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The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), the causative agent of the COVID-19 global pandemic,
utilizes the host receptor angiotensin-converting enzyme 2
(ACE2) for viral entry. However, other host factors might also
play important roles in SARS-CoV-2 infection, providing new
directions for antiviral treatments. GRP78 is a stress-inducible
chaperone important for entry and infectivity for many viruses.
Recent molecular docking analyses revealed putative interac-
tion between GRP78 and the receptor-binding domain (RBD)
of the SARS-CoV-2 Spike protein (SARS-2-S). Here we report
that GRP78 can form a complex with SARS-2-S and ACE2 on
the surface and at the perinuclear region typical of the endo-
plasmic reticulum in VeroE6-ACE2 cells and that the substrate-
binding domain of GRP78 is critical for this interaction.
In vitro binding studies further confirmed that GRP78 can
directly bind to the RBD of SARS-2-S and ACE2. To investigate
the role of GRP78 in this complex, we knocked down GRP78 in
VeroE6-ACE2 cells. Loss of GRP78 markedly reduced cell
surface ACE2 expression and led to activation of markers of the
unfolded protein response. Treatment of lung epithelial cells
with a humanized monoclonal antibody (hMAb159) selected
for its safe clinical profile in preclinical models depleted cell
surface GRP78 and reduced cell surface ACE2 expression, as
well as SARS-2-S-driven viral entry and SARS-CoV-2 infection
in vitro. Our data suggest that GRP78 is an important host
auxiliary factor for SARS-CoV-2 entry and infection and a
potential target to combat this novel pathogen and other vi-
ruses that utilize GRP78 in combination therapy.

The coronavirus pandemic caused by the severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) is currently the
greatest threat to global public health. While SARS-CoV-2
vaccines provide optimism to combat COVID-19, identifica-
tion of targets that may offer therapy for those ineligible for
vaccine or infected by escape mutants bypassing vaccine pro-
tection is of great interest. While it has been elucidated that the
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SARS-CoV-2-Spike protein (SARS-2-S) responsible for viral
attachment and fusion to the host cells exploits angiotensin-
converting enzyme 2 (ACE2) as the cellular receptor for viral
entry, evidence is emerging that other host factors may serve as
critical entry cofactors for productive infection (1, 2). Recent
molecular docking analyses have identified a putative site of
interaction between the 78 kilo-Dalton glucose-regulated pro-
tein (GRP78) and the receptor-binding domain (RBD) of SARS-
2-S, raising the possibility that GRP78 can facilitate or serve as
an alternative receptor for SARS-CoV-2 entry (3, 4). Further-
more, computer modeling reveals that host-cell recognition
through GRP78 is enhanced in the new UK variant of SARS-
CoV-2 associated with increased transmissibility, as well as in
the emerging 501.V2 South African variant (5, 6).

GRP78, also known as BiP and encoded by the HSPA5 gene,
is the major HSP70 family member in the endoplasmic retic-
ulum (ER) serving critical protein folding functions (7, 8). In
addition, GRP78 is a master regulator of the unfolded protein
response, which allows cells to adapt to adverse stress condi-
tions targeting the ER (9–11). GRP78 is broadly expressed in
many tissues including bronchial epithelial cells and the res-
piratory mucosa at levels significantly higher than that of
ACE2 (12). In recent case-control studies, serum GRP78 levels
were found to be elevated in SARS-CoV-2 cases (13). Under
pathophysiological conditions such as cancer and viral infec-
tion, GRP78 can translocate from the ER to the cell surface
where it acts as a coreceptor for various signaling molecules, as
well as for viral entry (10, 14–21). For coronaviruses, GRP78 is
known to interact with the bat coronavirus HKU9 and MERS-
CoV Spike proteins, facilitating cell surface attachment and
viral entry (22). Furthermore, virus infection leads to ER stress
and increased total and cell surface GRP78 (csGRP78)
expression further enhancing viral infection in a positive
feedback cycle (15, 22). Here, utilizing biochemical and im-
aging approaches, we established GRP78 interactions with
SARS-2-S and ACE2. We further demonstrated that a hu-
manized monoclonal antibody (hMAb159) with high affinity
and specificity against GRP78 and a safe clinical profile in
preclinical models (23) depletes csGRP78 and reduces cell
surface ACE2 (csACE2), SARS-CoV-2 entry, and infection.
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Results

