4Cm).
RNA classes: (ac4C, m4,4Cm), (not m4,4Cm), (ac4C).
Extensive research on the DNA form of N4-methylcytidine (m4C) has shown its involvement in the epigenetic regu-

lation of genes (W. Chen, Yang, Feng, Ding, & Lin, 2017). However, current knowledge of the RNA form of m4C
appears to be limited to its presence within bacterial rRNA and its writer, the RsmH enzyme (Kimura & Suzuki, 2010).
The initial discovery of m4C was considered a possible side effect of treating RNA samples with acid, with m4Cm possi-
bly being the native modified ribonucleoside (Limbach, Crain, & McCloskey, 1994). However, subsequent analysis indi-
cated that the RsmH protein is a methyltransferase that methylates the N4 position of C1402 in the E. coli 16S rRNA.
The enzyme RsmI encodes for a methyltransferase that confers the 20-O-methyl mark to make m4Cm at C1402
(Kimura & Suzuki, 2010). Subsequently, both the m4C1402 and m4Cm1402 modifications were determined to prevent
non-AUG initiation in E. coli by decreasing read-through effects of the UGA stop codon (Jiang, Seo, & Chow, 2016;
Kimura & Suzuki, 2010). m4Cm1402 in the 30S small ribosomal subunit stabilizes helix 44 and may assist in interac-
tions between the ribosome, P-site tRNA docking, and mRNA interactions (Jiang et al., 2016). Determining how wide-
spread m4C and m4Cm marks are in bacteria may be helpful in determining if the RsmH or RsmI proteins can be a
viable option for antibiotic targeting. Separately, m4,4Cm has been identified in the tRNAs of several archaeal species
(Noon et al., 2003).

Previously, ac4C exists within several tRNAs and the 18S rRNA of eukaryotes and both marks are formed by the
enzyme Tan1 (Johansson & Byström, 2004; Parthasarathy, Ginell, De, & Chheda, 1978). Deletion of tan1 in S. cerevisiae
results in a decrease in A-site occupancy of the ribosome (Chou, Donnard, Gustafsson, Garber, & Rando, 2017). How-
ever, P-site occupancy rates increase (Chou et al., 2017). It was hypothesized that ac4C could have roles in positioning
peptidyl-tRNA molecules within the ribosome, enhancing the translocation of codons of mRNA from the P-site to the
E-site of the ribosome, or in delaying the progression of mRNA when translocating from the A-site to the P-site (Chou
et al., 2017). This hypothesis was confirmed in an RNA-seq-based analysis of the transcriptome-wide presence of ac4C
marks in HeLa cells (Arango et al., 2018). The enzyme NAT10 was determined to catalyze the formation of ac4C in a
variety of mRNAs, where the presence of these marks in mRNAs was shown to promote translation and mRNA stabil-
ity (Arango et al., 2018). It remains to be seen if the ac4C mRNA modifications exist in other eukaryotes or if this modi-
fication is seen in bacteria or archaea. Also, it is possible that NAT10 may present a viable anticancer therapeutic target
and could be pursued in further research.

Like m4C, ho5C has a DNA counterpart and is studied in the context of C-to-T transition mutations in DNA (Zahn,
Averill, Wallace, & Doublié, 2011). The enzyme that synthesizes the RNA form of ho5C is RlhA and AroD, which gener-
ates ho5C from chorismate and iron–sulfur clusters (Kimura, Sakai, Ishiguro, & Suzuki, 2017; Popova &
Williamson, 2014). The role of ho5C in biology was obscured until recently. ho5C was identified at position 2501 in the
23S rRNA of the E. coli ribosome and at an equivalent position within the 23S ribosome within Deinococcus radiodurans
(Havelund et al., 2011). As ho5C2501 localizes to the PTC and forms a base triple that interacts with P-site tRNA, it is
quite likely that the structural function of ho5C2501 plays significant roles in translation (Kimura et al., 2017). As
methods to extract ho5C from nascent RNA would often obscure the modification, the presence of this modification in
other RNA classes should be re-examined (Havelund et al., 2011). The function of ho5C in the ribosome appears to have
some connection with environmental iron, as the ho5C levels were found to be directly proportional to the amount of
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environmental iron (Kimura et al., 2017). Given the sensitivity of ho5C to purification methods, careful re-examination
of RNAs in other species could be conducted to determine if this modification is seen in other domains of life.

Though presently unknown how the m4,4C modification is generated, it is detected in the human liver cell line
Huh7 after exposure to one of the following RNA viruses: Zika virus, Dengue virus, Hepatitis C virus, or poliovirus
(McIntyre et al., 2018). It is unclear whether this modification is due to host methyltransferase(s) or if the viral genomes
themselves have a factor that could methylate m4C or demethylate the 20-O-methyl group in cellular m4,4Cm. Of note,
arsenite exposure to Huh7 cells caused the appearance of m4,4C in total RNA samples, suggesting m4,4C formation
could occur via a general stress response mechanism in humans (McIntyre et al., 2018). The enzymes RsmH, METTL15,
and the DEAD-box RNA helicase DDX6 may also have roles in the formation of m4,4C, based on homology searches
and siRNA depletion of the DDX6 mRNA having a deleterious effect on m4,4C levels (McIntyre et al., 2018). Further
analysis may reveal additional properties of m4,4C that have gone previously undetected in human cells.

6.5 | k2C and C+ are modified cytidines that use amino acid residues to switch codon
recognition in tRNAIle

Nucleoside modification (IUPAC abbreviation): lysidine (k2C); agmatidine (C+).
Domain assignments: A (C+), B (k2C).
RNA classes: .
Codons in mRNA for isoleucine represent a challenge for proper decoding due to the Wobble effect. For codons

whose sequence is AUN, three of the possible codons (AUU, AUC, and AUA) encode for isoleucine incorporation into
nascent peptide chains while the remaining codon (AUG) encodes for methionine incorporation into nascent peptides
(Agris, Vendeix, & Graham, 2007; Crick, 1966; Köhrer et al., 2014). If a tRNA has a guanosine residue in the first posi-
tion of the anticodon, this guanosine residue can read codons that end in uridine or cytidine (AUU and AUC for isoleu-
cine). However, if the first anticodon residue is uridine, this residue can read codons ending in adenosine or guanosine
(AUA for isoleucine and AUG for methionine). Eukaryotes solve this problem of amino acid misincorporation by using
either IAU (inosine-adenosine-uridine) or ΨAΨ (pseudouridine-adenosine-pseudouridine) anticodon sequences in
tRNAs (Crick, 1966; Senger, Auxilien, Englisch, Cramer, & Fasiolo, 1997).

However, prokaryotes employ a different approach to overcoming amino acid misincorporation. Almost all bacteria uti-
lize k2C in place of inosine for the first anticodon sequence (k2CAU instead of IAU) (Harada & Nishimura, 1974; Nakanishi
et al., 2005; Senger et al., 1997; Soma et al., 2003). However, archaea make use of C+ in this location (C+AU instead of
IAU) (Ikeuchi et al., 2010; Mandal et al., 2010). In the case of k2C, a lysine residue is added onto the C34 residues of
tRNAIle

2 at what would be the C2-oxo position by the TilS enzyme. In the case of C+, a decarboxylated arginine residue is
placed at the same position on a cytidine residue by the TiaS enzyme (Ikeuchi et al., 2010; Köhrer et al., 2014; Mandal
et al., 2010). While TilS and TiaS are essential for their host organisms, there are exceptions. These organisms do not have
tRNA molecules with a CAU sequence in their anticodon loops; instead, they have UAU sequences (Köhrer et al., 2014).
However, a strain of Bacillus subtilis was mutated to remove its copy of the tilS gene. The resulting viable strain of
B. subtilis had a low level of misreading AUG codons and possessed a strong binding preference in tRNAIle for AUA codons
(Köhrer et al., 2014). Additional roles that k2C and C+ may have in biology remain unclear. However, it has been specu-
lated that k2C, C+, and other RNA–amino acid conjugates may be remnants from the RNA world (Soma et al., 2003) and
may have additional aspects of their biology and chemistry that remains unknown. Further, different amino acids may also
be conjugated to nucleotides in ways similar to k2C and C+ that are currently unknown.

7 | URIDINE-DERIVED MODIFICATIONS

7.1 | cnm5U modifications in tRNAIle avoid mistranslation at the Wobble position

Nucleoside modification (IUPAC abbreviation): 5-cyanomethyluridine (cnm5U).
Domain assignments: A.
RNA classes: .
As discussed in the previous section, many prokaryotes can use a modified cytidine residue in the anticodon loop of

tRNAIle to appropriately translate AUU, AUA, and AUC codons as isoleucine, while AUG codons are translated as
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methionine (Mandal et al., 2014). However, mistranslation occurred when the first nucleotide in the anticodon loop of
tRNAIle was mutated to a uridine residue (i.e., CAU to UAU) (Mandal et al., 2014). Surprisingly, this mutation allowed
for retention of wild-type binding of tRNAIle to AUA codons to be preserved. However, the mutant tRNAIle binds to
AUU (isoleucine) and AUG (methionine) codons, which poses a problem in translation. Eventually, this mutagenized
uridine in UAU was determined to be modified into cnm5U through unknown mechanisms (Mandal et al., 2014).
While this modification appears to be in haloarchaea, in the euryarchaeote Methanococcus maripaludis, and in the
euryarchaeote Methanocaldococcus jannaschii, it is absent in other archaea, E. coli, and S. cerevisiae (Mandal
et al., 2014; N. Yu, Jora, et al., 2019). How widely distributed this modification is in archaea, which enzyme or enzymes
are involved in its synthesis, and its broader roles in biology remain currently unknown.

