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Abstract In the last decade, significant progress has been
made in expanding the scope and depth of publicly
available immunological databases and online analysis
resources, which have become an integral part of the
repertoire of tools available to the scientific community for
basic and applied research. Herein, we present a general
overview of different resources and databases currently
available. Because of our association with the Immune
Epitope Database and Analysis Resource, this resource is
reviewed in more detail. Our review includes aspects such
as the development of formal ontologies and the type and
breadth of analytical tools available to predict epitopes and
analyze immune epitope data. A common feature of
immunological databases is the requirement to host large
amounts of data extracted from disparate sources. Accord-
ingly, we discuss and review processes to curate the
immunological literature, as well as examples of how the
curated data can be used to generate a meta-analysis of
the epitope knowledge currently available for diseases of
worldwide concern, such as influenza and malaria. Finally,
we review the impact of immunological databases, by
analyzing their usage and citations, and by categorizing the
type of citations. Taken together, the results highlight the
growing impact and utility of immunological databases for
the scientific community.
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Introduction

In recent years, immunological databases and analysis
resources (DBARs) have become a common tool, widely
and increasingly utilized by the biological and immunolog-
ical research communities. DBARs are utilized by scientists
working in academia, biotechnology companies, and large
pharma alike, to aid in the design and evaluation of new
vaccines, diagnostics, and immunotherapeutics. The basic
scientist utilizes them to aid the design and interpretation of
experiments probing the nature of host pathogen interac-
tions, autoimmune diseases, cancer, transplantation, and
allergies. In addition, bioinformatics scientists utilize
immunological databases as a source of data to explore,
refine, and develop new tools and algorithms. Finally, it
should be underscored that the development of immuno-
logical databases has played an important role in the design
of formal data ontologies, and their integration within the
broad, mainly grass roots efforts to develop a global
ontology of biological events and investigations.

For the purpose of this review, we briefly summarize
databases and data analysis resources of potential immuno-
logical interest and then focus in detail on two main
categories of DBARs—databases hosting primary data and
experimental details relating to immune epitopes and
analysis resources that host tools to analyze such data
and/or to predict epitopes or epitope characteristics in
unknown antigenic systems. Because of our role in the
development of the Immune Epitope Database and Analysis
Resource (IEDB), this resource is reviewed in more detail
as both a prototype and test case.

The task of compiling a listing of all online resources of
potential immunological interest is in and of itself not an
easy one, perhaps a testament to the tremendous growth and
richness of the field. Herein, a list of over 40 different
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DBARs (Table 1) has been assembled by compiling
resources known to us and immunological databases pub-
lished in the 2009 Nucleic Acids Research Immunological
Database List (www.oxfordjournals.org/nar/database/cat/14).
The list has been broadly classified into ten different
categories, relating to the scope of each particular DBAR.
Table 1 lists each DBAR, its scope, the principal investigator
(s), and the year each DBAR was established. In some cases,
multiple DBARs with similar scopes were consolidated,
such as DBARs with common principal investigators (i.e.,
Rhagava, Brusic, and Flower), and the various National
Institute of Allergy and Infectious Diseases (NIAID) Bio-
informatics Resource Centers (Aurrecoechea et al. 2007;
Squires et al. 2008; Greene et al. 2007a, b; McNeil et al.
2007; Brinkac et al. 2009; Snyder et al. 2007; Lawson et al.
2007; Greene et al. 2007a, b).

Databases hosting immune epitope data

With respect to databases hosting primary data and ex-
perimental details relating to immune epitopes, several
different resources should be considered. Some resources
such AntiJen (Toseland et al. 2005), FIMM (Schonbach et
al. 2005), and HLA-ligand (Sathiamurthy et al. 2003) are
not currently maintained and/or the data contained within
them were migrated to newer versions and websites. With
regard to the scope of the data curated, there is con-
siderable overlap between some of the main databases.
However, some clear distinctions can be made. For example,
the SYFPEITHI database (Rammensee et al. 1999) currently
contains the most comprehensive collection of naturally
processed and cancer-derived epitopes. The HIV Molecular
Immunology Database (Los Alamos) contains the most
comprehensive and highly curated collection of HIV/SIV
derived epitopes (Korber et al. 2007). Finally, while the
Immune Epitope Database and Analysis Resource (Peters et
al. 2005) does not currently curate cancer- and HIV-derived
epitopes, it does contain the most comprehensive and
highly curated epitope collection relating to infectious
diseases, microbes (excluding HIV), allergens, and autoim-
munity. It is expected that all transplantation epitopes will
become available in the IEDB within the next year.