GRP78 forms complex with SARS-CoV-2 Spike protein and
host receptor ACE2

To test GRP78 binding to SARS-2-S in cells, we expressed
HA-tagged SARS-2-S (HA-Spike) and FLAG-tagged GRP78
(F-GRP78) in African green monkey kidney epithelial VeroE6
cells overexpressing human ACE2 (VeroE6-ACE2) as a model
system. Co-immunoprecipitation (IP) for the HA-epitope
Figure 1. GRP78 interacts with SARS-CoV-2 Spike protein and ACE2. A, lysa
were subjected to immunoprecipitation (IP) using the anti-HA, IgG, or anti-FLA
analyzed for the indicated proteins by western blot, using anti-HA for detection
in vitro binding assays. GST (G) or GST-tagged GRP78 (G78) proteins affixed to
SARS-CoV-2 Spike receptor-binding domain (RBD) or His-tagged recombinant
through (FT) fractions showing unbound proteins were subjected to western
illustration of the indicated domains of GRP78 and FLAG-tagged wild-type (WT
D, similar to A except lysates from cells expressing WT or the indicated mutant
serving as loading control for the WCL. E, WCL or purified biotinylated cell surfa
for GRP78 and ACE2 levels by western blot. β-actin served as loading control f
treated with either control siRNA (siCtrl) or siRNA against GRP78 (si78) and lysa
and cleaved caspase 7 (C7) by western blot. G, western blot analysis of GRP78
ACE2 cells following treatment of 300 nM of ER stress inducer thapsigargin (T
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showed that F-GRP78 can be pulled down with HA-Spike
suggesting potential interaction between the two proteins
(Fig. 1A). Co-IP with an antibody against the FLAG-epitope
further showed that F-GRP78 can bind HA-Spike and ACE2
(Fig. 1A). Furthermore, GST-GRP78 can bind to recombinant
SARS-2-S receptor-binding domain (RBD) as well as recom-
binant ACE2 in in vitro pull-down assays (Fig. 1B), suggesting
a direct binding interaction between GRP78 and both Spike
tes from VeroE6-ACE2 cells expressing FLAG-GRP78 (F-GRP78) and HA-Spike
G antibodies as indicated. The whole cell lysate (WCL) and IP fractions were
of HA-Spike and anti-FLAG antibody for F-GRP78. B, western blot analysis of
Glutathione Sepharose resin were incubated with His-tagged recombinant
human ACE2 protein. The input GST and G78 proteins, the bound and flow
blot using antibodies against GST, His, or ACE2 as indicated. C, schematic
) and mutated forms of human GRP78 encoded by the expression plasmids.
forms of GRP78 were subjected to IP with anti-FLAG antibody, with GADPH
ce (CS) proteins isolated in the indicated experimental scheme were probed
or WCL and Annexin A2 (ANXA2) for CS proteins. F, VeroE6-ACE2 cells were
tes were probed for the indicated markers of the unfolded protein response
and ACE2 levels in biotinylated cell surface (CS) fraction or WCL in VeroE6-
g) for 24 h. ANXA2 served as loading control for CS and β-actin for WCL.
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RBD and ACE2. GRP78 contains an ATP-binding domain
required for its ATPase catalytic activity in protein folding and
a substrate-binding domain required for interaction with its
client proteins (Fig. 1C). Utilizing the dominant negative
mutant G227D unable to bind ATP, the T453D mutant unable
to bind protein substrates and the R197H mutant, which
renders GRP78 unable to associate with cochaperone DnaJ
proteins (20), we probed whether any of these activities is
required for GRP78 binding to SARS-2-S and ACE2. Upon
transfection of the FLAG-tagged expression vectors into
VeroE6-ACE2 cells, we observed that the WT and three
mutant proteins were expressed at similar levels (Fig. 1D).
Compared with WT GRP78, G227D and R197H mutants
bound to HA-Spike, albeit at a lower level, while the T453D
Figure 2. GRP78 interactions with SARS-CoV-2 Spike protein and ACE2 by
immunofluorescence (IF) images of VeroE6-ACE2 cells expressing HA-Spike p
bottom rows represent permeabilized (Perm) and nonpermeabilized (non-Perm
costaining. (Scale bars, 20 μm). B, schematic diagram of the proximity ligation a
or empty vector (pcDNA3) as indicated were subjected to PLA using antibodi
dicates colocalization (Scale bars, 10 μm). D, similar to A except for IF staining
row). E, similar to C except VeroE6-ACE2 cells were subjected to PLA using anti-
groups. Top row, anti-GRP78 + Rabbit IgG isotype (GRP78/IgG); middle row, anti
IgG (IgG/IgG) in permeabilized VeroE6-ACE2 cells. (Scale bar 40 μm).
mutant did not, whereas both G227D and T453D mutants
were unable to bind ACE2 (Fig. 1D). Collectively, these results
indicate that GRP78 can directly bind to the RBD of SARS-2-S
and the SBD of GRP78 is most critical for interaction between
GRP78 and SARS-2-S providing experimental evidence
consistent with a previous in silico molecular docking study
(4). Additionally, GRP78 can directly bind ACE2 and that
binding to ACE2 requires both the SBD and the ATP-binding
domain.