7.2 | m5U/rT marks are essential for proper tRNA formation

Nucleoside modification: 5-methyluridine (m5U) or ribothymidine (rT).
Domain assignments: A, B, E.
RNA classes: , , , .
m5U, also referred to as rT, is a common modification in the tRNAs of bacteria and eukaryotes, but limited to the

order Thermococcales within Euryarchaeota and the phylum Nanoarchaeota in archaea (Auxilien et al., 2011). In E. coli
tRNAs, TrmA catalyzes the formation of m5U. A mammalian homolog of TrmA is TRMT2A (Chang et al., 2019). m5U
is normally found in the TΨC-loop of tRNAs at position 54 as part of the G-m5U-Ψ-C motif, where m5U54 aids in the
stabilization of tRNA tertiary structure (Figure 4, Table 2) (Auxilien et al., 2011; Björk & Neidhardt, 1975; Hur,
Stroud, & Finer-Moore, 2006; Urbonavicius, Skouloubris, Myllykallio, & Grosjean, 2005). One enzyme that catalyzes
the formation of m5U54 in tRNA is TrmFO, while another is TrmA (Lartigue et al., 2014; Urbonavicius et al., 2005).
Further, a TrmFO homolog in Mycoplasma capricolum subsp. capricolum, renamed to be RlmFO, was also discovered
to confer m5U1939 marks in the large ribosomal subunit (Lartigue et al., 2014). However, there are other enzymes that
form m5U marks in rRNA. In the large ribosomal subunit in E. coli, RlmC catalyzes m5U747 while RlmD catalyzes
m5U1939 (Auxilien et al., 2011; Madsen, Mengel-Jørgensen, Kirpekar, & Douthwaite, 2003). These m5U met-
hyltransferases are fairly universal in bacteria and eukaryotes, but are unique to Thermococcales and Nanoarchaeota. It
is possible that the common ancestor of the two archaeal groups may have received an rlmD-like gene of bacterial ori-
gin via horizontal gene transfer (Auxilien et al., 2011). m5U can also be found on the mitochondrial small rRNA in
hamster and human at m5U429 and the 23S rRNA large subunit in E. coli at m5U747 and m5U1939 (Baer &
Dubin, 1981; D. Dubin, 1974; Madsen et al., 2003; Rebelo-Guiomar, Powell, Van Haute, & Minczuk, 2019). TrmA cata-
lyzes the formation of m5U marks on E. coli ribosomes (Ranaei-Siadat et al., 2013). However, the roles of m5U in struc-
tural features of rRNA remain unclear. Also, two recent high-throughput sequencing projects examined m5U in RNAs
from human cells (Carter et al., 2019; Cheng et al., 2020). While the vast majority of m5U marks were detected in
tRNAs, several mRNAs and lncRNAs also contained m5U marks (Carter et al., 2019; Cheng et al., 2020). Importantly,
several RNAs were bound to TRMT2A, but did not contain methylated uridines, suggesting that TRMT2A has addi-
tional biological roles that remain currently unknown (Carter et al., 2019). Moreover, in human cells, the methyl group
donor for m5U in mRNAs is SAM (Cheng et al., 2020). In tmRNA, an m5U mark is positioned within the tRNA-like
domain at the location that would correspond to the TΨC-loop in tRNA (Ranaei-Siadat et al., 2013).

The protein TRMT2A has also been studied for its effects in cancer. Ectopic expression of TRMT2A has been shown
to have an inhibitory effect on cell growth and TRMT2A was subsequently determined to be a cell cycle regulator
(Chang et al., 2019). While TRMT2A is found in nuclei of HeLa cells (Chang et al., 2019), the cytosolic localization of
TRMT2A in HER2+ breast cancer patients represents a high degree of likelihood that a recurrence of breast cancer
would occur (Hicks et al., 2010). Further research into the functionality of m5U and whether its overabundance can be
useful in cancer diagnostics remains an intriguing avenue of research.

7.3 | m1Ψ marks are essential for proper tRNA formation in archaea and can be found
in rRNA

Nucleoside modification (IUPAC abbreviation): N1-methylpseudouridine (m1Ψ).
Domain assignments: A, E.
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RNA classes: , .
m1Ψ and m5U modifications have been found in multiple archaeal tRNAs in the TΨC-loop at position

54 (Gupta, 1984; Pang et al., 1982). m1Ψ54 is formed in two steps. First, Ψ54 is generated by Pus10 (Gurha &
Gupta, 2008). Subsequently, Ψ54 is methylated by TermY (Chatterjee et al., 2012). Notably, the residue identity at posi-
tion 55 affects the methylation of Ψ54. The formation of Ψ55 by Pus10 enables the generation of m1Ψ54, while a cyti-
dine at nucleotide 55 decreases methylation efficiency (Chatterjee et al., 2012; Gurha & Gupta, 2008). However, a
purine at nucleotide 55 abrogates the formation of m1Ψ54 from Ψ54 (Chatterjee et al., 2012). m1Ψ54/m5U54 and the
adjacent Ψ55 in tRNAs likely have roles in the formation of a stable tertiary structure of host tRNAs. Ψ55 strengthens a
tertiary interaction with the conserved G18 and facilitates intra-loop stacking with a conserved purine at position
57 and with m1Ψ54/m5U54, which pairs via a reverse-Hoogsteen interaction with the conserved A58 (Chatterjee
et al., 2012; Romby et al., 1987).

m1Ψ forms via a two-step mechanism in archaeal (16S) and eukaryotic (18S) rRNAs (Brand, Klootwijk, Planta, &
Maden, 1978; B. Meyer et al., 2016; Wurm et al., 2010). In the first step, an snR35 H/ACA snoRNP guides the conver-
sion of U54 into Ψ54. Next, the eukaryotic enzyme Nep1/Emg1 and archaeal homologs of Nep1 methylate Ψ54 to form
m1Ψ54 (B. Meyer et al., 2016; Wurm et al., 2010). In eukaryotes, m1Ψ is also a precursor of m1acp3Ψ (Brand
et al., 1978). For example, methylation of Ψ1191 takes place shortly after transcription, whereas the installation of the
N3-acp group via the enzyme Tsr3 possibly occurs before the final cleavage of pre-rRNA into mature 18S rRNA in the
cytoplasm (Brand et al., 1978; B. Meyer et al., 2016). Of note, a mutation in the nep1 gene causes the developmental dis-
order called Bowen–Conradi syndrome (Armistead et al., 2009; Bowen & Conradi, 1976; B. Meyer et al., 2011). With a
homozygous mutation of nep1 in mice, reduced cell proliferation in brain and other tissues was seen in addition to
severe defects in overall growth and in neural tube formation (Armistead et al., 2015). While Bowen–Conradi syndrome
is characterized as a ribosomopathy (Armistead et al., 2015), it is unclear how m1Ψ marks play roles in the structure of
ribosomes or in this syndrome and in other ribosomopathies. Bowen–Conradi syndrome or m1Ψ could provide further
insights into ribosomopathies in general or perhaps also in additional cellular processes with further research.

7.4 | acp3U and related marks acp3D, acp3Ψ, and m1acp3Ψ are found in either tRNA
or rRNA

Nucleoside modification (IUPAC abbreviation): 3(3-amino-3-carboxypropyl) uridine (acp3U); 3(3-amino-3-car-
boxypropyl)-5,6-dihydrouridine (acp3D); 3(3-amino-3-carboxypropyl) pseudouridine (acp3Ψ); 1-methyl-3(3-amino-3-car-
boxypropyl) pseudouridine (m1acp3Ψ).

