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Abstract

Background: Environmental enrichment (EE) in laboratory animals improves neurological function and motor/cognitive
performance, and is proposed as a strategy for treating neurodegenerative diseases. EE has been investigated in the R6/2
mouse model of Huntington’s disease (HD), where increased social interaction, sensory stimulation, exploration, and
physical activity improved survival. We have also shown previously that HD patients and R6/2 mice have disrupted circadian
rhythms, treatment of which may improve cognition, general health, and survival.

Methodology/Principal Findings: We examined the effects of EE on the behavioral phenotype and circadian activity of R6/2
mice. Our mice are typically housed in an ‘‘enriched’’ environment, so the EE that the mice received was in addition to these
enhanced housing conditions. Mice were either kept in their home cages or exposed daily to the EE (a large playground box
containing running wheels and other toys). The ‘‘home cage’’ and ‘‘playground’’ groups were subdivided into ‘‘handling’’
(stimulated throughout the experimental period) and ‘‘no-handling’’ groups. All mice were assessed for survival, body
weight, and cognitive performance in the Morris water maze (MWM). Mice in the playground groups were more active
throughout the enrichment period than home cage mice. Furthermore, R6/2 mice in the EE/no-handling groups had better
survival than those in the home cage/no-handling groups. Sex differences were seen in response to EE. Handling was
detrimental to R6/2 female mice, but EE increased the body weight of male R6/2 and WT mice in the handling group. EE
combined with handling significantly improved MWM performance in female, but not male, R6/2 mice.

Conclusions/Significance: We show that even when mice are living in an enriched home cage, further EE had beneficial
effects. However, the improvements in cognition and survival vary with sex and genotype. These results indicate that EE
may improve the quality of life of HD patients, but we suggest that EE as a therapy should be tailored to individuals.
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Introduction

HD is a genetic neurodegenerative disorder that is caused by an

expanded CAG repeat in the coding region of the HD gene [1].

The disease is characterised by progressive striatal atrophy and the

loss of neurons in frontal and temporal cortex, although by the end

stages of the disease degeneration is also present in many

subcortical regions. Patients with HD develop progressive motor,

cognitive and psychological symptoms that invariably lead to

death within 17–20 years after the onset of first symptoms.

There is no effective treatment available yet for HD. However,

it has been shown that an active lifestyle (involving enhanced

social, physical and mental components) protects against dementia

and Alzheimer’s disease in human patients (reviewed in [2]). It is

thus possible that increased environmental stimulation of patients

could be used to improve the symptoms and slow the progression

of HD. Indeed, it has been suggested that physical, social and

cognitive stimulation has beneficial effects in HD patients [3,4].

To study the mechanisms by which lifestyle elements influence

the progression of HD, aspects of an enhanced lifestyle can be

mimicked in laboratory animals by EE. There were two aims of

the current study. EE has been shown to have beneficial effects on

the progression of motor symptoms and survival in the R6/1 and

R6/2 mouse models of HD [5,6,7]. In these studies, EE was

provided through multiple different forms of enhanced home

cages, all of which had beneficial effects. An improved feeding

regime, accompanied by regular behavioural testing, significantly

enhanced the general well-being and life expectancy of R6/2 mice

[5]. An enriched home cage delayed onset of motor symptoms,

decreased severity of the clasping phenotype, and reduced the loss

of peristriatal cerebral volume in R6/1 mice [6]. Even a low level

of enrichment with food pellets and a cardboard tube placed in the
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home cage slowed the decline in rotarod performance in R6/2

mice [7], although a greater level of enrichment induced a marked

improvement in rotarod tests, and delayed the loss of peristriatal

cerebral volume in R6/2 brain [7].

To explain the beneficial effects of EE on motor and

cognitive symptoms and survival of HD transgenic mice,

several potential mechanisms have been suggested. For

example, EE may cause an increase in striatal and hippocampal

levels of brain-derived neurotrophic factor (BDNF; [8]), levels

of which are known to be reduced in the striatum and

hippocampus of HD mouse models [9] and in the post mortem

brains of HD patients [10]. EE has also been found to

specifically increase neurogenesis in the dentate gyrus of the

hippocampus of a mouse model of HD [11]. Given that such

changes in hippocampal function are possible, and that

hippocampus-dependent learning is impaired in R6/2 mice

[12], it is logical to expect that enrichment might have a

beneficial effect on hippocampal learning and memory tasks.

However, while evidence for improved spatial learning in

response to EE has been found for the R6/1 model [13,14], no

such study has been conducted in R6/2 mice. For this reason,

the first aim of the current study was to investigate the effects of

EE on cognitive performance in the MWM task in R6/2 mice.

The second aim of the current study was to investigate the

effects of sleep deprivation during circadian day. Disturbance of

the sleep-wake cycle is commonly observed in HD patients and is

mirrored by a progressive disintegration of circadian patterns of

activity and a disruption of circadian clock gene expression in the

suprachiasmatic nucleus (SCN) of R6/2 mice [15]. The treatment

of R6/2 mice with the sedative drug Alprazolam, a therapy

intended to restore their circadian rhythms, slowed cognitive

decline, and improved clock-gene related functions [16]. Modu-

lation of the sleep-wake cycle with Modafinil as well as Alprazolam

also had beneficial effects on cognitive function and improved

apathy [17]. This raises the possibility of an effective behavioural

therapy involving sleep regulation to manage the symptoms of HD

patients. Given that drug-induced wakefulness had beneficial

effects on the cognitive performance of R6/2 mice [17], a period

of continuous activity induced by enrichment might also impose

sleep without the need for sedative drugs and have similar

beneficial effects. The constraints of our animal facility mean that,

in the current study, enrichment had to take place during

circadian day. However, enrichment during circadian day might

result in sleep deprivation and thus lead to deleterious effects. To

test this possibility, we included groups in which we enforced

wakefulness on mice, by physically handling these mice to

keep them awake throughout the 6-hour daily period of

experimentation.