GRP78 colocalizes with SARS-2-S and ACE2 at the cell surface
and the perinuclear region

Viruses, including SARS-CoV-2, usurp the host ER
translational machinery to synthesize the viral proteins in
confocal immunofluorescence and proximity ligation assay. A, confocal
robed with anti-HA (red) and anti-GRP78 (green) antibodies. The top and
) cells respectively. The boxed areas are enlarged on the right. Arrows indicate
ssay (PLA). C, VeroE6-ACE2 cells transfected with vector expressing HA-Spike
es against HA and GRP78. DAPI (blue) represents nuclei staining. Yellow in-
for ACE2 (red) and GRP78 (green). (Scale bars, 20 μm top row, 5 μm bottom
ACE2 and anti-GRP78 antibodies (Scale bars, 10 μm). F, PLA negative control
-ACE2 + Mouse IgG isotype (ACE2/IgG) and bottom row, Mouse IgG + Rabbit
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massive quantities. Thus, as a major ER chaperone, GRP78
plays an essential role in viral protein synthesis and matu-
ration (15, 17, 24–26). Confocal immunofluorescence (IF)
microscopy of permeabilized cells expressing HA-Spike
showed that it colocalized with endogenous GRP78 in the
perinuclear region typical of the ER and in nonpermeabilized
cells at the cell surface (Fig. 2A). The IF results were
confirmed using the Proximity Ligation Assay (PLA), which
reveals protein–protein interactions at distances <40 nm
(Fig. 2, B and C). We note that in these proof-of-principle
studies, the interaction between GRP78 and ectopically
expressed HA-Spike at the cell surface could have originated
from their interaction in the ER and not at the cell surface.
By both confocal IF microscopy and PLA, colocalization
between endogenous GRP78 and ACE2 was detected in the
perinuclear region typical of the ER, and their colocalization
was also observed on the cell surface (Fig. 2, D–F). Together,
these studies suggest that GRP78 could serve as a foldase for
SARS-2-S and ACE2 in the ER and act as a scaffold for
SARS-2-S and ACE2 interaction on the cell surface. Recent
studies showed that GRP78 deficiency could lead to a
decrease in cell surface receptors such as CD109 and CD44
(21, 27). Next, we determined whether GRP78 deficiency
would affect ACE2 expression. Interestingly, while knock-
down of GRP78 by siRNA did not affect total ACE2 protein
level under these experimental conditions, the level of
csACE2 decreased markedly in parallel with a decrease in
csGRP78, as determined by isolation of biotinylated cell
surface proteins followed by western blot (Fig. 1E). As viral
infection elicits ER stress, we further determined that upon
treatment of VeroE6-ACE2 cells with an ER stress-inducing
agent such as thapsigargin for 24 h, the level of total and
csGRP78 increased while the level of total and csACE2
remained constant (Fig. 1G). Furthermore, knockdown of
GRP78 led to the activation of markers of the unfolded
protein response including p-eIF2α, ATF4, and CHOP, as
well as cleavage of caspase 7 in these cells (Fig. 1F).
Figure 3. Effect of hMAb159 treatment on cell surface forms of GRP78
and ACE2, viral entry, and infection. A, confocal IF images of non-
permeabilized H1299 cells treated with human IgG1 or humanized MAb159
(hMAb159) at 0.5 μg/ml for 2 h at 37 �C and probed with anti-GRP78 (red)
antibody. DAPI (blue) indicates nuclei staining (Scale bars, 10 μm). B, flow
cytometry analysis of cell surface ACE2 (csACE2) of the same cells treated
with human IgG1 or hMAb159. Fluorescence intensity beyond the right
border of negative control isotype was set as positive staining. The numbers
indicate the percentage of csACE2 positive staining cells under each con-
dition. C, western blot of H1299 cell lysates treated with control siRNA
(siCtrl) or siRNA against GRP78 (si78) and probed with hMAb159 (top panel)
or anti-HSP70 antibody (middle panel), with β-actin serving as loading
control (bottom panel).
Targeting GRP78 with monoclonal antibody reduces SARS-
CoV-2 viral entry and infection