We sought to perform a comparative analysis of the data
housed in each DBAR in terms of references curated,
number and types of epitopes and assays, number of
antigens and proteins from which the epitopes are derived,
and host organisms in which the immune response directed
against the epitope originated. This analysis was challeng-
ing because, in some cases, the resources are no longer
available online, while, in other cases, the data are not
available, as the databases can only be searched for specific
records, and global searches are not feasible.
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With these caveats in mind, the results of our analysis
were compiled following thorough examination and query-
ing of each DBAR or extracted from metrics published by
the DBARSs themselves and are listed in Table 2. Although
the bases for the comparisons are IEDB data parameters, a
concerted effort was made to retrieve equivalent metrics
from the other DBARs. However, the exact definitions of
each parameter may not necessarily be consistent among
the various DBARs.

As shown in Table 2, in terms of curated references, the
HIV Molecular Immunology Database hosts data derived
from about 2,500 references and the IEDB from about
7,000. Given that the focuses of these two databases are
non-overlapping, these two DBARs combined are the most
comprehensive in terms of curated references. However, it
should be pointed out that neither the IEDB nor the HIV
Molecular Immunology Database currently curate cancer
references. Other databases, such as MHCBN (Lata et al.
2009), EPIMHC (Reche et al. 2005), and SYFPEITHI can
be used to fill this gap.

Perhaps, as a result of its broad focus and comprehensive
approach to curation, the IEDB seems to be the most
comprehensive repository in terms of number of epitopes
and specific assays curated. Exceptions to this are found in
the realms of MHC ligand elution assays and information
on peptides interacting with TAP. The former are abun-
dantly represented in the SYFPEITHI resource. While
actual numbers were not available to us, we estimate that
the number of records relating to this type of assay present
in SYFPEITHI vastly outnumbers those present in the
IEDB. The MHCBN database provides a search interface
that enables the user to query for TAP-associated peptides
in human, mouse, or rat hosts and provides the results in
terms of binding affinity.

In conclusion, each of the DBARs examined has a clear
focus in terms of the scope of the data it houses. In the
following section, we describe in more detail the IEDB, in
whose design and implementation our group has been
involved.

The development of a formal ontology for the IEDB

The IEDB is unique within DBARs hosting primary data in
two respects. First, the IEDB was designed with an
experiment-centric view. Rather than hosting lists of
epitopes and associated characteristics, the IEDB data
structure is based on curation of the actual experimental
data associated with a given potential epitope structure. For
this reason, the experimental details relating to the
organism that represents the source of the epitope and the
details relating to the host whose immune system recog-
nized the epitopes are both captured. Likewise, the
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Table 1 Database and analysis resources of immunological interest

Database/resource Scope Principal investigator(s) Year est. Link
Immune Epitope Database Epitope Sette and Peters 2005 www.iedb.org
and Analysis Resource (IEDB)
SYFPEITHI Epitope Rammensee and Stevanovic 1999 www.syfpeithi.de
JenPep, AntiJen Epitope Flower 2002 www.jenner.ac.uk/Antijen/
HIV Molecular Immunology Epitope Korber 1995 www.hiv.lanl.gov
Database (Los Alamos)
MHCPEP, FIMM Epitope Brusic 1994 a
NetMHC, NetCTL1.0 Epitope Lund 2003 www.cbs.dtu.dk/
HLA-Ligand Epitope Hildebrand 2003 a
Epitome Epitope Schlessinger 2006 http://cubic.bioc.columbia.edu/services/
Epitome/
EPIMHC/Rankpep Epitope Reche 2005 http://bio.dfci.harvard.edu/Tools/
SUPERFICIAL Epitope Preissner 2005 http://bioinformatics.charite.de/superficial/
MAPPP Epitope Kaufmann 2003 www.mpiib-berlin.mpg.de/MAPPP/
EPIPREDICT Epitope Wiesmiiller 2001 www.epipredict.de/
BClpep, ProPred, MHCBN, Epitope/haptens Saha, Bhasin, & Raghava 2001 www.imtech.res.in/bic/
ABCPred, BceePred,
HaptenDB
SuperHapten Haptens Guenther & Preissner 2007 http://bioinformatics.charite.de/superhapten/
HPTAA Human genes Wang 2006 www.hptaa.org/
and diseases
IL2Rgbase Human genes Puck 1996 http://research.nhgri.nih.gov/scid/
and diseases
NetChop Human proteasomes Brunak 2002 www.cbs.dtu.dk/services/NetChop/
PAProc Human proteasomes Nussbaum 2001 www.paproc.de/
dbMHC Immunological Helmberg & Feolo 2000 www.ncbi.nlm.nih.gov/gv/mhc/
IPD (ESTDAB, HPA, Immunological Robinson, Waller, & Marsh 2006 www.ebi.ac.uk/ipd/
KIR, MHC)
IMGT (LIGM-DB, MHC-DB,  Immunological Lefranc 1989 www.imgt.org/
PRIMER-DB, GENE-DB,
3Dstructure-DB)
VBASE2 Immunological Retter 2005 www.vbase2.org/
InnateDB Immunological Lynn 2008 http://innatedb.ca/
Systemsimmunology.org Immunological Collaborative program 2007 www.systemsimmunology.org/
ImmPort Immunological Scheuermann and Karp 2005 www.immport.org/
RCSB PDB Macromolecular Berman, Quesada, 1998 www.pdb.org
structures and Bourne
MHC—Peptide Interaction Metabolic and Ranganathan 2003 http://surya.bic.nus.edu.sg/mpidt/
Database signaling pathways
TmaDB Micorarray and Sharma-Oates 2005 www.bioinformatics.leeds.ac.uk/tmadb/
gene expression
GPX-macrophage Micorarray and Grimes 2005 http://gpxmea.gti.ed.ac.uk/
gene expression
Interferon Stimulated Micorarray and Williams 2001 www.lerner.ccf.org/labs/williams/xchip-html.cgi
Gene Database gene expression
NIAID Bioinformatics Microbes and Greene, Collins, Roos, 2006 www.pathogenportal.org/
Resource Centers infectious diseases  Stevens, Sobral,
Scheuermann, White,
Lefkowitz
MUGEN Mouse Database Vertebrate genomes Kollias 2003 WWWw.mugen-noe.org/