Materials and Methods

Ethics Statement
All components of this study were carried out in accordance with

the UK Animals (Scientific Procedures) Act, 1986, and with the

approval of the University of Cambridge Licence Review Committee.

Mice
Mice were taken from a colony of R6/2 transgenic mice [18] that

is established in the Centre for Brain Repair, University of

Cambridge, and maintained by backcrossing onto CBA x C57BL6

F1 female mice. Genotyping and CAG repeat length measurement

were carried out by Laragen (Los Angeles, CA, USA). The number

of CAG repeats of R6/2 mice used in this study (N = 80) was

24960.6 (mean 6 SEM) as determined by GeneMapper (note that

the CAG repeat number measured by GeneMapper differs from that

measured by sequencing. To convert the CAG repeat numbers

determined by GeneMapper technique to the CAG repeat number

determined by sequencing technique (which more closely represents

the true CAG repeat number) the following formula needs to be

applied: SEQ CAG no. (true CAG no.) = 1.0427 * GM CAG no. +
1.1695; personal communication, Dr J. Li, Laragen).

Mice were kept in home cages comprising single sex, single

genotype groups of 10. Our mice live as standard in an enhanced

environment with increased amounts of bedding and nesting

materials, and additional hydrated food (see below). Clean cages

were provided twice weekly, with grade 8/10-corncob bedding,

finely shredded paper for nesting, and a red plastic nest box. The

mice were maintained on a 12 hour light: 12 hour dark cycle, at a

temperature of 21–23uC and a humidity of 55610%. The mice

had ad libitum access to water (using water bottles with elongated

spouts) and standard dry laboratory food (RM3(E) rodent pellets,

Special Diet Services, Witham, UK). In addition, once a day, a

mash was prepared by soaking 100 g dry food in 230 ml water

until the pellets were soft and fully expanded. The mash was

placed on the cage floor, improving access to food and water for

the R6/2 transgenic mice. This feeding regime has been shown

previously to be beneficial [5].

Environmental Enrichment
The mice were tested in four different groups with variations in

environmental enrichment conditions:

N Home cage/no handling

N Home cage/handling

N Playground/no handling

N Playground/handling

Each group comprised four cages, containing male WT (n = 10),

female WT (n = 10), male R6/2 (n = 10) and female R6/2 (n = 10)

mice. The timeline for testing and treatments for the whole

experiment is shown in Figure 1.

Mice in the home cage/no handling groups were confined to

their home cages without additional enrichment throughout the

whole experiment. EE was provided to the other groups of mice

from 10 to 16 weeks of age for 6 hours each day (13:15h to

19:15h). Enrichment was administered as either access to

playgrounds or through gentle handling. The playgrounds

consisted of large PerspexTM boxes (60630645 cm) containing

ropes, ladders, running wheels and toys (Movie S1). The toys and

their configuration were changed daily to maintain the element of

novelty, maximising the stimulating nature of the environment.

After each session, playground cages and toys were cleaned using

1% acetic acid. Handling involved gentle manipulation of the mice

if they spent longer than 60 seconds immobile throughout the

period of enrichment (Movie S2).

Behavior and Handling Data Collection
Records were kept throughout the daily experimental period

(1315h to 1915h) of the handling given and also of the behavioural

activity of the mice. For the groups receiving handling, individual

records were kept of every occasion on which each mouse required

handling. The behaviour of each mouse in every cage was

recorded by a trained observer every 15 minutes. Three or 4

observers were randomly assigned to observe the mice during a

specific 2-hour time slot within the daily experimental period (6

hours). Due to the overt phenotype of the R6/2 mice, observers

could not be blind to the genotype of the mice. The observed

behaviours were classified as ‘‘active’’ (score 1) or ‘‘inactive’’ (score

Enrichment in R6/2 Mice
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0) and these scores were used for quantitative analysis of

behaviour.

Body Weight and Survival Analysis
Body weight of all mice was recorded twice weekly from the

start of treatment (age 9 weeks) throughout the experiment (6

weeks) and after that until death (for R6/2 mice) or 27 weeks of

age (for WT mice). Note that we have only presented R6/2

weights up to 19 weeks, since beyond this age mice started to reach

the end-stage of the phenotype, and were killed for humane

reasons. We have shown in previous studies that mice that lose the

most body weight tend to die first, and that this distorts weight

data [19]. Therefore, statistical analysis was conducted on R6/2

weights between the ages of 9–19 weeks while data from 9–27

weeks of age was used for the analysis of WT weights.

Age of death was recorded for all R6/2 mice. Mice were killed if

they were moribund, or lacked a righting reflex, or failed to rouse

for their mash, or did not respond to gentle stimulation.