Domain assignments: A (acp3U), B (acp3U), E.
RNA classes: (acp3U, acp3D), (acp3U, acp3Ψ, m1acp3Ψ).
acp3U was first detected in E. coli tRNAPhe and was found to be in a signature sequence (D[dihydrouridine]-acp3U-

A) in the D-loop of prokaryotic and eukaryotic tRNAs (Nishimura, Taya, Kuchino, & Oashi, 1974; Stuart et al., 1996).
The enzyme in E. coli that synthesizes acp3U on tRNA was recently determined to be YfiP, which was renamed as TuaA
or TapT (B. Meyer et al., 2020; Takakura, Ishiguro, Akichika, Miyauchi, & Suzuki, 2019). The human homologs of
TapT, DTWD1 and DTWD2, confer acp3U marks at U20 in human tRNA (Takakura et al., 2019). Moreover, the effects
of acp3U were determined to promote regional conformational shifting in the D-loop (acp3U20) and the variable loop
(acp3U47) of tRNAs containing acp3U (Stuart et al., 1996). The presence of this modification in the tRNAs of several
additional eukaryotic species, including D. melanogaster, wheat germ, lupine seed, rat, cow (B. Meyer et al., 2020;
Takakura et al., 2019), and human, suggests that this modification is conserved in eukaryotes (Chheda et al., 1988).
Outside of eukaryotes, there has been an acp3U modification observed in the rRNA at U966 of the 16S rRNA of
Haloferax volcanii and it is conferred by the archaeal homolog of the SAM-dependent enzyme Tsr3 (Kowalak
etal., 2000; B. Meyer et al., 2020). The archaeal homologs of Tsr3 were found in the archaeal species Vulcanisaeta dis-
tributa and Sulfolobus solfataricus, suggesting that the acp3U mark may be widely distributed in archaea (B. Meyer
et al., 2020). Of interest to human health, a decreased abundance of acp3U was noted in cancer patient urine, similar to
the decreased abundance of Q derivatives in cancer cell lines (Chheda et al., 1988; Elliott et al., 1984; Pathak
et al., 2008). This decrease of acp3U in urine may be used as a biomarker for cancer diagnostics. Further, a double
knockout of DTWD1/2 in HeLa cells exhibited a severe growth phenotype that did not reveal a loss of tRNA stability,
suggesting that DTWD1 and DTWD2 have redundant roles in normal cellular growth in human cells (Takakura
et al., 2019).
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acp3D has been found only in T. brucei tRNALys(UUU), although the synthesis, function, and distribution of
acp3D remain to be elucidated (Krog et al., 2011). Separately, a chemically related molecule, m1acp3Ψ, was discov-
ered. At U1191 on helix 31 of eukaryotic 18S rRNA, the parent uridine molecule is converted into Ψ by the
snRNA35 H/ACA snoRNP (Samarsky, Balakin, & Fournier, 1995; Sloan et al., 2017). Next, Nep1/Emg1 methylates
this pseudouridine into m1Ψ (B. Meyer et al., 2011, 2016). Finally, Tsr3 confers the acp group from SAM onto m1Ψ,
giving rise to m1acp3Ψ (B. Meyer et al., 2016). If Nep1 is missing or deficient, the Ψ can still have an acp group
attached, yielding acp3Ψ (B. Meyer et al., 2011). Neither acp3Ψ nor m1acp3Ψ has been detected in tRNA. Given the
conservation of Tsr3 in archaea and throughout eukaryotes, it is quite likely that archaea also have some form of
acp3Ψ or m1acp3Ψ, though this proposed distribution of acp3Ψ or m1acp3Ψ remains speculative. Several phenotypes
emerged with knockouts of tsr3 in S. cerevisiae and knockdowns of tsr3 in HCT116 human cells. In S. cerevisiae,
the Δtsr3 mutant resulted in hypersensitivity to the protein synthesis inhibitor paromomycin (B. Meyer
et al., 2016). The depletion of Tsr3 in human cells caused a buildup of 20S pre-rRNA, suggesting that Tsr3 is crucial
in 18S rRNA processing (B. Meyer et al., 2016). Further, as mentioned above, specific tsr3 mutations result in the
formation of Bowen–Conradi syndrome (Wurm et al., 2010). However, what additional functions acp-derived
nucleotides may have in overall biology remain unclear.

7.5 | m3U and m3Ψ marks may affect rRNA and tRNA functionality

Nucleoside modification (IUPAC abbreviation): 3-methyluridine (m3U); 3-methylpseudouridine (m3Ψ).
Domain assignments: A (m3U), B, E (m3U).
RNA classes: (m3U), .
While m3U and m3Ψ are isomers of each other, their functionalities in RNAs are strikingly different. In T. brucei

tRNAThr, m3C is deaminated into m3U by Trm140 and ADAT2/3 during C-to-U editing (Rubio et al., 2017). The associa-
tion of Trm140 to ADAT2/3 prevents massive genome- and transcriptome-wide deamination by the ADAT2/3 enzyme
(Rubio et al., 2017). Both m3U and m3Ψ have been identified in the rRNA of bacteria. However, only m3U has been
found in archaeal and eukaryotic rRNAs. First discovered in S. cerevisiae cells (Hall, 1963), m3U modifications have
since been found in 25S rRNA of S. cerevisiae, 23S rRNA of S. solfataricus, and 16S rRNA of E. coli, among others
(J. D. Johnson & Horowitz, 1971; Noon et al., 1998). Though originally found in 18S rRNA of HeLa cells, later studies
did not find evidence for the existence of m3U there (Iwanami & Brown, 1968; Klagsbrun, 1973). Several enzymes that
catalyze this m3U modification in rRNAs have been identified. In S. cerevisiae, U2634 and U2843 of 28S rRNA are meth-
ylated by the SAM-dependent methyltransferases BMT5 and BMT6, respectively (Sharma et al., 2014). In E. coli, the
only known m3U site (U1498 in 16S rRNA) is methylated by the site-specific SAM-dependent methyltransferase RsmE
(Basturea, Rudd, & Deutscher, 2006). Interestingly, the human obesity-linked FTO protein is capable of demethylating
m3U sites in vitro (Jia et al., 2008).

The sole m3Ψ mark discovered in E. coli occurs at the highly conserved Ψ1915 position in hairpin 69 of the 23S
rRNA (Kowalak et al., 1996; Ofengand, Del Campo, et al., 2001; Ofengand, Malhotra, et al., 2001). To make the
m3Ψ mark, the uridine is first pseudouridylated by the RluD enzyme before being methylated by the SAM-
dependent methyltransferase RlmH, also known as YbeA (Ero, Peil, Liiv, & Remme, 2008; Purta, Kaminska,
Kasprzak, Bujnicki, & Douthwaite, 2008; Raychaudhuri, Conrad, Hall, & Ofengand, 1998). This methylation of
Ψ1915 stabilizes hairpin 69 relative to the pseudouridine alone (Chui, Desaulniers, Scaringe, & Chow, 2002). The
m3Ψ1915 mark in 23S rRNA is conserved in other bacteria, including the 23S analogs in D. radiodurans, B. subtilis,
and the chloroplast of Zea mays (Del Campo et al., 2005). Pseudouridylation, and possibly methylation, of this site
may be essential for proper E. coli growth and development since knockouts of rluD showed growth rates reduced
by ~50% when compared with wild-type E. coli. However, knockouts of rlmH also showed slightly slower growth
rates when compared with wild-type E. coli (Purta et al., 2008; Raychaudhuri et al., 1998). m3Ψ1915 may have a
further important role in large ribosomal subunit structure and function. The loop of hairpin 69, which contains
m3Ψ1915 in E. coli, interacts with anticodon arm of A-site tRNA (Yusupov et al., 2001). Additionally, m3Ψ1915 has
been shown to directly contact residues of the RRF protein, which disassembles the post-translational termination
complex of mRNA, tRNA, and rRNA (Agrawal et al., 2004). Additional biological roles of m3U and m3Ψ remain
unclear, though further discovery of these marks in previously unknown RNAs may elucidate novel functions. Fur-
ther, the role of m3U in C-to-U editing may also be more prevalent in eukaryotic organisms or in bacteria and
archaea, which may elicit unexpected functions of m3U.
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7.6 | ho5U and its derivatives mo5U, cmo5U, and mcmo5U affect base-pairing specificity
in tRNAs that contain these modifications

Nucleoside modification (IUPAC abbreviation): 5-hydroxyuridine (ho5U); 5-methoxyuridine (mo5U); uridine 5-oxyacetic
acid (cmo5U); uridine 5-oxyacetic acid methyl ester (mcmo5U).

Domain assignments: B, E (ho5U).
RNA classes: .
Under nonenzymatic processes, ho5U is commonly found to spontaneously occur due to oxidative damage to cyto-

sines in DNA or RNA. However, ho5U can be enzymatically synthesized at U34 of tRNAs via the TrhOP enzyme com-
plex (Sakai, Kimura, & Suzuki, 2019). Homologs of TrhO were found in bacterial and eukaryotic organisms, while TrhP
was exclusive to bacterial species (Sakai et al., 2019). Regardless of origin, ho5U remains capable of base pairing with
guanosine by adopting a normal Watson–Crick base pair arrangement instead of a Wobble base pair arrangement
(Sakai et al., 2019). Knocking out the TrhOP enzymes introduces a temperature-sensitive phenotype in E. coli and
decreases the efficiency of decoding codons ending in G, specifically the GCG and UCG codons (Sakai et al., 2019).

ho5U is often utilized as an intermediate for mo5U, cmo5U, and mcmo5U in bacteria (Sakai et al., 2019). The
enzyme CmoB carboxymethylates ho5U34 in tRNA into cmo5U34 using a highly unusual SCM-SAH molecule, which is
generated when the enzyme CmoA uses a carboxyl group from prephenate to carboxylate SAH (J. Kim et al., 2013).
The cmo5U34 modification can be further methylated by the SAM-dependent enzyme CmoM into mcmo5U (Sakai,
Miyauchi, Kimura, & Suzuki, 2016). The mcmo5U mark in one tRNA, tRNAPro3, is dynamic, as its abundance is posi-
tively correlated with the number of E. coli and perhaps in other organisms (Sakai et al., 2016). The presence of cmo5U
and mcmo5U appears to be exclusive to bacteria, possibly due to the requirement of prephenate, one of the intermedi-
ates in the chorismate–shikimate pathway (Sakai et al., 2016, 2019). In a prior observation, ho5U can also slow the rate
of RNA and protein synthesis in bacteria, viruses, and tumor cells if introduced in media as a mononucleotide
(D. A. Smith & Visser, 1965). Additional research is underway for finding previously unknown ways in which ho5U par-
ticipates in cellular processes, especially with its role in oxidative damage and whether ho5U and its derivatives have
any roles in RNA structure (Sakai et al., 2019). Perhaps these ho5U-related processes could become a new drug target or
be useful diagnostics for diseases related to oxidative damage.