 Database/resource is no longer available online
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Table 2 Data content in epitope DBARs

Epitope database/resource
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49

2,117

38,552 113,232 81,084 157,021 961

43,258

7,840

Immune Epitope Database and
Analysis Resource (IEDB)

AntiJen

15,557

N/A

3,994
N/A

U

2,960

15
17

N/A

N/A

7,782

1,134
2,538

SYFPEITHI

1,751

7,084

HIV Molecular Immunology

Database (Los Alamos)

MHCBN
Epitome

N/A
N/A
N/A

24,739

N/A

N/A

N/A

4,907
N/A

1,519

N/A
N/A

N/A
N/A

10,180

N/A

19

8,201

4,867

EPIMHC

MHCPEP/FIMM and HLA-ligand are not shown as these resources are no longer available online

N/A not applicable, U unavailable

experimental circumstances surrounding the immunization,
the assay system, and the ultimate readout utilized are also
captured.

Second, the experimental data are captured in a
searchable format, thus allowing the user to select the type
of host, experimental procedures, taxonomic domains, or
immunological outcome of interest. This circumvents the
need for somewhat arbitrary stipulations of how to define
an epitope and allows searches to be flexible and adapted to
specific questions (Vita et al. 2008).

Soon after work commenced on the IEDB, it became
apparent that development of a formal ontology was
necessary to accurately represent experimental detail in a
relational database, encompassing for each captured ex-
periment as many as 300 different data fields. Formal
ontologies, as described in detail elsewhere (Schulze-
Kremer 2002; Bard and Rhee 2004) are a formal represen-
tation of the different entities encountered in a given
domain and their relation to each other. Development of a
formal ontology for the IEDB became instrumental in
ensuring the uniform and consistent curation of the data, so
that different curators could consistently represent different
papers and experiments. Ultimately, a formal ontology
allowed the representation of complex processes in a
computer-readable format and made it possible to integrate
the knowledge contained in different databases.

The first version of the IEDB ontology was developed
before any information had been curated and was used to
guide the design of the database itself (Sathiamurthy et al.
2005). With the database implemented and data being
curated, a more formal and comprehensive ontology was
developed. This was done in parallel with the initiation of a
collaborative project, the Ontology of Biomedical Inves-
tigations (OBI), which aims to represent entities necessary
to describe investigations in general, such as assays,
reagents, and data (Lord et al. 2009).

Thus, the information captured in the IEDB can be
described in the same terms as in other resources that also
utilize OBI. The specific terms necessary to describe
epitopes and their recognition were captured in the
ONTology of Immune Epitopes (ONTIE; Greenbaum et
al. 2009a, b). Having the IEDB data represented using
terms rigorously defined in a formal ontology has facilitated
the ability to perform data consistency checks, formulate
highly expressive queries, and has enhanced the potential
for seamless interoperability with other data resources
(Peters and Sette 2007).

Analysis resources: prediction of T cell epitopes

In parallel to databases hosting primary data, a number of
online resources provide tools that facilitate predictions
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of T cell epitopes on the basis of MHC class I and class
II binding, their propensity to being transported by TAP,
or their generation by proteosomal processing (for class I
restricted epitopes only). In terms of predicting MHC
binding, the simplest approach is based on motifs
describing primary and secondary anchors associated
with epitopes or ligands for specific allelic molecules.
Several different resources provide motif listings (see
SYFPEITHI, Center for Biological Sequence Analysis,
the HIV Molecular Immunology Database), but it is
widely recognized that predictions based on motifs alone
are associated with poor performance because too many
potential leads are identified and many epitopes lack
canonical motifs (Ruppert et al. 1993). Accordingly, more
sophisticated predictive tools have been developed, such
as quantitative matrices, artificial neural networks, and
support vector machines.

In discussing these types of analytical tools in the
context of the various analysis resources, two separate
issues can be identified. First, the evaluation of the
accuracy and sensitivity of the tools provided by the
various resources and second, the breadth of MHC class I
and class II molecules for which such predictions are
available.