Morris Water Maze Task
Spatial learning was tested using the protocol as described in

Wood et al. [20]. Briefly, a circular white plastic pool 120 cm in

diameter and 50 cm in height was filled to a depth of 30 cm with

water and maintained at 23uC. A small quantity of non-toxic white

paint was added to render the water opaque. Four positions

around the edge of the tank were arbitrarily designated as N, S, E,

and W, providing four alternative start positions and dividing the

tank into four quadrants: NE, SE, SW and NW. A circular clear

Perspex platform of 10 cm diameter was placed at the midpoint of

one of the four quadrants and submerged 0.5 cm below the water

surface. Extramaze cues were minimised by placing screens

around the tank. Various visible cues were added to the screens

to aid spatial discrimination. Mice were tracked in the maze using

the HVS tracker system (HVS Image 2020, Hampton, UK).

During training, mice received four trials per day with an inter-

trial interval of 10–15 minutes. Each mouse was placed in the pool

facing the wall at one of four pseudorandomly chosen starting

positions (N, S, E, W), and allowed to swim until it located and

climbed onto the submerged platform. Any mouse that failed to

locate the platform within 60 seconds was placed on the platform

by hand. All mice remained on the platform for 15 seconds, after

which they were briefly dried with paper tissues before being

returned to a cage containing clean shredded paper bedding, and

warmed by a heating lamp. On completion of all four trials, the

mice were dried thoroughly and returned to their home cages. A

probe trial consisted of a single 60 second trial with the platform

removed. After 60 seconds the mice were removed to a drying

cage as before.

Baseline data were obtained from the mice at 9 weeks of age in

the MWM (see Figure 1) before they were assigned to their

experimental groups. Mice were tested under a standard protocol

(6 days training, with 4 trials a day, to a single platform position,

followed on day 7 by a single probe trial). After a two week period

of EE, mice received a single probe trial (retention), followed by

five days of training (4 trials per day) to the same platform position

as in the baseline test and a single probe trial (re-acquisition). After

a further two weeks of enrichment, mice underwent a third session

in the MWM. This took the same form as the second session

(single probe trial, then five days of training, then a further single

probe trial). During the second and third MWM sessions, mice

continued to be exposed to their respective enrichment condition.

Training or testing in the MWM took place in the morning while

enrichment was provided in the second half of the light period

(13:15–19:15 hrs) as described above. After the end of the last

MWM session at 16 weeks of age, mice were returned to their

home cages.

Data Analysis
Performance in the probe trials was evaluated by measuring the

time spent in virtual quadrants and zones in the water maze,

proximity to the platform location and swim speed. For statistical

analysis of percent time spent in quadrants and zones of the water

maze, a five-way repeated measures ANOVA was used (factors:

sex, genotype, handling/no handling, home cage/playground and

quadrant or zone number). For statistical analysis of proximity and

swim speed we used a four-way repeated measures ANOVA

(factors: sex, genotype, handling/no handling, home cage/

playground). Group comparisons were made using Sidak- adjusted

multiple comparisons. Behavioural scores reflecting activity of the

mice during the experimental period were analysed using 4-way

repeated measures ANOVA as above. The number of handling

events was analysed using three-way repeated measures ANOVA

(factors: sex, genotype, playground/home cage) with subsequent

Sidak-adjusted multiple comparisons. The body weight data for

WT and R6/2 mice were analysed in separate three-way repeated

measures ANOVA, (factors: sex, playground/home cage and

handling/no handling). Survival data were analysed using a log

rank test.

Statistical analyses were performed using SPSS Statistics 17.0

(SPSS Inc., Chicago, USA) or Prism 4 (GraphPad Software Inc.,

San Diego, USA).

Results

Morris Water Maze
Traditional measures of performance in MWM probe trials

include percent times spent in the target quadrant and zone.

Figure 1. Experimental timeline for enrichment and testing. Baseline data in the MWM were obtained at 9 weeks of age. Further MWM
training and testing were performed at 12 and 15 weeks of age. Environmental enrichment took place between 10 to 16 weeks of age.
doi:10.1371/journal.pone.0009077.g001
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Analysis of the percent time spent in the target quadrant revealed

a main effect of genotype (F(1,141) = 214.113, p,0.001). In all

probe trials, WT mice spent significantly more time in the target

quadrant than R6/2 mice (Figure 2A). There were no main effects

of sex, handling or playground exposure, either beneficial or

deleterious (not shown). This suggests that enrichment had no

influence on the performance of WT or R6/2 mice in the MWM

as measured by the time spent in the target quadrant. Thus, for

presentation, data from both sexes and all enrichment groups has

been combined for presentation (Figure 2). With the exception of

the probe trial after the first retention interval (session 2 probe 1),

WT mice displayed a significant preference for the target quadrant

in every probe trial (Figure 2B-F). This indicates learning of the

platform position as no preference for a particular quadrant was

observed in either WT or R6/2 mice when they were first exposed

to the MWM (Figure S1A). No preference for the target quadrant

was observed in R6/2 mice in any of the probe trials (Figure 2B-F).

Interestingly, in the third MWM session, R6/2 mice showed a

significant preference for the quadrant right-adjacent to the target

quadrant (Figure 1E, F). Mice were placed into the pool from a

random starting position. However, the right-adjacent to the target

quadrant is the quadrant from which the experimenter ap-

proached to remove the mice from the pool after a trial, or to

guide them to the platform position during training. This suggests

some ability for spatial learning in the R6/2 mice, but they used a

strategy that the MWM is not designed to test.