7.7 | cmnm5U, cm5U, and their derivatives decorate tRNA molecules

Nucleoside modification (IUPAC abbreviation): 5-carboxymethylaminomethyluridine (cmnm5U); 5-methylaminomethyluridine
(mnm5U); 5-aminomethyluridine (nm5U); 5-carboxymethyluridine (cm5U); 5-methoxycarbanylmethyluridine (mcm5U);
5-carboxyhydroxymethyluridine (chm5U); 5-carbamoylmethyluridine (ncm5U)5-carboxyhydroxymethyluridine methyl ester
(mchm5U); 5-carbamoylhydroxymethyluridine (nchm5U).

Domain assignments: A (not cmnm5U, mnm5U and nm5U), B (cmnm5U, mnm5U, and nm5U), E (not mnm5U,
nm5U, and nchm5U).

RNA classes: .
Uridines in the anticodon loop (positions 34–37) of select tRNA molecules can be modified with methyl (m) or car-

boxymethyl (cm) derivatives (Figure 8) (C. Chen, Huang, Anderson, & Byström, 2011). U5 in bacterial tRNA is modified
by the bacterial enzymatic complex MnmE and MnmG/GidA to contain either a carboxymethylaminomethyl (cmnm)
or a aminomethyl (nm) group resulting in the formation of either cmnm5U or nm5U, respectively (Ayadi, Galvanin,
Pichot, Marchand, & Motorin, 2019; Mihara et al., 2002; Moukadiri et al., 2009; Moukadiri, Villarroya, Benítez-Páez, &
Armengod, 2018; Sierant et al., 2018). The formation of cmnm5U makes use of a 5-formyluridine intermediate
(J. Kim & Almo, 2013). An additional interconversion can occur from cmnm5U into mnm5U. Here, the carboxymethyl
group is cleaved off cmnm5U via the oxidoreductase domain of the MnmC(o) enzyme, yielding nm5U (J. Kim &
Almo, 2013; Moukadiri et al., 2018). nm5U, either newly formed or originating from cmnm5U, can then be methylated
by the methyltransferase domain of the MnmC(m) enzyme to yield mnm5U (J. Kim & Almo, 2013; Moukadiri
et al., 2018). In an unrelated reaction mechanism in S. cerevisiae, MTO1 adds a glycine residue to U34, resulting in the
formation of cmnm5U (Fakruddin et al., 2018; Umeda et al., 2005). However, it is unknown if cmnm5U can also inter-
convert into mnm5U or nm5U in eukaryotes using enzymatic processes similar to bacteria.

The Elongator complex (Elp1-6), which is highly conserved in eukaryotes and supports mRNA transcription elonga-
tion by RNA Pol II, carboxymethylates uridine residues and forms cm5U (Figure 8) (Karlsborn et al., 2014). Archaeal
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homologs of the third subunit of the Elongator complex, Elp3, have also been shown to carboxymethylate uridine resi-
dues in tRNAs (Selvadurai, Wang, Seimetz, & Huang, 2014). Once cm5U forms, it can undergo one of several synthetic
pathways. cm5U can be methylated with a methyl group from SAM by the enzyme ALKBH8 to form mcm5U (Songe-
Møller et al., 2010). In archaea and in eukaryotes, methylation of cm5U to mcm5U is catalyzed by the Trm9–Trm112
complex (van Tran et al., 2018). cm5U can also be hydroxylated by the ALKBH8 enzyme to form chm5U (van den Born
et al., 2011). Both chm5U and mcm5U can be independently methylated or carboxyhydroxylated, respectively, by
ALKBH8 to form mchm5U (Karlsborn et al., 2014; van den Born et al., 2011). Finally, cm5U can be modified by an
unknown enzyme to contain a carbamoylmethyl group to form ncm5U and hydroxylated to form nchm5U with the
eukaryotic ALKBH8 enzyme (C. Chen et al., 2011; van den Born et al., 2011). Altogether, these modifications have roles
in proper decoding of codons and specificity of tRNA-binding events to mRNA (C. Chen et al., 2011). However, many
of the implications of these modifications in biology remain unknown.

7.8 | τm5U is important to mitochondrial tRNAs

Nucleoside modification (IUPAC abbreviation): 5-taurinomethyluridine (τm5U).
Domain assignments: E.
RNA classes: .
τm5U was discovered in mammalian tRNALys (Fakruddin et al., 2018). The enzyme MTO1 adds the taurine modifi-

cation in mitochondrial tRNAs and can be found in position U34 of the anticodon loop within tRNALys (Figures 4 and
8) (Fakruddin et al., 2018). An siRNA knockdown of a mitochondrial homolog of MTO1 resulted in the absence of
τm5U and reduced translational activity of UUG codon (Umeda et al., 2005). The lack of τm5U results in a deficiency of
mitochondrial complex I that is seen in patients with MELAS and MERRF (Umeda et al., 2005). MELAS and MERRF
result from mitochondrial distress, as indicated by the severely impaired translation and respiration events within the
mitochondria (Fakruddin et al., 2018). Additionally, trafficking of mitochondrial proteins encoded by nuclear DNA was
negatively affected by the resulting abnormal mitochondrial shape (Fakruddin et al., 2018). Inner membrane proteins
of the mitochondria, such as Opa1, are unable to localize to the inner membrane; therefore, they aggregate in the cyto-
sol, inducing a cytotoxic unfolded protein response (Fakruddin et al., 2018). This response has been studied as a drug
target, where a taurine-conjugated bile acid molecule was discovered to possibly supply the missing taurine in mouse
livers and could alleviate this unfolded protein response (Fakruddin et al., 2018). However, as mitochondrial proteins
are still mistranslated, further research is necessary to elucidate a cure for these diseases (Fakruddin et al., 2018).

7.9 | Sulfur-containing modifications, such as s2U and its derivatives and s4U, are
essential for tRNA structural stability as well as translational fidelity and efficiency

Nucleoside modification (IUPAC abbreviation): 2-thiouridine (s2U); 5-methyl-2-thiouridine (m5s2U);
5-carboxymethylaminomethyl-2-thiouridine (cmnm5s2U); 5-methylaminomethyl-2-thiouridine (mnm5s2U); 5-aminomethyl-
2-thiouridine (nm5s2U); 5-taurinomethyl-2-thiouridine (τm5s2U); 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U);
5-carbamoylmethyl-2-thiouridine (ncm5s2U); 5-carboxymethyl-2-thiouridine (cm5s2U); 5-cyanomethyl-2-thiouridine
(cnm5s2U); 4-thiouridine (s4U).

Domain assignments: A (s2U, m5s2U, cm5s2U, cnm5s2U, s4U), B (not cm5s2U, mcm5s2U, ncm5s2U, τm5s2U,
cnm5s2U), E (not m5s2U, mnm5s2U, nm5s2U, cmnm5s2U, cnm5s2U, s4U).

RNA classes: .
The formation of s2U involves an array of enzymatic processes, ultimately resulting in a modification that is found

in nine other uridine modifications (Figure 8, Table 1). The modified nucleoside derivatives featuring an xs2U (where
x denotes one of several possible modifications listed above) are covered more in-depth in sections below. However, the
common feature for all these modifications is the substitution of a sulfur at O2 of uracil. To add this sulfur, a cysteine is
dethiolated by either IscS or YrvO in E. coli or B. subtilis, respectively (Black & Dos Santos, 2015; Lauhon, 2002; Mihara
et al., 2002; Shigi, 2014), or by homologs of NFS1/Ncs6/Ctu1 in archaea and eukaryotes (Y. Liu, Long, Wang, Söll, &
Whitman, 2014). E. coli continues shuttling the sulfur molecule through TusABCDE proteins before transferring the
sulfur to the MnmA protein, which thiolates the uridine at nt 34 in tRNA (Black & Dos Santos, 2015). B. subtilis does
not have the TusABCDE operon; therefore, YrvO directly passes the sulfur molecule to MnmA, which then thiolates
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tRNAs (Black & Dos Santos, 2015). In archaea and possibly eukaryotes, NFS1/Ncs6/Ctu1 first adenylates U34 in select
tRNAs prior to thiolation from NFS1/Ncs6/Ctu1 (Y. Liu et al., 2014). While it is not known precisely which type of sul-
fur modification is directly replaced on uridine residues in eukaryotic tRNAs, mitochondrial NFS1, Isu1/2, and Atm1 in
S. cerevisiae and Tum1, a persulfide mediator and activator of NFS1, have roles in forming and transporting s2U marks
(Nakai et al., 2004; Noma, Sakaguchi, & Suzuki, 2009; Pandey et al., 2018). Moreover, the MTU1 enzyme is a
mitochondrial-specific 2-thiouridylase that is a homolog of the MnmA enzyme (Black & Dos Santos, 2015; Noma
et al., 2009). Humans use a homolog of MTU1, also known as TrmU, to thiolate uridine residues in mitochondrial
tRNAs (Black & Dos Santos, 2015; Umeda et al., 2005).