A rigorous evaluation of the performance of the
various tools was lacking until recently when side-by-
side evaluations of various tools were presented for both
MHC class I and class II molecules (Peters et al. 2006;
Lin et al. 2008; Wang et al. 2008). In those evaluations,
care was taken to ensure that all methods were bench-
marked on large and rigorously curated datasets and that
the methods were not evaluated using the same datasets
utilized for training the algorithms. Rigorous measures of
the accuracy, sensitivity, and true predictive value of the
algorithms were defined and consistently applied. When
such across-the-board, plain-level field evaluations were

Table 3 Tools content in epitope DBARs

performed, it was found that, in general, different
methods provide relatively similar levels of performance.
Within the different methods evaluated, however, non-
linear methods such as those using artificial neural
networks and consensus tended to provide the best overall
performance compared with linear ones (e.g., scoring
matrices).

The main determinant of the performance of a specific
algorithm, in actuality, appeared to be the amount of data
available to train and evaluate the predictions. In that
respect, it is predicted that the performance of MHC
binding predictions will continue to improve as the quantity
of experimental data available to the bioinformatics com-
munity continues to steadily increase. As expected, the
overall performance of MHC class I predictions was
significantly better than their class II counterpart. No
systematic evaluations of the value of proteosomal cleavage
and TAP transport predictions have been published, but our
empirical experience suggests that, although of theoretical
relevance, these predictions generally provide little, if any,
improvement in performance over predictions of MHC
binding alone.

Table 3 provides a summary of the scope of T cell
prediction tools available in epitope-related DBARs. The
IEDB provides the largest number of predictors, reflective
of the fact that multiple predictive methods are offered
while also allowing the user to generate consensus predic-
tions, which have been shown to be most effective (Mallios
2003; Wang et al. 2008; Zhang et al. 2009). In terms of
breadth of algorithms available, the HIV Molecular
Immunology Database provides the most extensive library
of MHC class I predictors. However, the only method
utilized for prediction is HLA binding motif, which has
been shown to be less accurate and sensitive than other
methods, such as neural networks and Stabilized Matrix
Method (Peters and Sette 2005; Lundegaard et al. 2008).

Epitope database/resource T cell epitope MHC class I  MHC class I  MHC class T MHC class I B cell Analysis
prediction tools  prediction prediction prediction prediction tools tools
(predictors)* methods alleles methods alleles available  available
Immune Epitope Database and 993 6 82 5 67 3 4
Analysis Resource (IEDB)
SYFPEITHI 154 1 37 1 6 N/A N/A
HIV Molecular Immunology 205 1 165 1 40 1 12
Database (Los Alamos)
ProPred, ABCPred, BcePred 51 N/A N/A 1 51 8 N/A
Rankpep 199 1 86 1 61 N/A N/A
MAPPP 264 2 44 N/A N/A N/A N/A

 These figures represent the total number of all permutations of prediction methods, prediction alleles, and prediction peptide lengths available

N/A not applicable, U unavailable
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Most other resources are comparable in the breadth
(number) of MHC class II allelic predictors. In terms of
hosts for which predictors are available, in general, human
and murine MHC are the most frequently found. Predic-
tions for other hosts are also offered such as non-human
primates (chimpanzee, macaque), rat, and cow.

In summary, a variety of different analysis resources
provide tools that can be utilized to predict class I and class
II restricted epitopes, by a number of different methods and
for a number of different alleles. However, several areas
appear to be worth considering for future developments,
and they include improving the performance of class II
predictive tools, expanding the breadth of class II alleles for
which predictive tools are available and also increasing
coverage of host species beyond mice and humans.

The prediction of B cell epitopes

In contrast to the progress made in the realm of MHC
binding prediction tools, the prediction of B cell epitopes
has, thus far, proven a more challenging task. The
performance of various B cell prediction tools was
evaluated by Blythe and Flower (2005) and also scrutinized
in a specific focus panel (Greenbaum et al. 2007). A key
difference from T cell epitope prediction tools is that the
specificity associated with MHC molecules is not present,
and as such, the prediction methods are developed to be
generally applicable irrespective of genetic polymorphisms
and species of the immune responses host.

Most algorithms utilized are based on the assumption
that epitopes recognized by antibody responses are exposed
on protein surfaces and/or are enriched in the content of
specific amino acid residues. Accordingly, various combi-
nations of structural predictions, molecular modeling,
hydrophilicity, and solvent exposure scales are utilized. At
best, the various methods are associated with area under the
curve (AUC) values around 0.7 (with 0.5 being the AUC
value of random predictions and up to 0.99 and 0.89 for
state-of-the-art MHC binding predictions for certain class I
and class II alleles, respectively).