In an analysis of the percent time spent in the target zone there

was a main effect of genotype (F(1,136) = 34.933, p,0.001). No

main effects were found for sex or handling (not shown) and so

data from both sexes and handling conditions were combined for

presentation in Figure 3. There was, however, a main effect of

playground exposure (F(2,405) = 5.738, p = 0.003). Post hoc analysis

revealed that this effect was present in WT (p = 0.014) but not R6/

2 mice (p = 0.309), suggesting a beneficial effect of enrichment on

the zone preference of WT mice. With the exception of the first

probe trial, WT mice spent significantly more time in the target

zone than R6/2 mice (Figure 3A). In the probe trials after training

in the first MWM session and after the retention interval before

the second training session, neither WT nor R6/2 mice showed a

preference for the target zone, irrespective of their enrichment

condition (Figure 3B, C). The preference for the outer zone of the

MWM observed in these trials in all groups of mice reflects the

initial response to the MWM that was also present in the first

training trial of the first MWM session (Figure S1B). During

training in the second MWM session, WT playground mice

developed a preference for the target zone while WT home cage

mice did not differentiate between the outer and the target zones

(Figure 3D). The same difference between home cage and

playground WT mice was found after the retention interval before

the third MWM session (Figure 3E). After training in the third

MWM session, both WT groups showed significant preference for

the target zone (Figure 3F ).Throughout all training sessions, R6/2

mice never showed a preference for the target zone (Figure 3A-F).

Overall, data from the analyses of percent times spent in the target

quadrant and zone during probe trials suggests that WT mice

successfully learned the platform position while R6/2 mice

consistently failed to do so. While enrichment by playground

exposure did not affect the MWM performance of R6/2 mice,

WT playground mice showed a faster learning of the correct

MWM zone than WT home cage mice. However, we found no

effect of handling on either WT or R6/2 mice.

Recent work has suggested that the proximity score (also known

as the Gallagher score) may be a more sensitive measure of

performance than these classical parameters [21]. Therefore, we

also measured proximity to the platform position in the probe

trials. An analysis of data from all probe trials revealed no main

effect of sex. Therefore, data from both sexes were combined for

the purpose of presentation (Figure 4). There was a main effect of

genotype. WT mice in all enrichment groups improved their

performance during the course of the experiment by swimming

closer to the original platform position (F(4,135) = 61.459, p,0.001;

Figure 4A). R6/2 mice, in contrast, showed no change in

proximity throughout the experiment, suggesting that the R6/2

mice were impaired in learning the task (Figure 4B). This

combined analysis revealed no overall effect of enrichment in

playgrounds on MWM performance in either WT (Figure 4C) or

R6/2 mice (Figure 4D), suggesting that EE had no effect on the

rate of learning of these mice. Throughout the experiment, WT

mice performed better than R6/2 mice, irrespective of sex or

enrichment (F(1,138) = 224.657, p,0.001; Figure 1E).

We measured swim speed in the MWM, as an index of motor

performance. Neither WT nor R6/2 mice showed any changes in

swim speed over time (Figure 5A, B). An analysis of main effects

showed that playground mice were faster swimmers than home

cage mice (F(1,141) = 8.100, p = 0.005). This effect was evident in

R6/2 mice from the first probe trial after the start of enrichment

and onwards (F(1,141) = 11.947, p,0.001; Figure 5D) but was not

seen in WT mice (Figure 5C). However, it was also found that, as

expected, R6/2 mice were consistently slower swimmers than WT

mice (F(1,141) = 105.580, p,0.001; Figure 5E). During each probe

trial, R6/2 mice spent more time floating than WT mice

(F(1,141) = 45.510, p,0.001; Figure 5F). There was, however, a

significant decrease in time spent floating by R6/2 mice over the

course of the experiment (p,0.001), suggesting that floating was

not a strategy adopted by R6/2 mice because their phenotype

made them too weak to swim.

Interestingly, when data from probe trials were pooled

throughout the experiment for analyses of main effects, we

found a significant interaction between sex and handling for

both platform proximity (F(1,141) = 21.540, p,0.001) and swim

speed (F(1,141) = 34.087, p,0.001). Handling had a beneficial

effect on the performance of female mice (p,0.001), but a

detrimental effect on the performance of males (p = 0.012;

Figure 6A), irrespective of genotype or playground exposure.

Similarly, handling reduced swim speed in female mice

(p = 0.002), but increased it in male mice (p,0.001; Figure 6B).

Post hoc analyses revealed further sex-specific effects of

enrichment. Female R6/2 mice from all enrichment groups

showed better awareness of the platform position than the home

cage/no handling mice (home cage/handling: p,0.001, play-

ground/no handling: p = 0.03, playground/handling: p,0.001;

Figure 6E). This effect was not present in male R6/2 (Figure 6E)

or WT mice of either sex (Figure 6C). Thus, data from the

proximity analysis suggest that enrichment through access to

playgrounds or handling improves cognitive performance in

female mice only. A sex–specific effect of the enrichment

conditions was also found for swim speed in the MWM, where

both WT and R6/2 male mice increased their swim speed in

response to handling. This was found for the home cage (WT,

p = 0.001; R6/2, p = 0.041; Figure 6D, F) as well as for the

playground groups (WT, p = 0.004; R6/2, p = 0.044; Figure 6D,

F). Playground exposure without handling did not lead to

significant increases in swim speed of male mice compared to

home cage/no handling groups. Compared to male mice of

both genotypes, R6/2 females exhibited the opposite response

to enrichment conditions. They showed an increase in swim

speed in response to the playground condition but not in

response to handling. The positive effect of playground exposure

Enrichment in R6/2 Mice
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Figure 2. Quadrant preference of mice during Morris water maze probe trials. Percent time spent in the target quadrant in all probe trials is
shown for WT and R6/2 mice (A). Comparisons of percent time spent in all quadrants are shown for WT and R6/2 mice for all MWM probe trials (B-F).
Note that data from both sexes and all experimental groups were pooled for each genotype. All data shown are means 6 s.e.m. Where error bars are
not visible, they are obscured by symbols. * p,0.05, ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0009077.g002
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on swim speed of R6/2 females was found for both no handling