The functions of the 2-thio group in numerous uridine nucleotides depend on where the modified ribonucleotide
occurs within the tertiary structure of tRNA. For example, s2U in the acceptor stems (TΨC-loop and D-loop) is

FIGURE 8 Scheme for cmnm5U, cm5U, τm5U, s2U, se2U, and related derivatives. Shown in red are chemical modifications that occur

in the production of 5-methyluridine or thiolated uridine derivatives: m5U or rT, cmnm5U, mnm5U, nm5U, cm5U, mcm5U, chm5U,

mchm5U, nchm5U, ncm5U, τm5U, s2U, m5s2U or s2T, cmnm5s2U, mnm5s2U, nm5s2U, τm5s2U, mcm5s2U, ncm5s2U, cm5s2U, se2U, ges2U,

cmnm5ges2U, mnm5ges2U, cmnm5se2U, and mnm5se2U. Modifications containing a 2-thio group, a 2-geranyl group, or a 2-seleno group are

listed with only abbreviations, while the structures for s2U, ges2U, and se2U are shown as exemplars for each of these modification types.

Enzymes that catalyze each reaction are adjacent to arrow, otherwise a question mark (?) indicates enzyme is unknown. Arrow tails

containing red, blue, or yellow ellipses denote reactions that occur in archaea, bacteria, or eukaryotes, respectively
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important for ensuring tRNA structural stability and recognition by specific enzymes (reviewed in C. Zheng, Black, &
Dos Santos, 2017). Sulfur-containing modifications within the anticodon stem-loop (nts 32, 33, 34, 37) are usually
important for translation. s2U33 can have roles in negatively regulating C34-to-U34 editing and in subsequent transla-
tion (reviewed in Čavuži�c & Liu, 2017; Z. Paris, Fleming, & Alfonzo, 2012). The s2U33 mark has been found in T. brucei
and Leishmania spp. mitochondrial tRNATrp-CCA (Crain et al., 2002; Z. Paris et al., 2012). s2U and its derivatives that are
present at nt 34 within tRNAGlu, tRNAGln, and tRNALys ensure specificity or flexibility in the discrimination of multiple
codons (reviewed in Čavuži�c & Liu, 2017; Lim & Curran, 2001; C. Zheng, Black, et al., 2017). Early studies indicated
that the presence of s2U34 maintains a Watson–Crick base pair with A and restricts Wobble pairing with guanosine,
though s2U34 can still pair with both A and G. However, additional modifications to position C5 of s2U34 can affect the
preference for U–A pairing and favored U–G interactions (Agris et al., 1992; Egert, Lindner, Hillen, & Boehm, 1980;
Krüger & Sørensen, 1998). The 2-thio group of m5s2U34 and its derivatives enhances translation specificity, contributing
to the recognition of tRNAs by aminoacyl-tRNA synthetases (Madore et al., 1999; Rodriguez-Hernandez et al., 2013;
Sylvers, Rogers, Shimizu, Ohtsuka, & Söll, 1993; Tamura, Himeno, Asahara, Hasegawa, & Shimizu, 1992). These modi-
fications ensure preferential base pairing with purines in the codons of mRNAs and prevent misreading caused by inter-
actions with pyrimidines (reviewed in Shigi, 2014; C. Zheng, Black, et al., 2017). s2U and its derivatives are involved in
codon recognition within the ribosome and prevent frameshifting during translation (Rodriguez-Hernandez
et al., 2013; Shigi, 2014; C. Zheng, Black, et al., 2017). For example, m5s2U (also known as s2T) at nt 54 plays an impor-
tant role in protein expression in thermophilic organisms such as the bacteria T. thermophilus or the archaea P. furiosus
(Kowalak, Dalluge, McCloskey, & Stetter, 1994; Shigi, 2014; Shigi et al., 2006; Shigi, Sakaguchi, Asai, Suzuki, &
Watanabe, 2008; Yokoyama et al., 1987). The rigid structure of this modification increases tRNA thermostability
through stabilization of the D- and TΨC-loops (reviewed in Shigi, 2014).

Thiolation events can be found in other modified uridine residues on tRNAs. cmnm5U and mnm5U can be thiolated
at C2 via the bacterial enzymes IscS and MnmA to form cmnm5s2U or mnm5s2U (Mihara et al., 2002; Sierant
et al., 2018). cmnm5s2U can also be converted into mnm5s2U or nm5s2U via the bacterial MnmC enzyme (Bujnicki
et al., 2004). Though it is unclear which thiolase forms cm5s2U from cm5U, mcm5U can be thiolated to form mcm5s2U
using the eukaryotic Ctu1–Ctu2 enzymatic complex (Dewez et al., 2008; Lentini, Ramos, & Fu, 2018). Also, once ncm5U
is formed, it can be thiolated through an unknown thiolase to form ncm5s2U (C. Chen et al., 2011). Through an
unknown mechanism, τm5U can be thiolated in human mitochondrial tRNA to form τm5s2U (Fakruddin et al., 2018).
τm5s2U-deficient human mitochondrial tRNAs were also found in patients who had MERRF and cannot translate the
codons AAA or AAG (Umeda et al., 2005). Through an unknown mechanism, cnm5U can be thiolated in tRNALeu from
euryarchaeote M. jannaschii to form cnm5s2U (N. Yu, Jora, et al., 2019). While cnm5s2U has been found only in
M. jannaschii to date, M. jannaschii and Haloferax volcanii represent the only two archaeal species to have had their
tRNAs analyzed for the presence of modified ribonucleosides. This dearth of knowledge of archaeal tRNA modifications
and their distributions within archaea may lead to further discoveries of previously unknown modified ribonucleosides.
Moreover, given the large number of s2U derivatives, it would be interesting to see if there are additional thiolated cyti-
dine derivatives beyond s2C and ms2C.

Like s2U modifying enzymes, there are enzymes specific to the Gram-negative and Gram-positive bacteria synthetic
reactions of s4U. In the Gram-negatives E. coli and S. enterica, IscS removes a sulfur atom from cysteine while ThiI
thiolates U8 in tRNA (Rajakovich, Tomlinson, & Dos Santos, 2012). However, in Gram-positive B. subtilis and the other
Gram-positives in Firmicutes, NifZ instead removes the sulfur from cysteine and directly thiolates the uridine residue
in tRNA with a ThiI homolog (Rajakovich et al., 2012). The archaeal homologs of ThiI also incorporate s4U in tRNA.
Eukaryotes do not appear to have s4U, though homologs of ThiI have been found in some eukaryotic genomes
(reviewed in Čavuži�c & Liu, 2017; Kotera et al., 2010). s4U can be located at nt 8 in tRNA, which is at the intersection of
the tRNA acceptor- and D-arms (Figure 4, Table 2). Upon exposure to near-UV light, s4U crosslinks to C13 in tRNA
(reviewed in Palenchar, Buck, Cheng, Larson, & Mueller, 2000). The s4U-C13 crosslink prevents proper tRNA
aminoacylation, leading to uncharged tRNA accumulation and translational pausing (Čavuži�c & Liu, 2017; Favre,
Yaniv, & Michels, 1969). These effects then activate the SOS response, which mitigates damage to DNA due to UV-light
exposure (Björk & Hagervall, 2014; Čavuži�c & Liu, 2017; Thomas & Favre, 1980). The thiolation of s4U8 of tRNAs has
also been shown to positively maintain tRNA homeostasis in Vibrio cholerae (Kimura & Waldor, 2019). In thiI deletion
strains of V. cholerae, several tRNAs were decreased, as it was determined that the lack of s4U8 designates these hyp-
omodified tRNAs for degradation by the RNA degradosome (Kimura & Waldor, 2019). While s4U is used in PAR-CLIP
at high concentrations that are in excess of 100 μM, this high concentration has been shown to interfere with proper
47S rRNA processing in U2OS and 2fTGH human cell cultures; therefore, caution is warranted when using s4U in
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PAR-CLIP or other related experiments (Burger et al., 2013). Further roles of sulfur-containing ribonucleotides and the
enzymes involved may have further unknown roles in structural formation and biological relevance to thermophilic
organisms.

7.10 | Selenium-modified uridines and their precursors are thought to aid in
translational accuracy and efficiency

Nucleoside modification (IUPAC abbreviation): 2-selenouridine (se2U); 2-geranylthiouridine (ges2U);
5-carboxymethylaminomethyl-2-geranylthiouridine (cmnm5ges2U); 5-methylaminomethyl-2-geranylthiouridine
(mnm5ges2U); 5-carboxymethylaminomethyl-2-selenouridine (cmnm5se2U); 5-methylaminomethyl-2-selenouridine
(mnm5se2U).