Several DBARs [ABCPred and BcePred (Saha and
Raghava 2007), IEDB (Ponomarenko et al. 2008)] host
state-of-the-art B cell epitope prediction tools. BcePred
provides prediction of linear B cell epitopes utilizing the
traditional approach based on physicochemical properties, a
strategy which has in the past been shown to be only
marginally stronger than random (Blythe and Flower 2005).
ABCpred, on the other hand, utilizes a more progressive
recurrent neural network approach, which, when evaluated
on protein sequences not used in the development of its
algorithm, was shown to produce relatively better predic-
tive performance (Saha and Raghava 2006). Newer
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approaches are also being developed, especially in the
context of a recent initiative from the NIAID that awarded
large-scale B cell epitope discovery contracts with the
recommendation to utilize the data generated to improve B
cell epitope prediction methods.

Analysis tools: sequence conservation, population
coverage, and epitope visualization

The two preceding sections describe bioinformatics tools
aimed at the prediction of T and B cell epitopes. In addition,
various other types of tools are available to the scientific
community. These tools can be collectively designated as
analytical tools, as they are designed to assist in under-
standing the data associated with various epitopes rather
than prediction of new ones. Examples of these tools are
sequence conservation tools, population coverage tools, and
epitope visualization tools.

The HIV Molecular Immunology Database provides a
number of analysis tools designed to aid researchers in
applying epitope knowledge to vaccine design. For exam-
ple, the Hepitope tool tests for HLA alleles that are
enriched in a set of individuals that react with a set of
known reactive peptides. The Epicover tool, which com-
putes how well a potential vaccine cocktail (antigen set)
covers potential user-specified epitopes, can also be
harnessed for vaccine development (Thurmond et al.
2008). An alignment tool called Epilign is also available
and allows the user to align epitopes or functional domains
to HIV1, HIV2, or SIV.

The IEDB also hosts several analytical tools. The
epitope conservancy tool, for example, enables the user to
specify the sequence of a set of epitopes of interest, and the
tool can return the degree to which each epitope is
conserved in a set of related protein sequences of interest,
also specified by the user (Bui et al. 2007a, b). Within the
IEDB, a tool also allows users to compute the population
coverage projected for a given T cell epitope(s) based on its
known HLA restriction or binding characteristics and on
the frequency of HLA molecules in different ethnic groups
(Bui et al. 2000).

Another class of analytical tools can be collectively
designated as epitope visualization tools. These tools range
from tools that allow visualizing the location of an epitope
or a series of residues within a given 3D structure, to
genome browsers that map and visualize the epitope
location within different ORFs and their respective location
within genomic information (Beaver et al. 2007). MHCBN
offers a peptide mapping tool that displays the location of
known MHC binders, TAP binders, and T cell epitopes
available in MHCBN database on the protein sequence
provided by the user.
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The curation of immune epitope data

It is becoming more and more apparent that curation of large
amounts of biological data is a requisite to the establishment
of large data depositories in general. A key element of large-
scale curation is the development of objective criteria for
curation, which is dependent on development of ontologies, as
described above. Another key element is process automation,
which is, in turn, dependent upon ontology and objective
process development.

These issues apply to the development of biological
databases in general and to immunological DBARs in
particular. As stated above and described in more detail
elsewhere (Vita et al. 2008), the curation of experimental
data at the level of detail and granularity required by the
IEDB ontology requires the establishment of a rigorous yet
objective process to ensure consistency and compatibility
with partial automation.

The IEDB process of curating relevant scientific
published literature starts with automated PubMed
queries that are executed at 3-month intervals. These
queries are designed to be broad in nature, in order to
capture as many potentially relevant papers as possible.
Specifically, of the over 18 million papers listed in the
PubMed resource, we have to date identified approxi-
mately 145,000 as being potentially relevant. The
abstracts of these potentially relevant references are then
scanned by automated text classifiers (Wang et al. 2007)
and also further inspected by senior immunologists, to
select the truly relevant references to continue in the
curation process per se.

A total of roughly 24,000 references have been
identified at this stage and divided into major reference
classes (infectious disease, HIV, autoimmunity, allergy,
transplantation, cancer, and “others”). Within each class,
each reference is then placed in one of several categories.
For example, the autoimmunity class is further catego-
rized into diabetes, multiple sclerosis, rheumatoid arthri-
tis, lupus, etc. Within each category, subcategories are
used to more accurately categorize the references. For
example, the diabetes category includes subcategories of
insulin and GAD. The classes, categories and subcatego-
ries, are used to prioritize and organize the curation flow.
They have also provided interesting insights relating to
global disease morbidity and mortality data. We have
found that, in most cases, diseases associated with high
morbidity and mortality have been the most studied,
while some areas such as dengue, Schistosoma, HSV-2,
Bordetella pertussis and Chlamydia trachomatis were
associated with far less extensive coverage. These types
of analyses may provide a justification for focusing
research towards relatively less well-studied yet critical
disease areas (Davies et al. 2009).

Following categorization, the references are curated by a
staff of doctoral-level curators. Quality control is provided
by computer-based validation and by a system of peer
review of curated records (Vita et al. 2006). Currently, the
curation of microbes and allergen epitopes is essentially
complete and up-to-date, while curation of autoimmune and
transplant epitopes is ongoing.