(p = 0.034) and handling groups (p = 0.018; Figure 6F). WT

female mice responded to handling with a decrease in swim

speed as compared to the home cage/no handling group, both

in the home cage/handling (p = 0.002) and playground/

handling groups (p = 0.010; Figure 6D). As the playground/no

handling WT females did not show a reduced swim speed

compared to the home cage/no handling group, this suggests

that the effect was specific for handling and does not apply to all

forms of enrichment (Figure 6D). Overall, the swim speed data

suggest sex and genotype–specific responses of mice to the

enrichment conditions.

Daytime Activity
The effect of enrichment on daytime activity measured during

the daily experimental period in the mice is shown in Figure 7.

The behaviour of each mouse was scored as ‘‘active’’ or ‘‘inactive’’

in 15-minute intervals. Data were analysed on a day-by-day basis,

but for clarity only weekly averages are presented. In the no

handling groups, there were significantly higher levels of activity in

the playground groups compared to the home cage groups,

irrespective of genotype and sex (F(1,143) = 125.438, p,0.001;

Figure 7A). This suggests strongly that the playgrounds were

intrinsically stimulating, and remained so throughout the enrich-

ment period. Overall, activity of the mice was lowest in the home

cage/no handling groups, and highest in the playground/handling

group, regardless of genotype (Figure 7B). In the playground/

handling groups, R6/2 mice were more active than WT mice

(p,0.001; Figure 7B). Although the playgrounds stimulated

activity in the mice, the playground/no handling groups showed

the greatest decline in activity between weeks 1 and 6 of the

enrichment period. This was true for WT male (p,0.001;

Figure 7C), WT female (p = 0.008; Figure 7D), R6/2 male

(p,0.001; Figure 7E) and R6/2 female (p,0.001; Figure 7F)

mice. Female mice in the playground/handling groups also

showed a decline in activity during the enrichment period

(p,0.001; Figure 7D, F), an effect that was not seen in male

mice (Figure 7C, E).

Handling
We examined the amount of handling that was needed to keep

the mice awake during the enrichment period. As expected, home

cage mice needed more handling than playground mice,

whether WT (F(1,72) = 27.618 p,0.001; Figure 8A) or R6/2

(F(1,72) = 172.766, p,0.001; Figure 8B). All mice needed more

handling at the end of the experiment than the beginning,

regardless of the playground enrichment condition (WT home

cage, p = 0.002; WT playground, p,0.001; R6/2 home cage,

p,0.001; R6/2 playground, p,0.001: Figure 8A, B). To compare

the increase in handling required over the course of the

experiment, data from the first (week 1) and the last (week 6)

week of the experiment were analysed (Figure 8C, D). R6/2 home

cage mice needed more handling than WT home cage mice both

in week 1 (p = 0.002) and week 6 (p,0.001; Figure 8C) of the

experiment. In the playground groups, this genotype difference

was not present in week 1 but was observed in week 6 (p = 0.021;

Figure 8C). Although all groups needed significantly more

handling in week 6 than in week 1 of the experiment, the need

for handling increased more strongly in R6/2 than in WT mice for

both home cage (p,0.001) and playground groups (p = 0.003;

Figure 8D). There was no difference in the increase in handling

needed between R6/2 groups, but WT playground mice showed a

greater increase in handling needed than the home cage group

(p = 0.003, Figure 8D).

Body Weight
Body weights of the mice were recorded until the last R6/2

mouse was killed due to ill health at 27 weeks of age (Figure 6).

Data are presented up to 19 weeks for R6/2 mice, as beyond this

point the drop out of mice made the data difficult to analyse. Data

for WT mice are shown up to 27 weeks, when the experiment

finished. Analysis revealed the expected main effect of sex, with

males being heavier (F(1,134) = 159.148, p,0.001).There was also

an expected main effect of genotype as the R6/2 mice started to

lose weight from around 12 weeks of age. Group comparisons

revealed differences in the female R6/2 home cage (between 14.5

and 17 weeks of age) and playground groups (13.5 to 19 weeks of

age), where handling significantly reduced body weights compared

to the no handling group (home cage: p = 0.042, playground:

p = 0.06 Figure 9B, D). A similar negative effect of handling on

body weight for was found for male R6/2 mice in the home cage

groups between 9 and 16 weeks of age (p = 0.024; Figure 9A) but

not in the playground groups (Figure 9C). In the R6/2 male

handling groups, playground exposure led to an increase in body

weight between 14.5 and 19 weeks of age (Figure 9E). There were

no differences between any of the WT groups except in the male

handling groups, where the playground mice increased weight

significantly compared to the home cage mice, from 22 weeks

onwards (p = 0.027; Figure 9E). Although a similar tendency was

found for the male no handling groups, it did not reach statistical

significance (p = 0.096; Figure 9G).