Domain assignments: A (se2U and mnm5se2U), B, E (mnm5se2U).
RNA classes: .
While there are several sulfur-modified uridine residues currently known, selenium-containing ribonucleosides can

also be found in tRNAs, specifically in the anticodon loop at position 34 (Figures 4 and 8, Table 1). In bacteria, conver-
ting s2U to se2U is a two-step process catalyzed by SelU (Sierant et al., 2018). In the first step, the sulfur of s2U is
geranylated to yield ges2U. By itself, ges2U is a stable modification that is thought to shift codon bias and frameshifting
rates during translation, which is possibly due to a preference of ges2U to base pair with guanosine and not adenosine
(Sierant et al., 2016). Once ges2U is formed on tRNA, the second step results in a selenation by replacing the geranyl-
sulfate with a selenide group, thus forming se2U (Sierant et al., 2016). In archaea, a YbbB-like enzyme forms se2U,
though it is unknown if this requires a geranylated intermediate (D. Su, Ojo, Söll, & Hohn, 2012). Separately, once
cmnm5s2U and mnm5s2U are thiolated in bacteria, these modified uridines can be geranylated by SelU or by MnmH,
yielding cmnm5ges2U or mnm5ges2U (Jäger, Chen, & Björk, 2016; Sierant et al., 2016, 2018). These modifications can
be subsequently selenated by the SelU enzyme to yield cmnm5se2U or mnm5se2U (Dumelin, Chen, Leconte, Chen, &
Liu, 2012; Sierant et al., 2018). mnm5se2U is the most abundant selenonucleoside, found in all three domains of life,
and commonly occurs in the Wobble position of the anticodon of three tRNA acceptors (tRNAGlu, tRNAGln, and
tRNALys) (D. Su et al., 2012). Se2 of mnm5se2U residues discriminates against the formation of G–U Wobble pairs.
Instead, the selenium promotes the formation of A–U base pairs in RNA in vitro, suggesting selenium modifications
may be important in translational fidelity (Huiyan Sun et al., 2012). While it is presently unknown if the bacterial
selenation process is present in archaea or eukaryotes, the presence of mnm5se2U in archaea and eukaryotes suggests
that a similar process may be possibly occurring.

Further, GTPBP3 and the taurine-adding enzyme MTO1 have also been linked to selenation reactions in mitochondrial
tRNAs (Bykhovskaya, Mengesha, et al., 2004; Kopajtich et al., 2014; Xinjian Wang, Yan, & Guan, 2010; Yim, Moukadiri,
Björk, & Armengod, 2006). Deficiencies in mitochondrial GTPBP3 have been linked to hypertrophic cardiomyopathy, lactic
acidosis, encephalopathy, and deafness through deficiencies in cmnm-containing uridines (Bykhovskaya, Mengesha,
et al., 2004; Kopajtich et al., 2014). While MTO1 deficiency can also be linked to these diseases, MTO1 deficiency is typically
linked to deficiencies in taurine-containing uridine modifications (Fakruddin et al., 2018; Jonkhout et al., 2017; X. Wang
et al., 2010). Additional discoveries of geranyl derivatives and selenium-containing RNAs will undoubtedly continue to pro-
vide new insights into biology and in further elucidating the differences between sulfur- and selenium-containing RNAs.

8 | MODIFICATIONS TO THE RIBOSE MOIETY

8.1 | Ribosyl-RNA modifications are found in select RNAs

Nucleoside modification (IUPAC abbreviation): 20-O-ribosyladenosine (Ar(p)); 20-O-ribosylguanosine (Gr(p)).
Domain assignments: E.
RNA classes: .
Ar(p) and Gr(p) represent disaccharide-modified ribonucleosides, whereby the 20-hydroxyl of either adenosine or

guanosine forms an α-(1,2)-glycosidic linkage with an additional 50-phosphorylated ribose molecule. Though first dis-
covered at position 64 in eukaryotic tRNAMet that initiates translation, these disaccharide-modified ribonucleosides
have been found in poly(ADP-ribose) (PAR), in select enzymes as prosthetic groups, and in assorted naturally derived
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compounds or secondary metabolites (Desgrès, Keith, Kuo, & Gehrke, 1989; Efimtseva, Kulikova, & Mikhaĭlov, 2009;
Glasser, Desgres, Heitzler, Gehrke, & Keith, 1991; Juarez-Salinas, Mendoza-Alvarez, Levi, Jacobson, & Jacobson, 1983;
Keith, Glasser, Desgrés, Kuo, & Gehrke, 1990; Q. Liu, van der Marel, & Filippov, 2019; Simsek & RajBhandary, 1972).
Ar(p) and Gr(p) are synthesized by the enzyme Rit1 through addition of a PRPP group directly onto A64 or G64 in
tRNAMet, which potentially distorts the RNA phosphodiester backbone of the initiator tRNAMet and prevents the initia-
tor tRNAMet from binding to eEF1A (Åström & Byström, 1994; Kiesewetter, Ott, & Sprinzl, 1990; Kolitz &
Lorsch, 2010). PAR is synthesized from NAD+ via eukaryotic PAR polymerases (Berger, Ramírez-Hernández, &
Ziegler, 2004; Pleschke, Kleczkowska, Strohm, & Althaus, 2000; Rongvaux, Andris, Van Gool, & Leo, 2003; Schreiber,
Dantzer, Ame, & de Murcia, 2006). One of the primary functions of PAR is aiding in the DNA-strand repair process, as
it is added to DNA-strand breaks and serves as a signaling molecule to initiate DNA repair processes (Schreiber
et al., 2006). Moreover, PAR can have roles in acute and chronic inflammation, while also contributing to the progres-
sion of degenerative diseases (Schreiber et al., 2006). Further discoveries pertaining to PAR, Ar(p), and Gr(p) will per-
haps expand the roles of these modified nucleosides throughout eukaryotic biology.

8.2 | 20-O-Methyl RNA modifications exist in otherwise unmodified and additionally
modified ribonucleosides

Nucleoside modification (IUPAC abbreviation): 20-O-methyladenosine (Am); N6,20-O-dimethyladenosine (m6Am);
N6,N6,20-O-trimethyladenosine (m6,6Am); N1,20-O-dimethyladenosine (m1Am); 20-O-methylinosine (Im); 1,20-O-
dimethylinosine (m1Im); 20-O-methylguanosine (Gm); 1,20-O-dimethylguanosine (m1Gm); N2,20-O-dimethylguanosine
(m2Gm); N2,N2,20-O-trimethylguanosine (m2,2Gm); N2,20-O-7-trimethylguanosine (m2,7Gm); 20-O-methylcytidine (Cm);
4,20-O-dimethylcytidine (m4Cm); 5,20-O-dimethylcytidine (m5Cm); 5-formyl-20-O-methylcytidine (f5Cm); N4,N4,20-O-tri-
methylcytidine (m4,4Cm); N4-acetyl-20-O-methylcytidine (ac4Cm); 20-O-methyl-5-hydroxymethylcytidine (hm5Cm); 20-O-
methyluridine (Um); 3,20-O-dimethyluridine (m3Um); 5,20-O-dimethyluridine (m5Um); 20-O-methylpseudouridine (Ψm);
2-thio-20-O-methyluridine (s2Um); 5-methoxycarbonylmethyl-20-O-methyluridine (mcm5Um); 5-carboxymethylaminomethyl-
20-O-methyluridine (cmnm5Um); 5-carbamoylmethyl-20-O-methyluridine (ncm5Um); 5-(isopentenylaminomethyl)-20-O-
methyluridine (inm5Um); 5-(carboxyhydroxymethyl)-20-O-methyluridine methyl ester (mchm5Um); 20-O-methyluridine
5-oxyacetic acid methyl ester (mcmo5Um).

Domain assignments: A, B, E; see the following reviews for prokaryotic assignments (Ayadi et al., 2019; Boccaletto
et al., 2018) and RMBase for eukaryotic assignments (Xuan et al., 2018).

RNA classes: , , , ; see for RNA classes (Ayadi et al., 2019; Boccaletto et al., 2018; Xuan et al., 2018).
While there are at least 28 20-O-methyl modifications (Nm) to ribonucleosides, their origins are thought to be quite

similar (Table 1). Assorted archaeal and eukaryotic snoRNAs, many of which are Box C/D snoRNAs, aid in assembling
the snoRNPs NOP56, NOP58, fibrillarin, and 15.5K/Snu13/L7Ae. This protein complex then coordinates 20-O-
methylation events on pre-rRNA transcripts and other RNAs (reviewed in Sloan et al., 2017; Yip, Shigematsu, Taylor, &
Baserga, 2016; Zhu, Pirnie, & Carmichael, 2017). Moreover, snoRNAs are also used by archaeal species to conduct 20-O-
methylation events on tRNA. Separately, bacteria also conduct 20-O-methylations on ribosomes, although these methyl-
ations are made by site-specific enzymes (Marchand, Blanloeil-Oillo, Helm, & Motorin, 2016). There are also met-
hyltransferases that are involved in the formation of 20-O-methylation marks, as in the case of m6Am by PCIF1
(Akichika et al., 2019; Boulias et al., 2019; Sendinc et al., 2019).