To test directly whether csGRP78 facilitates SARS-CoV-2
entry, we employed the human lung epithelial cell line
H1299 and the vesicular stomatitis virus (VSV) pseudo parti-
cles bearing SARS-2-S as viral entry model system. To spe-
cifically target csGRP78 and deplete it from the cell surface, we
utilized humanized MAb159 (hMAb159), a monoclonal anti-
body established to have high specificity and affinity against
GRP78 with safe clinical profile in preclinical models (23). In
H1299 cells, hMAb159 treatment led to reduced csGRP78
staining (Fig. 3A), consistent with the ability of MAb159,
which recognizes the C-terminal region of GRP78 to cause
GRP78 endocytosis and degradation established in other cell
systems (23). Flow cytometry analysis of the same cells pre-
treated with either human IgG1 or hMAb159 showed that
hMAb159 reduced both the number of cells expressing
csACE2 and the level of csACE2 (Fig. 3B). In western blot
4 J. Biol. Chem. (2021) 296 100759
analysis of H1299 cell lysate, hMAb159 only recognizes a
single protein GRP78 and has no cross-reactivity with its
closely related cytosolic homolog HSP70, reaffirming its high
specificity for GRP78 (Fig. 3C).

In viral entry assays, we observed that pretreatment with
hMAb59 significantly reduced SARS-2-S-driven pseudovirus
entry at concentration of 0.5 μg/ml but did not affect VSV-G-
dependent entry into H1299 cells (Fig. 4, A and B) or cell
viability, which excluded the possibility that the reduced
SARS-CoV-2 entry was due to cytotoxicity caused by
hMAb159 (Fig. 4C). Similarly, hMAb159 significantly reduced
SARS-CoV-2 entry in another human lung epithelial cell line
Calu-3 with no effect on VSV-G-dependent entry (Fig. 4, D
and E). Furthermore, consistent with reduction of csACE2 and
viral entry by hMAb159, VeroE6-ACE2 cells preincubated
with hMAb159 prior to infection with live SARS-CoV-2 virus
exhibited a significant decrease in the number of plaques
compared with human IgG1 control (Fig. 5A). The key findings
of this study are summarized in Figure 5B.