Survival
We looked at the effect of EE on survival in R6/2 mice. Median

survival for all groups is presented in Table 1. In the home cage

groups, handling had no effect on the age at death in male mice,

but had a beneficial effect in female mice (p = 0.001; Table 2). In

the playground groups, handling had a detrimental effect on

survival in male mice (p,0.001; Table 3), but no effect in female

mice (Table 2). Both male and female playground/no handling

mice lived significantly longer than those in the home cage/no

handling groups (male: p = 0.002, female: p = 0.011; Table 2, 3).

In the mice that were handled, there was no difference in survival

between home cage and playground groups of either sex

(Table 2, 3).

Discussion

Since EE was first shown to improve survival in the R6/2 mouse

model of HD [5], numerous studies have been conducted to

further investigate its effects in models of neurodegenerative

disease [7,8,13,14,22]. Most of these studies have used the R6/1

mouse, which has a repeat length of approximately 115 CAG

repeats, with a delayed onset of, and less severe, phenotype than

the R6/2 mouse. Studies using EE in the R6/2 mouse are far

fewer, because the early onset and severity of the phenotype makes

it much more challenging to show beneficial effects. However, as

we have already had success in improving the lifespan of these

mice through home cage enrichment [5], we wanted to see

whether we could also improve the cognitive dysfunction in R6/2

mice through access to additional enrichment.

In this study, we examined the effect of two different types of EE

on the cognitive function, body weight and survival in R6/2 mice.

We found a range of effects, both beneficial and detrimental, with

significant genotype and sex effects. First, we assessed cognitive

performance in probe trials in the WT task using the classical

methods of percent time spent in the target quadrant or zone.

These showed the expected deficits in R6/2 as compared to WT

mice, and an absence of any beneficial (or detrimental) effects
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Figure 3. Zone preference of mice during Morris water maze probe trials. Percent time spent in the target zone in all probe trials is shown
for WT and R6/2 mice (A). Data from both sexes and all experimental groups were pooled for each genotype. Comparisons of percent time spent in all
quadrants are shown for WT and R6/2 mice from home cage and playground groups for all MWM probe trials (B-F). Data from both sexes as well
as handling and no handling groups were pooled. All data shown are means 6 s.e.m. Where error bars are not visible, they are obscured by symbols.
* p,0.05, ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0009077.g003
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Figure 4. Proximity of mice to platform position during Morris water maze probe trials. Proximity to platform position for home cage/no
handling, home cage/handling, playground/no handling and playground/handling groups of WT (A) and R6/2 (B) mice in all MWM sessions, with data
from both sexes pooled. Data from handling and no handling groups as well as from both sexes were pooled to compare home cage and playground
groups of WT (C) and R6/2 (D) mice. Data from both sexes and all experimental groups were pooled for WT and R6/2 mice (E). Grey shading in C, D
indicates period of enrichment. All data shown are means 6 s.e.m. Where error bars are not visible, they are obscured by symbols. n.s. non-significant,
* p,0.05, ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0009077.g004
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Figure 5. Swim speed of mice during Morris water maze probe trials. Swim speed for home cage/no handling, home cage/handling,
playground/no handling and playground/handling groups of WT (A) and R6/2 (B) mice in all MWM sessions, with data from both sexes pooled. Data
from handling and no handling groups as well as from both sexes were pooled to compare home cage and playground groups of WT (C) and R6/2 (D)
mice. Data from both sexes and all experimental groups were pooled for WT and R6/2 mice and are shown in (E). The percentage of time spent
floating in each MWM trial is shown for WT and R6/2 mice, with data from both sexes and all experimental groups pooled for each genotype (F). Grey
shading in C, D indicates period of enrichment. All data shown are means 6 s.e.m. Where error bars are not visible, they are obscured by symbols. n.s.
non-significant, * p,0.05, ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0009077.g005
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Figure 6. Sex and handling interaction on Morris maze performance and swim speed. Platform proximity (A) and swim speed (B) data
were combined across all probe trials. Data are shown for male (blue bars) and female (red bars) groups for ‘handling’ and ‘no handling’ conditions
with data from both genotypes as well as home cage and playgrounds groups pooled. Proximity to the platform position and swim speed combined
across probe trials are shown for all WT (C, D) and R6/2 (E, F) groups. Data for male and female mice are shown separately. All data shown are means
6 s.e.m. n.s. non-significant, * p,0.05, ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0009077.g006
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arising from enrichment in the R6/2 mice. The Gallagher

proximity score has been demonstrated to be more sensitive for

detecting group differences than these traditional measures [21].

However, we again found no improvements over time in the R6/2

groups. The most likely explanation for this finding is that the

deficit in spatial learning apparent by 9 weeks of age, when MWM

Figure 7. Activity of mice during the enrichment period. Average daily activity scores are shown for weeks 1 to 6 of the experiment for all no
handling groups (A). Average activity scores throughout the whole experiment are presented for all groups of WT and R6/2 mice in (B), with data
from male and female mice pooled. Average daily activity scores in weeks 1 to 6 of the experiment are shown for all WT male (C), WT female (D), R6/2
male (E) and R6/2 female (F) groups. For key to symbols in (A), see (C), (D), (E) and (F). Symbols left of data series indicate significance of decline
from week 1 to week 6. All data shown are mean 6 s.e.m. Where error bars are not visible, they are obscured by symbols. n.s. non-significant,
* p,0.05, ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0009077.g007
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training in the current study began, cannot be reversed by means

of EE. It might be worthwhile to begin both enrichment and

cognitive testing at an earlier age, to see if EE can prevent the

development of cognitive deficits, as has been shown in R6/1 mice

[14]. However, as R6/2 mice have been shown to have deficits in

the MWM from as early as 3.5 weeks of age [12], this may not be

possible.