While the existence of 20-O-methyl modifications has been documented since 1960s, much of the function of several
20-O-methyl modifications still remains unknown, though studies of 20-O-methylation have garnered useful insights that
may be helpful in elucidating future discoveries involving 20-O-methylated nucleotides (reviewed in Ayadi, Galvanin,
Pichot, Marchand, & Motorin, 2019; Baskin & Dekker, 1967). The presence of 20-O-methyl marks results in degradation
resistance upon exposure to alkaline solutions, the disruption of protein-binding activities, and disrupts RNA–DNA
duplex formation to limiting off-target effects of siRNAs (Ayadi et al., 2019; Iribe et al., 2017). In eukaryotes, 20-O-
methyl modifications are essential for splicing reactions by the major spliceosome (Y.-T. Yu, Shu, & Steitz, 1998). ac4Cm
and m2,2Gm have been shown to have additive effects in stabilizing tRNA structure and conformation at elevated tem-
peratures in archaeal hyperthermophiles, a trend seen with Nm marks overall in 16S rRNA in T. thermophilus and pos-
sibly other thermophiles (Guymon, Pomerantz, Crain, & McCloskey, 2006; Kawai et al., 1991). In humans, self- and
non-self-identification of mRNAs is dependent upon the presence or absence, respectively, of 20-O-methyl marks and
elicit an interferon-induced response during a human coronavirus infection and potentially for other viral infections
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(Abbas et al., 2017). Moreover, knockdown of fibrillarin resulted in a corresponding decrease in ribosome 20-O-
methylation and a corresponding increase in translational infidelity (Erales et al., 2017). Colorectal cancer, AML, and
cancers that originate due to mutation or deletion of tp53 may form due to a knockdown or a knockout of fibrillarin
(Ayadi et al., 2019; Erales et al., 2017; Sharma, Marchand, Motorin, & Lafontaine, 2017; Zhou et al., 2017). While these
modifications have been known for over 50 years, further advances in research on 20-O-methyl marks may elucidate
previously unknown biological functions.

9 | CONSIDERATIONS OF MODIFIED RIBONUCLEOSIDES AND EVIDENCE
FOR THE EXISTENCE OF ADDITIONAL MODIFIED RIBONUCLEOSIDES

9.1 | Caution must be exercised for identification of modified ribonucleosides

Historically, several modifications or studies on modifications have demonstrated that caution must be used when inter-
preting data on RNA modifications, as noted by these nine examples: (a) Initial efforts to map A-to-I modifications across
the human transcriptome (M. Li et al., 2011) were found to be filled with false-positive results (Kleinman & Majewski, 2012;
W. Lin, Piskol, Tan, & Li, 2012; Pickrell, Gilad, & Pritchard, 2012; Piskol, Peng, Wang, & Li, 2013; Schrider, Gout, &
Hahn, 2011). Subsequent research endeavors have been conducted to report more accurately instances of A-to-I modified
RNAs (Bahn et al., 2012; Kleinman, Adoue, & Majewski, 2012; Peng et al., 2012; Ramaswami et al., 2012; Ramaswami &
Li, 2014). (b) Likewise, failures in correcting for duplications, misannotations, mismapping, SNPs, sequencing errors, and
incorporation of nontemplate nucleotides from reverse transcriptase in postsequencing analysis proved detrimental to studies
on m1Amodifications and led to some confusion over which dataset(s) or conditions were accurate (Schwartz, 2018). (c) Prior
work indicated that when ms2t6A was exposed to Tris, an in vivo artifact formed that was a higher ms2t6A-related compound
in mass spectrometry analyses. This artifact was later determined to be ms2ct6A (Kang et al., 2017; Krog et al., 2011). (d) Early
studies on m6A involved use of an anti-m6A antibody that could also detect m6Am in RNA (Linder et al., 2015). m6Am
marks were localized to being immediately adjacent to the m7G cap, although m6Am marks found in mRNAs and ncRNAs
were misannotated to be m6A marks. These misannotated m6Am marks were localized to alternative transcription start sites
in mRNA isoforms (Akichika et al., 2019; Boulias et al., 2019; Linder et al., 2015; Sendinc et al., 2019; Hanxiao Sun, Zhang,
Li, Bai, & Yi, 2019). (e) Peroxywybutosine, o2yW, has only been isolated once in tRNAPhe from rat liver extracts despite a sep-
arate lab attempting to replicate the o2yW isolation, leaving its biological relevance in question (Kasai, Yamaizumi,
Kuchino, & Nishimura, 1979). (f) While 5-methyldihydrouridine (m5D) was initially identified in the chromosomal RNA of
rat ascites tumor cells, a later paper found no evidence of the modification in mouse ascites (Jacobson & Bonner, 1968;
Tolstoshev &Wells, 1973). (g) ms2m6A is another modification with conflicting evidence of existence. There is no manuscript
that describes the existence of the modification and it is only referred to as a preliminary modification in The RNA Modifica-
tion Database. However, it is listed as being present in the majority of tRNAs, in addition to m6A (Cantara et al., 2011;
Kierzek & Kierzek, 2003). (h) Separately, in the production of mnm5se2U and cmnm5se2U, it has been speculated that for-
mation of 5-aminomethyl-2-geranylthiouridine (nm5ges2U) and 5-aminomethyl-2-selenouridine (nm5se2U) can occur due to
the possibility of decarboxylation of cmnm5ges2U and cmnm5se2U. The conversion from cmnm5ges2U and cmnm5se2U into
nm5ges2U and nm5se2U is consistent with prior decarboxylation events with other precursors in this synthesis cascade
(C. Zheng, Black, et al., 2017). (i) Historically, in vitro analysis of the effects of modifications on RNAs has been conducted
through direct incorporation of the desired modification via synthetic means (reviewed in Dellafiore, Montserrat, &
Iribarren, 2016; A. J. Meyer et al., 2015). However, through adjustments of SELEX protocols (reviewed in Dellafiore
et al., 2016) or by guided gain-of-function mutations to T7 RNA polymerase (A. J. Meyer et al., 2015), some modified ribonu-
cleotides (e.g., Nm and other 20-containing modifications) can be incorporated. Though all ribonucleoside modifications con-
tain the potential for newly discovered and exciting biology, they must be carefully vetted.

9.2 | Modified ribonucleosides have therapeutic applications

Several strategies involving the use of modified ribonucleosides or their chemical analogs have been exploited in the
treatment of human disease. Examples include ribavirin, acyclovir, valacyclovir, and other ribonucleoside analogs in
the treatment of viral infections or the use of cytarabine in the treatment of cancer (Seley-Radtke & Yates, 2018).
Another example is the use of modified ribonucleobases when transfecting RNAs to increase their stability, to increase
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their lifetime in complex biological systems that include RNases, or to increase rates of translation (Andries et al., 2015;
Karikó, Buckstein, Ni, & Weissman, 2005; Orellana et al., 2017). One type of modification strategy incorporates m1Ψ
into transfected mRNAs to increase RNA stability and translation rates, consequently enhancing protein expression
(Andries et al., 2015). m1Ψ and other modifications such as m6A, m5U, s2U, and Ψ reduce immunogenicity of mRNA
(Karikó et al., 2005). While a combination of Ψ and m5U modifications in transfected RNAs has been successfully used
for therapeutic applications in preclinical research, further studies show that m1Ψ introduced into mRNA alone or com-
bined with m5U have increased rates of mRNA stabilization than mRNAs carrying only Ψ (Andries et al., 2015;
Kormann et al., 2011; Miki et al., 2015; Luigi Warren et al., 2010; Wroblewska et al., 2015; Zangi et al., 2013). Incorpora-
tion of m1Ψ or m1Ψ/m5C into mRNA results in enhanced translation, lower cytotoxicity, and diminished activation of
the intracellular innate immune response in comparison with Ψ or Ψ/m5C (Andries et al., 2015). Recent strategies of
chemically modifying RNAs have been applied to antisense oligonucleotides or to miRNA derivatives to enhance their
therapeutic potential and have even resulted in a cure for diseases such as spinal muscular atrophy or transthyretin-
mediated amyloidosis (Adams et al., 2018; Bennett, Krainer, & Cleveland, 2019; Orellana et al., 2017). However, as with
all therapeutics, caution must be exercised in the design of RNA-based therapeutics, as immune responses to RNA and
normal RNases present in humans can hamper or negate these synthetic RNAs (A.-M. Yu, Jian, Yu, &Tu, 2019).