Figure 4. Effect of hMAb159 in pseudotype viral entry assay. A and B, H1299 cells preincubated with indicated concentrations of hMAb159 2 h before
transduction were subsequently inoculated with VSV pseudovirus harboring VSV-G or SARS-2-S surface receptor. At 16 h postinfection, relative luciferase
activities were determined. Data are mean ± SD (n = 4). C, in parallel, after 18 h incubation of H1299 with hMAb159 at indicated concentrations, cell
viabilities were measured via XTT assay. Data are mean ± SD (n = 3). D and E, Calu-3 cells were preincubated with the indicated concentrations of hMAb159
2 h before transduction, were subsequently inoculated with VSV pseudovirus harboring VSV-G or SARS-2-S surface receptor. At 16 h postinfection, relative
luciferase activities were determined. Data are mean ± SD (n = 4). * denotes p < 0.05 and n.s. denotes nonsignificant.

EDITORS’ PICK: GRP78 is a host factor for SARS-CoV-2 viral entry
Discussion

To our knowledge, our work provides the first experi-
mental evidence that GRP78 is a direct binding partner of
SARS-2-S in support of computer modeling predictions. Our
results reveal that GRP78, in addition to potentially facili-
tating SARS-2-S binding to ACE2, is a novel regulator of
Figure 5. hMAb159 pretreatment suppresses SARS-CoV-2 infection. A, plaq
or human IgG1 for 2 h were subsequently infected with live SARS-CoV-2 at MOI
(n = 4), * denotes p < 0.05. B, summary diagram of our findings that through co
ACE2, GRP78 serves as a cofactor for viral entry (left panel) and that pretreat
(csGRP78) and ACE2 (csACE2) and viral entry and infection are suppressed (ri
ACE2 cell surface expression. Since total ACE2 protein level
remains intact under these experimental conditions, this
implies that GRP78 may be important for ACE2 trafficking,
localization, and stability on the cell surface, and SARS-2-S
production in the ER following viral infection, which
awaits future investigation. Here, we define GRP78 as a new
ue inhibition assay. VeroE6-ACE2 cells preincubated with 0.5 μg/ml hMAb159
of 0.01. Viral replication was quantified by plaque assay. Data are mean ± SD
mplex formation with the Spike protein of SARS-CoV-2 and the host receptor
ment with hMAb159 leads to reduction of the cell surface forms of GRP78
ght panel).
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viral entry cofactor and a target for anti-SARS-CoV-2
intervention. hMAb159, which has high specificity and af-
finity for GRP78 and an established safe clinical profile in
preclinical models, is ready for clinical development. This
work uncovers its potential as a new therapy and use in
combination with existing therapies could be further
considered. Interestingly, a recent study showed GRP78
colocalizing with SARS-2-S following live virus infection and
AR12, an inhibitor of chaperones including GRP78, sup-
pressed SARS-CoV-2 infection (28). Collectively, these re-
sults suggest that targeting host auxiliary chaperones such as
GRP78 required for viral entry and production could offer
new strategies to suppress SARS-CoV-2 and possibly future
coronavirus strains that may arise. It is also tempting to
speculate that csGRP78 expression elevated in stressed or-
gans and hypoxic endothelial cells (18, 29, 30) may
contribute to higher viral entry and morbidity in COVID-19,
which warrants further investigation. Finally, as a major ER
chaperone and cell surface coreceptor, GRP78 has been
implicated in the entry and production of a variety of viruses
including Ebola virus where its re-emergence could pose
serious public health concerns. Thus, instead of targeting
individual viruses that are prone to mutations, targeting
their critical auxiliary host chaperones such as GRP78 could
have a broad-spectrum antiviral effect beyond SARS-CoV-2
with wide clinical implications.

Experimental procedures

All methods are described in the Supplemental
Experimental Procedures, including cell lines and culture
conditions, expression vector construction and transfection,
in vitro pull-down assay, immunoprecipitation, cell surface
biotinylation, immunoblot analysis, flow cytometric analysis,
immunofluorescent staining, proximity ligation assay, genera-
tion of VSV pseudotype and transduction experiments,
quantification of cell viability, and plaque inhibition assay.

Statistical analysis

All results are expressed as means. Error bars are reported
as standard deviation. Differences between two group means
were analyzed using a two-tailed unpaired Student’s t-test. A
p-value less than 0.05 is statistically significant.

Data availability

The authors confirm that the data supporting the findings of
this study are available within the article.
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