Meta-analysis of influenza immune epitope data

A corollary of the availability of large amounts of data in
specialized data repositories is that the data itself can be
mined to investigate trends that might not be revealed by
examining the data included in a given study because of
small sample size (Liberati et al. 2009). Meta-analysis of
immunological data is particularly effective in revealing, in
a given field of research, pathogen, or disease system,
which areas have been targeted most extensively by
research and which areas conversely represent knowledge
gaps. Immune epitope data meta-analyses for a given
disease or pathogen facilitate the use of the data, engage
community experts, and can lead to formulation of novel
hypotheses. Typically, a meta-analysis is based on the
inventory of current knowledge of T cell and antibody
epitopes, host organisms, disease states, conservancy, and
other relevant variables.

In the case of influenza, analysis of the immunologic
data available in the literature as of the end of 2006 (Bui et
al. 2007a, b) provided a comprehensive catalog of influenza
epitopes, thus establishing a resource for investigators
wishing to utilize them in basic studies, or in the evaluation
of different vaccination strategies or vaccine constructs.
The analysis, however, also revealed several gaps existing
at that point in time. Relatively few epitopes were defined
in birds and non-human primates, and there was a striking
paucity of well-defined antibody epitopes, especially in
humans. Few epitopes were characterized for their protec-
tive potential. Overall, a limited number of epitopes were
reported for avian influenza strains and subtypes. Finally,
other than HA and NP proteins, there were relatively few
epitopes reported for the other influenza proteins. It should
be noted that several of these knowledge gaps have since
been significantly bridged by researchers from many
different groups (Ekiert et al. 2009; Sun et al. 2009; Yu et
al. 2008).

An updated analysis of influenza epitope data with
special emphasis on swine-origin HIN1 (Greenbaum et
al. 2009a, b) examined the sequence of reported epitopes,
which, by definition, represent the pool of preexisting
immunity in the general human population. As expected,
the majority of antibody epitopes were not conserved in
the novel swine-origin influenza (S-OIV), supporting the
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notion that widespread vaccination with an S-OI'V-specific
vaccine is required to prevent infection in the general
populace. However, the majority of the epitopes recog-
nized by CD8+ T cells were completely invariant. Based
on these results, it was hypothesized and then experimen-
tally demonstrated that some T cell immunity is preexist-
ing in the general population against S-OIV and of
magnitude similar to that preexisting against seasonal
HINT1 influenza.

Meta-analysis of immune epitope data of additional
pathogens

Additional epitope meta-analyses relating to the knowledge
associated with tuberculosis, botulinum/anthrax toxins,
malaria, and poxviruses have been produced (Bui et al.
2007a, b; Blythe et al. 2007; Zarebski et al. 2008; Vaughan
et al. 2009; Moutaftsi 2010).

While the Mycobacterium tuberculosis genome contains
approximately 4,000 potentially expressed proteins, epito-
pes have only been identified from approximately 150 of
them (~4%). Furthermore, 23 of these proteins contain ten
epitopes or more. These 23 proteins account for more than
71% of the total epitopes identified. It is possible that
immune responses are highly focused on very few antigens,
and the immune system is oblivious to the vast majority of
the coding ORFs. More likely, many antigens have not been
characterized and investigated, and a genome-wide ap-
proach to epitope/antigen identification would reveal many
additional antigens. Another noteworthy finding was that,
while epitopes have been described for various disease
states, such as clinically active versus latent tuberculosis,
exposed, but not converted, and BCG vaccinated studies
comparing these different patient populations side-by-side
in a systematic fashion have been scarce.

A similar analysis revealed a wealth of plasmodial
epitope data available for the scientific community
(Vaughan et al. 2009), including a total of 1,566 unique
epitopes consisting of 892 T cell (mostly CD4") and 896
B cell. Strikingly, as in the case of mycobacteria, epitopes
were derived from relatively few antigens. While antigens
from all life cycle stages were represented, most epitopes
were derived from antigens expressed at the parasite
surface during liver and asexual blood stages. In all, epi-
tope data were available for only 46 plasmodial antigens,
and more than 95% of the malaria genome was not
represented. As in the case of M. tuberculosis, high
throughput epitope/antigen identification might reveal
many new promising antigens.

Indeed, analysis of poxviruses and vaccinia virus
highlighted that a large number of antigens spanning
virtually every ORF can be targeted by immune responses
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in complex pathogens with a genome composed of more
than 200 different ORFs (Moutaftsi et al. 2007; Sette et al.
2008). In conclusion, meta-analysis of epitope data is a
novel avenue to provide the scientific community with a
“forest” rather than “tree” level view of the content and
granularity of the scientific literature related to specific
disease indications.