9.3 | Previously undiscovered ribonucleosides may exist

20-O-ribosyluridine may exist, as a part of this previously unknown ribonucleoside was detected in the small molecule
Hellecaucaside A, which is found in the hellebore plant Helleborus caucasicus or Lenten Rose (Kulikova, Muradova,
Drenichev, & Mikhailov, 2015; Sylla et al., 2014). 5-Carboxycytidine (ca5C) may exist, as the DNA form of this nucleoside
exists and the ribonucleoside form of ca5C can be made under in vitro conditions using the TET1 protein to catalyze the
conversion of f5C to ca5C (Basanta-Sanchez et al., 2017). However, despite searches for ca5C, it cannot be found in vivo at
present (Nakano et al., 2016). While 5-isopentenylaminomethyluridine (inm5U) and 5-isopentenylaminomethyl-
2-thiouridine (inm5s2U) have been thought to exist in the tRNA of Thermodesulfobacterium commune, these two modifica-
tions may be a source of interest, due to the modifications using the 2-thiouridine precursor (Cantara et al., 2011; Limbach
et al., 1994). Separately, N6-hydroperoxymethyladenosine (oxm6A) was discovered in an in vitro chemical reaction when
m6A was exposed to bicarbonate-activated peroxide (J. Wu et al., 2015). Some or all of the new technologies mentioned
above could possibly be applied in finding these modifications and others, thereby elucidating previously unknown
aspects of biology that may also have medical significance.

10 | METHODS OF DETECTING MODIFIED RIBONUCLEOSIDES

10.1 | Mass spectrometry-based methods of detecting modified ribonucleosides

Ongoing improvements of well-established technologies and the development of new technology, research tools, and
protocols may yield newfound modifications. For example, using mass spectrometry to analyze RNAs has been preva-
lent for over 20 years, as this method is able to directly distinguish all known modifications with the exception of
Ψ-containing modifications (Wetzel & Limbach, 2016). However, new technological breakthroughs to mass spectrome-
try may further elucidate novel modifications in a high-throughput fashion or at the attomolar level that is consistent
with small amounts of cellular RNA from individual cells (Basanta-Sanchez, Temple, Ansari, D'Amico, & Agris, 2016;
Jora et al., 2019). For example, conducting LC–MS on E. coli tRNAs resulted in the discovery of msms2i6A and poten-
tially 36 other modifications that could have previously gone undetected (Dal Magro et al., 2018). Additional LC–MS
analysis could also yield any of the 143 known modifications in other organisms that were not known to contain them.

In addition to finding RNA modifications in total RNA, sequence-specific detection of RNA modifications can be
performed with LC–MS (Addepalli, Venus, Thakur, & Limbach, 2017; Björkbom et al., 2015; Jora et al., 2019). Histori-
cally and in current research, finding sequence-specific locations of RNA modifications relies upon the purification of a
specific RNA and subsequent partial enzymatic or chemical degradation of RNA into sequencing ladders (Addepalli
et al., 2017; Björkbom et al., 2015; N. Zhang, Shi, et al., 2019). Recently, multiple RNases were used to generate unique,
overlapping digestion products, which has bypassed the need for the RNA to be highly purified (Thakur, Estevez,
Lobue, Limbach, & Addepalli, 2020). Because LC–MS can be limited by the RNase cleavage site, novel RNases that have
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different substrate specificities can be helpful in sequence-specific detection of modifications (Addepalli et al., 2017).
Novel techniques that adapt mass-retention time ladders or hydrophobic end-labeling for LC–MS have been used to
address some of the problems in identifying sequence-specific RNA modifications (Björkbom et al., 2015; N. Zhang,
Shi, et al., 2019). Reacting CMCT with mRNAs pooled from human cells increases sensitivity of mass spectrometry
experiments to m5U, as the introduction of a positively charged quaternary amine group found in CMCT onto uridine
allowed for improved ionization efficiency in mass spectrometry experiments (Cheng et al., 2020). This use of CMCT
was recently successful in determining m5U content in mRNAs from HEK293T, HeLa, HL-7702, and HepG2 human
cell lines (Cheng et al., 2020).

Mass spectrometry-based approaches of detecting RNA modifications may also have clinical relevance or may be
helpful in elucidating previously unknown aspects of biology. Quantitative measurements of RNA modifications have
shown reproducible and predictable changes in tRNA modification states under different cellular stresses (Chan
et al., 2010). For example, exposure of S. cerevisiae to hydrogen peroxide resulted in an increase of m5C in tRNALeu

(UUG), which enhances translation of oxidative stress response genes (reviewed in Huber, Leonardi, Dedon, &
Begley, 2019). Analysis of Plasmodium falciparum m6A levels in mRNA by mass spectrometry showed that overall m6A
levels increase slightly and proportionally to the amount of time postinfection of human red blood cells (Baumgarten
et al., 2019). However, individual m6A peaks within mRNA can vary drastically in the entire amount of time that
P. falciparum are inside red blood cells (Baumgarten et al., 2019). Collectively, with further improvements to both mass
spectrometers and reagents, more RNA modifications, their locations in the transcriptome, and their roles in biology
and in disease will doubtlessly be discovered.

10.2 | RNA sequencing-based methods can detect modified ribonucleosides

Direct sequencing of RNAs poses an exciting opportunity for being able to detect known and unknown modifications
in RNA transcripts. Both Oxford Nanopore Technologies and Pacific Biosciences possess sequencing methods that allow
for quantification of RNA modifications, such as m6A marks, and can likely be expanded to find previously unknown
modifications (H. Liu, Begik, et al., 2019; Parker et al., 2020). These sequencing methods directly sequence the RNA
transcript, rather than cDNA, which allows for modified nucleotides to be detected. Sequencing methodologies to
directly sequence tRNAs have begun to elucidate the content and extent of tRNA modifications, especially in disease
contexts (Goodarzi et al., 2016). Presently, the noise in high-throughput sequencing unfortunately leads to false-positive
RNA modifications. All proposed modifications should be validated using at least one biochemical assay, such as mass
spectrometry or SCARLET (Grozhik & Jaffrey, 2018; N. Liu et al., 2013).

The use of antibodies and high-throughput sequencing has represented a recent boon in finding RNA modifications,
as several have already been highlighted in this review (Arango et al., 2018; Dai et al., 2017; Dominissini
et al., 2012, 2016; K. D. Meyer et al., 2012). Using antibodies greatly aids in reducing the noise of data derived from
either mass spectrometry or through downstream high-throughput sequencing methods, as the RNA pool is enriched
with the modified RNA (Grozhik & Jaffrey, 2018). Recent progress to use activated nucleotides of modified ribonucleo-
tides or engineering mutants of RNA-modifying enzymes, especially enzymes that form an enzyme–substrate covalent
intermediate, offer an intriguing way to pull out RNA targets (Khoddami & Cairns, 2013; T. S. Smith, Zoltek, &
Simon, 2019; Tomkuvienė, Mickutė, Vilkaitis, & Klimašauskas, 2019). Further, use of AlkB to demethylate total RNA
from human cells, coupled with comparative methylation analysis, was used to identify methylated small RNAs that
were derived from tRNAs (Cozen et al., 2015). High-throughput sequencing will continue to be used in determining the
location of the modified RNA and may aid in determining the substrates of specific RNA-modifying proteins. The use
of new technology, or improvements on classic techniques, continues to unveil previously unknown modifications.

11 | CONCLUSIONS

Since the discovery and characterization of pseudouridine, numerous modifications from all domains of life and all four
parent nucleotides have been discovered. Much research has been conducted on modifications in eukaryotes, specifi-
cally in humans. For example, the m6A modification is intimately involved in oncology, cardiology, and several other
fields in human biology. However, there are several instances where the presence of modifications in prokaryotes or in
nonhuman organisms remains unexplored. There are RNA classes that are not currently known to contain any
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modifications (e.g., archaeal mRNAs and ncRNAs in Figure 3). Moreover, there are domain-specific modifications that
could be found in other domains of life (e.g., cnm5U in archaea only). While tRNAs and rRNAs remain a well-spring of
RNA modifications, the use of antibodies in probing for modifications and additional technological advances may find
modifications not previously known to exist in RNA classes. Moreover, while modifications such as methylations or
hydroxylations occur, more novel and complicated modifications may exist that have not been considered. With the
advances of LC–MS and other technologies, perhaps additional glyco- and lipid-ribonucleotide conjugates may be
found. While threonine, glycine, lysine, arginine, and taurine can be found attached to ribonucleotides, it is possible
that other amino acids could be coupled to pyrimidines or purines. The additional possibilities of thiolation or
selenation events elsewhere in modifications may also yield new discoveries. As with all of the modifications, their
impact on health is only beginning to be understood.

With the increasing progress of finding modifications and identifying their chemical composition, many outstanding
questions remain. What is the limit to the number of chemical modifications that exist? Can the abundance of each
modification be fit to a power-law plot that may aid in finding previously unknown modifications, similar to how a
power-law plot was used to predict riboswitch classes and abundances (McCown, Corbino, Stav, Sherlock, &
Breaker, 2017)? In which RNAs will these modifications appear? Will there be any additional discoveries of previously
known ribonucleosides in domains in which they are not currently known to exist (Figure 3)? What is the chemical
identity and three-dimensional structure of these modifications? Will they establish direct links to the primordial RNA
world (Heuberger, Pal, Del Frate, Topkar, & Szostak, 2015; Larsen, Fahrenbach, Sheng, Pian, & Szostak, 2015; Nelson &
Breaker, 2017)? Will they be variations of known modifications, or will these modifications sample chemical space in
novel ways? Will these modifications have a direct role in catalysis? Will these modifications underlie disease states or
elucidate truly unknown biology? All these exciting questions face this ever-growing field of RNA biology and leave
much to be anticipated.
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