Although EE did not improve the overall cognitive performance

of R6/2 mice in the MWM during the course of the study, it did

produce significant differences between groups. For example, all

mice in enriched female R6/2 groups performed significantly

better than those in the home cage/no handling group. This

suggests that female R6/2 mice may be more sensitive to the

beneficial effects of EE than the other groups. This suggestion is

reinforced by the finding that handling had beneficial effects on

the cognitive performance of female mice of both genotypes, while

having a negative effect in male mice. Interestingly, we found the

reverse effect with regard to swim speed, where handling produced

an increase in swim speed in male mice, but a decrease in females.

While this increase in swim speed in males might at face value

suggest a beneficial effect, it may also be a response to increased

stress caused by handling, since it has been shown that stress in rats

and mice can cause an increase in swim speed in the MWM

[23,24]. It should be noted that stress in rats also caused a deficit in

MWM probe trial performance [25]. In addition, it has been

reported that a stress paradigm had opposite effects on MWM

performance of male and female rats, with female rats deriving a

beneficial effect while males suffered detrimental effects [26]. It is

possible that, in the male R6/2 mice, the lack of effect of

enrichment on proximity score, combined with increased swim

speed, is indicative of sex-specific increased stress caused by

handling. It would be interesting, in future experiments, to

measure levels of circulating corticosterone or testosterone to

explore this possibility further.

In order to keep the playgrounds as stimulating as possible, we

changed some of the toys every day to maintain an element of

novelty. This appeared to have the desired effect, as mice in the

playground/no handling groups were more active than mice in the

home cage/no handling groups throughout the experiment. We

found a graded effect of activity across the groups, with the least

active mice being the home cage/no handling groups, followed by

the home cage/handling, playground/no handling, and the most

active being the playground/handling groups. Notably, although

the playground groups were more active throughout the entire

experiment, the playground/no handling groups showed the

greatest decline in activity between weeks 1 and 6. While this is in

part due to the fact that they were very active to start with and so

had further to decline, it does seem that the stimulatory effect of

the playgrounds was falling by the end of the study. In addition to

the decline in activity seen in all of the playground/no handling

groups, the female playground/handling groups also showed a

significant decline in activity between weeks 1 and 6, which

Figure 8. Amount of handling needed to keep the mice awake during the enrichment period. The average number of daily handling
events required by each mouse during weeks 1 to 6 of the experiment for home cage and playground groups in WT (A) and R6/2 (B) mice. Some of
these data are reproduced in (C) to allow comparisons between WT and R6/2 groups in home cage and playground conditions for the first and last
weeks of the experiment. (D) shows the increase in the number of daily handling events from week 1 to week 6 of the experiment that were required
by WT and R6/2 mice in home cage and playground groups. All data shown are means 6 s.e.m. Where error bars are not visible, they are obscured by
symbols. n.s. non-significant, * p,0.05, ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0009077.g008
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strongly suggests that even when the contents of the playgrounds

were regularly changed, female mice habituated to the play-

grounds faster than male mice. This adds more weight to the idea

that there are significant differences between the sexes in the way

that they respond to EE, and that some forms of enrichment may

be more beneficial to one sex than the other. Similar sex – specific

Figure 9. Body weights. Body weights were measured from 9.5 to 19 weeks for R6/2 and 9.5 to 27 weeks for WT groups. Data are separated by sex,
and shown for home cage (A, B), playground (C, D), handling (E, F) and no handling (G, H) conditions. MWM1, 2 and 3 are periods of Morris water
maze testing. Grey shaded areas represent the enrichment period. All data shown are mean 6 s.e.m. Where error bars are not visible, they are
obscured by symbols. n.s. non-significant, * p,0.05, ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0009077.g009
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effects of EE on MWM learning and memory have previously

been reported for a mouse model of Down syndrome where EE

had beneficial effects on spatial learning in female mice but

deleterious effects in male mice [27].

The possibility that the stimulatory effect of the playgrounds was

declining over the course of the experiment is further supported by

the finding that, even though the playground mice were more

active and required less handling than home cage mice, by the end

of the study the amount of handling they needed had increased

significantly. The R6/2 mice needed a larger increase in handling

between weeks 1 and 6 than WT mice to keep them active during

the enrichment period, in both the home cages and playgrounds.

This correlated with the onset of an overt phenotype in the R6/2

mice, although the mice were still capable of climbing and

running. It is possible that as part of their developing phenotype

with increasing age, R6/2 mice find their surroundings less

interesting than do their WT littermates and display a reduction in

voluntary activity. This could reflect an element of apathy. Apathy

has been shown to be a major component of the disease in patients

[28], and it becomes more severe with illness duration, and motor

and cognitive dysfunction [29,30,31]. There are currently no

reliable tests for apathy in rodents, but an apathy-like syndrome

has been identified and successfully treated in R6/2 mice [17]. It

would be interesting to apply the same pharmacological

intervention to an EE study, to see whether improving the

circadian rhythm has added benefits in enriched mice.