The impact of immunological databases

As described in the previous sections, a number of different
DBARs are available to the scientific community. In this
and following sections, we explore in more detail the
specific impact that these resources have had on the
scientific community. We first sought to estimate the impact
of each DBAR in terms of the number of PubMed citations
of primary publications describing each DBAR. To this
end, we assembled a list of publications associated with
each DBAR. First, we performed PubMed queries, adopt-
ing a uniform and unbiased approach that would facilitate
interdatabase comparisons and designed to retrieve pub-
lications relevant to each DBAR. Accordingly, each query
consisted of the name(s) of the principal investigator(s), in
addition to the word “database” followed by a wild-card
character. The resulting publication list was then manually
inspected to exclude those publications that were obviously
irrelevant. The error rate of this approach was analyzed by
using the IEDB as a test case. This query strategy produced
35 publications. Cross-checking against our master list, the
query successfully retrieved 22 of the 36 (61%) IEDB-
related references.

Table 4 lists the number of publications obtained for
each DBAR following this procedure, both in absolute
terms and in terms of publications/year. It was found that a
total of eight DBARs were associated with at least ten
different publications, with yearly rates in the 0.67 to 4.5
publications range. Within this group were several
different epitope-based DBARs, including SYFPEITHI,
AntiJen, BClIpep, and, the HIV Molecular Immunology
Database.

The number of citations made to these primary publica-
tions was also quantified by the IST Web of Knowledge and
Google Scholar. This analysis revealed that immunological
and epitope-related databases have a very significant
impact. Taken together the 13 main epitope-related DBARSs
receive on average 466 citations per year, roughly equiv-
alent to one third of the annual citations generated by the
RCSB PDB resource, which has been in operation since
1998, has a much broader scope containing over 60,000
structures of all biological molecules and as such is of
relevance for immunological and non-immunological appli-
cations alike.
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Table 4 Publication and citation metrics for immunologically relevant DBARs

Database/resource Publications ~ Publications/year ~ Citations  Citations/year
Immune Epitope Database and Analysis Resource (IEDB) 22 4.40 564 112.80
SYFPEITHI 11 1.00 1,254 114.00
JenPep, AntiJen 10 1.25 342 42.75
HIV Molecular Immunology Database (Los Alamos) 10 0.67 1,091 72.73
MHCPEP, FIMM 9 0.56 373 23.31
NetMHC, NetCTL1.0 4 0.57 94 13.43
HLA-Ligand 2 0.29 53 7.57
Epitome 1 0.25 24 6.00
EPIMHC 1 0.20 18 3.60
SUPERFICIAL 1 0.20 4 0.80
MAPPP 1 0.14 50 7.14
EPIPREDICT 1 0.11 19 2.11
BClpep, ProPred, MHCBN, ABCPred, BcePred, HaptenDB 12 1.50 481 60.13
SuperHapten 1 0.33 5 1.67
HPTAA 1 0.25 3 0.75
IL2Rgbase 1 0.07 72 5.14
NetChop 2 0.25 170 21.25
PAProc 2 0.22 135 15.00
dbMHC 7 0.70 2,321 232.10
IPD (ESTDAB, HPA, KIR, MHC) 3 0.75 72 18.00
IMGT (LIGM-DB, MHC-DB, PRIMER-DB, GENE-DB, 3Dstructure-DB ) 77 3.67 3,286 156.48
VBASE2 1 0.20 14 2.80
RCSB PDB 54 4.50 19,589 1632.42
MHC-Peptide Interaction Database 2 0.29 25 3.57
TmaDB 0.20 13 2.60
GPX-Macrophage 1 0.20 1 0.20
Interferon Stimulated Gene Database 1 0.11 304 33.78
NIAID Bioinformatics Resource Centers 17 4.25 197 49.25
MUGEN Mouse Database 1 0.14 3 0.43

The number of primary publications for each DBAR was obtained using PubMed queries, and the citations made to these primary publications
were quantified using the ISI Web of Knowledge and Google Scholar. Multiple citations from a single paper were tabulated separately. Duplicate
citations from the ISI Web of Knowledge and Google Scholar were excluded from the total number, except in cases where there were over
200 citations for a given DBAR publication that made finding duplicates manually intensive. In such cases, the resource with the highest number

of citations for a given DBAR publication was used

Probing the nature of citations to assess database usage

The preceding sections illustrate the breadth of DBARs
available, and how these resources are widely utilized and
cited in the scientific literature. We were interested in
probing the usage of the DBARs in more detail and
specifically ascertaining how the online resources are used.
While it is not immediately straightforward to establish the
specific use associated with each user and visit, analysis of
the papers referencing a DBAR can more readily provide
insights in this respect.

To this end, the IEDB citations were further evaluated by
subdividing them by year and category (general IEDB,
analysis resource, and curation/meta-analyses). It was found

that citations of general IEDB publications grew at the
fastest rate and doubled each of the first 3 years, subse-
quently reaching a plateau. By contrast, citations of
publications relating to the analysis resource as well as
the meta-analyses grew at slower rates, but now represent
the dominant source of IEDB citations. Citations of the
meta-analysis started later than the other two categories (the
first meta-analysis was published in 2007), but also appears
to grow at a similar rate (data not shown).

Next, each manuscript citing at least one IEDB publica-
tion was manually reviewed. We found that those citations
fall into several broad categories, such as retrieval of
specific T or B cell datasets (20% and 6%, respectively) and
utilization of specific tools (24%). A number of references
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utilized the IEDB to further ontology development and/or
integration (8%) or to develop and improve predictive or
analytical tools (23%). The distribution of each of the
citation categories is shown in Fig. 1.

Thus, this analysis suggests that the usage of immuno-
logical database and analysis resources is roughly balanced
(IEDB dataset retrieval constitutes 26% of citations, while
tool usage accounts for 24%). Furthermore, the results
indicate that over 80% of all citations are attributable to
practical applications of DBARs, either in terms of tool/
dataset use or further development of new tools and
applications.

Conclusions and discussion

The last decade has witnessed unprecedented growth in the
number of publicly available immunological databases and
analysis resources (Bourne 2005). Though these resources
can be of considerable value to scientists working in myriad
settings, the explosive rate of their proliferation presents
challenges to those scientists to maintain a clear apprecia-
tion of the resources at their disposal. We thus undertook
this review to investigate and present the content of various
immunological DBARs, the scope of their predictive and
analytical capabilities, and their overall impact on the
scientific community with the ultimate goal of informing
the readers and potentially guiding them to the resource(s)
that may be of greatest utility for their research interests.
After compiling a list of resources of potential immuno-
logical interest, we systematically examined those DBARs
hosting experimental data relating to immune epitopes. Our
survey revealed that in terms of data content, each DBAR
examined tends to have a clear strength in certain data
subsets or disease areas and can, therefore, perhaps better
cater to the needs of scientists seeking those particular data.
A noteworthy trend among DBARs is the growing inte-
gration of formal data ontologies (Noy et al. 2009; Yip
2009). Such standardization has already proven to facilitate

Retrieved B
Other  cell Dataset
Tool 5% 6% Retrieved T
Development Cell Ditaset
23% 20%
Review Articles -
14% Utilized Tools
Database/ 24%

Ontology
Development
8%

Fig. 1 IEDB citation categorization by nature of the citation made
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interdatabase connections and data sharing, as evidenced by
links between resources of diverse focuses. A prime
example of this is found in the IEDB, where users can
follow links from epitope data to relevant data in Bio-
HealthBase and EuPathDB, which, in turn, also place links
from their respective websites to the [EDB. Therefore, it is
envisioned that data will become increasingly accessible and
integrated with other data resources in the near future.

We further considered the DBARSs that provide access to
predictive and analytical tools for immune epitope data.
Our intent was not specifically to comparatively examine
the performance of these tools, as such analyses have been
published elsewhere (Mallios 2003; Blythe and Flower
2005; Peters et al. 2005; Peters et al. 2006; Saha and
Raghava 2006; Lin et al. 2008; Lundegaard et al. 2008;
Wang et al. 2008; Zhang et al. 2009). However, several
conclusions about the current state of predictive tools did
emerge from this examination. Specifically, our survey
highlights clear shortcomings in the predictive tools
available. Namely, MHC class II and B cell epitope
predictive tools merit improvement, both in terms of
predictive performance and, for MHC class II, in terms of
coverage of species and alleles currently available. We
anticipate progress in these realms will follow the emer-
gence of larger experimental datasets that will become
publicly available in the near future.

We also explored the impact of immunological databases
by examining their impact on the scientific community, as
well as their strength as a means to clearly and concisely
represent empirical data in a centralized resource. To this
end, we undertook an effort to systematically quantify the
impact of immunological DBARs by collecting metrics on
their publication and citation rates. The high cumulative
citation rate of the epitope-related DBARs is a clear
indicator of the degree to which these resources permeate
the scientific community and help guide research. A closer
examination of the nature of these citations, using the [IEDB
as an example DBAR, revealed that these citations are
mostly attributable to practical applications of the IEDB and
represents further evidence of the direct impacts of DBARSs.

Another indicator of DBAR impact is their utility for
performing systematic meta-analyses (Kaczorowski 2009).
To illustrate this point, we presented several examples of
meta-analyses that have been performed to date based on
the data available in the IEDB. With these examples, we
hope to both raise the reader's awareness of their existence
and to promote further meta-analyses as a means of driving
and guiding continued applications of empirical data.

In this review, we have highlighted both the present
utility of the diverse collection of immunological databases
and analysis resources, while also exposing areas that
require further development. In the final analysis, it is clear
that, while immunological DBARs are presently widely
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utilized by the scientific community, in many respects, the
field is still in its early stages, and continued development
and refinement are necessary. Hence, it is reasonable to
anticipate that the future years will see a diminishing lag
between the emergence of robust experimental data and the
ability of the scientific community to efficiently access and
interpret such data.
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