The need for an increased amount of handling to keep the R6/2

mice active as the experiment progressed may be due to a

developing dysfunction in their circadian rhythms. We have shown

that as R6/2 mice age, their circadian activity changes from a

pattern of discrete extended periods of activity and sleep, to a

constant level of very short periods of activity and inactivity [15]. It

is not clear what causes this change. The main mammalian

circadian oscillator is the suprachiasmatic nucleus (SCN) in the

hypothalamus. The hypothalamus controls a number of important

physiological functions, such as feeding and drinking, that are also

abnormal in R6/2 mice [32,33]. This may be caused by

hypothalamic neuronal degeneration/atrophy [34]. However,

although the circadian rhythms of R6/2 mice are disrupted, the

SCN itself appears to function normally in vitro [16]. This suggests

that the abnormal behavioural and molecular circadian rhythms

observed in R6/2 mice arise from dysfunction of brain circuitry

afferent to the SCN, rather than the pacemaker itself [16].

Although we could not measure circadian rhythms directly in this

experiment, we hypothesize that disruptions to the sleep-wake

patterns of these mice may have resulted from enrichment during

circadian day. These disruptions, together with developing deficits

in metabolism [32] and motor function [35], might have left the

R6/2 mice increasingly more tired and less rousable than their

WT littermates. It is possible, therefore, that the increasing

inactivity seen in the R6/2 mice was a result of decreased strength

and energy. This hypothesis is supported further by the body

weight data from this study, which showed weight loss in all R6/2

mice by the end of the enrichment period. It is interesting that

there was a tendency among R6/2 home cage mice of both sexes

for the no-handling groups to be heavier than handling groups

towards the end of the enrichment period. Interestingly, in the

male R6/2 handling groups, playground exposure led to increased

body weight at the end of the enrichment period, a tendency that

was not observed in female groups. These findings further support

a sex-specific mix of beneficial and detrimental effects of the two

types of enrichment.

Sex-dependent differences in normal behaviour have been

reported in other rodent models of HD. In a rat model, male

animals display increased daytime activity at an earlier stage of

phenotype than female rats [36]. In the N171-82Q model, male

mice show poorer performance on the rotarod than female mice

[37]. In the YAC128 model, female mice live longer than male

mice [38]. A detailed examination of the 140 CAG knock-in

model of HD also revealed a number of sex differences, including

increased grooming and dark phase running in female mice, and

decreased climbing in male mice [39]. These studies have shown

sex differences in phenotypically-altered behaviours, but ours is the

first to demonstrate that modulation of the environment also has

sex-dependent effects in R6/2 mice, with enrichment having

either positive or negative effects depending upon the sex of the

mouse.

One unexpected finding is the trend towards changes in body

weights in WT mice, long after the end of the EE period. Male

WT mice that had been exposed to the playgrounds tended to

have higher weights than home cage mice (in both the handling

and no handling conditions) from around 21 weeks of age,

although this difference reached significance in the handling group

only. It is unclear what could have caused this, since by the time

the effect developed, the mice had been out of the playgrounds for

6 weeks.

Results from this experiment have demonstrated clearly sex

differences in response to EE. While exposure to the playgrounds,

for 6 hours a day over a 6 week period, significantly improved

Table 1. Median survival times of R6/2 mice.

Median survival (days)

Sex Group No handling Handling

Male Home cage 141 156

Playground 163 152

Female Home cage 156 177

Playground 176 158

doi:10.1371/journal.pone.0009077.t001

Table 2. Survival comparisons using log-rank test between groups of female R6/2 mice.

Home cage/no handling Home cage/handling Playground/no handling Playground/handling

Home cage/no handling x ** * x

Home cage/handling ** x x n.s.

Playground/no handling * x x n.s.

Playground/handling x n.s. n.s. x

*p,0.05, ** p,0.01, *** p,0.001, n.s. not significant, x comparison not valid.
doi:10.1371/journal.pone.0009077.t002
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survival in both male and female R6/2 mice, beneficial effects of

EE on cognition were seen in females only. Although the effects we

observed were not as marked as those reported in other EE studies,

there are two possible reasons for this. The first reason is that we

used R6/2 mice, which have an early, aggressive onset of

phenotype, and so have been rarely used in EE experiments.

The second reason is that our mice are routinely kept in conditions

that would, in most labs, be considered ‘‘enriched’’ already. They

are group-housed, have plastic nest boxes, a range of bedding,

lowered water bottle spouts, and a mashed food supplement to

facilitate feeding and help maintain hydration. This home cage

enrichment raises the threshold for beneficial changes and makes

them less likely. Data from the current study, which show that

enhanced EE can produce a further improvement in cognitive

ability and survival, are very encouraging in the context of using

EE to improve the quality of life of HD patients.

Supporting Information

Figure S1 Quadrant and zone preferences during first Morris

water maze (MWM) trial. Percentage times spent in each quadrant

(A) or zone (B) during the first training trial in the MWM are

shown for WT and R6/2 mice, with data from both sexes and all

experimental groups pooled. All data shown are mean 6 s.e.m.

n.s. = non-significant, * p,0.05, ** p,0.01, *** p,0.001.

Found at: doi:10.1371/journal.pone.0009077.s001 (0.30 MB

TIF)

Movie S1 Example of playground configuration.

Found at: doi:10.1371/journal.pone.0009077.s002 (4.03 MB

MP4)

Movie S2 Demonstration of the gentle handling used to keep

mice active.

Found at: doi:10.1371/journal.pone.0009077.s003 (1.60 MB

MP4)
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