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Mutation allele burden remains unchanged in
chronic myelomonocytic leukaemia responding
to hypomethylating agents
Jane Merlevede1,2,*, Nathalie Droin1,2,3,*, Tingting Qin4, Kristen Meldi4, Kenichi Yoshida5, Margot Morabito1,2,

Emilie Chautard6, Didier Auboeuf7, Pierre Fenaux8, Thorsten Braun9, Raphael Itzykson8, Stéphane de Botton1,2,

Bruno Quesnel10, Thérèse Commes11, Eric Jourdan12, William Vainchenker1,2, Olivier Bernard1,2, Noemie Pata-Merci3,

Stéphanie Solier1,2, Velimir Gayevskiy13, Marcel E. Dinger13, Mark J. Cowley13, Dorothée Selimoglu-Buet1,2, Vincent Meyer14,

François Artiguenave14, Jean-François Deleuze14, Claude Preudhomme10, Michael R. Stratton15, Ludmil B. Alexandrov15,16,17,

Eric Padron18, Seishi Ogawa5, Serge Koscielny19, Maria Figueroa4 & Eric Solary1,2,20

The cytidine analogues azacytidine and 5-aza-2’-deoxycytidine (decitabine) are commonly

used to treat myelodysplastic syndromes, with or without a myeloproliferative component. It

remains unclear whether the response to these hypomethylating agents results from a cyto-

toxic or an epigenetic effect. In this study, we address this question in chronic myelomonocytic

leukaemia. We describe a comprehensive analysis of the mutational landscape of these

tumours, combining whole-exome and whole-genome sequencing. We identify an average of

14±5 somatic mutations in coding sequences of sorted monocyte DNA and the signatures of

three mutational processes. Serial sequencing demonstrates that the response to hypo-

methylating agents is associated with changes in DNA methylation and gene expression,

without any decrease in the mutation allele burden, nor prevention of new genetic alteration

occurence. Our findings indicate that cytosine analogues restore a balanced haematopoiesis

without decreasing the size of the mutated clone, arguing for a predominantly epigenetic effect.
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C
MML, a clonal haematopoietic malignancy that usually
occurs in the elderly, is the most frequent myelodysplastic
syndrome/myeloproliferative neoplasm1. Nonspecific

cytogenetic abnormalities are observed in 30–40% of cases2.
More than 30 candidate genes were identified to be recurrently
mutated in leukaemia cells3–13. Analysis of these recurrently
mutated genes at the single cell level in 28 CMML bone marrow
samples identified the main features of the leukaemic clone
architecture, including the accumulation of mutations in the stem
cell compartment with early clonal dominance, a low number of
subclones, and a strong advantage to the most mutated cells
with differentiation4. As in several other myeloid malignancies,
ASXL1 gene mutations demonstrated the strongest independent
negative prognostic impact14,15.

The median overall survival of CMML patients is about
30 months, one-third evolving to acute myeloid leukaemia (AML)
while the others die from the consequences of cytopenias.
Allogeneic stem cell transplantation, which is the only curative
therapy, is rarely feasible because of age. In patients ineligible for
transplantation, intensive chemotherapy results in low response
rates and short response duration2. The cytidine analogues
azacytidine (AZA) and decitabine (5-aza-20-deoxycytidine) were
approved for the treatment of CMML16. These azanucleosides
were originally described as cytotoxic drugs, but low doses
also cause DNA demethylation by inactivation of DNA
methyltransferases17,18. It remains unclear whether the response
to these drugs, which is always transient, results from a cytotoxic
or an epigenetic effect.

In this study, to tackle this issue, we completed a comprehensive
analysis of genetic alterations in CMML cells by combining
whole-exome (WES) and whole-genome sequencing (WGS). Then,
we performed sequential WES and RNA sequencing (RNA-Seq)
together with DNA methylation analyses in untreated patients and
patients treated with a hypomethylating drug. Clinical response to
cytidine analogues was associated with a dramatic decrease in
DNA methylation, which was not observed when the disease
remained stable on therapy. In responding patients, the size of the
mutated clone remained unchanged, arguing for a predominantly
epigenetic effect of these drugs.

Results
Genetic alterations in coding regions. Since it remained
uncertain whether the most frequent recurrent gene mutations
had been all identified, we performed WES of paired tumour–
control DNA from 49 CMML cases (Supplementary Figs 1 and 2,
Supplementary Tables 1 and 2). and validated 680 somatic
mutations in 515 genes by deep resequencing (Supplementary
Data 1). The average number of somatic mutations was 14±5 per
patient (range: 4–23; Fig. 1a). The most frequent alterations were
somatic nonsynonymous single-nucleotide variants (SNVs;
N¼ 515; 75.7%; Fig. 1b). Most of the 618 variants were transi-
tions (N¼ 453, 73.3%; Fig. 1c). We detected mutations affecting
an epigenetic regulator gene in 45 out of 49 (91.8%) patients, a
splicing machinery gene in 37 (75.5%) and a signal transduction
gene in 28 (59.2%). Among the 36 genes found mutated in at least
2 patients, 19 had been previously identified in the context of
CMML, validating previous screens of mutations in candidate
genes in this specific disease3–13. TET2, SRSF2 and ASXL1 were
confirmed to be the most frequently mutated genes in CMML14.

Of the 17 other recurrently mutated genes, only 7 were actively
transcribed in CD14-positive19 and CD34-positive
haematopoietic cells (according to Gene Expression Omnibus at
http://www.ncbi.nlm.nih.gov/geo/). These genes include ABCC9
(ATP-binding cassette, sub-family C member 9), ASXL2
(additional sex combs-like 2), DOCK2 (dedicator of cytokinesis

protein 2), HUWE1 (HECT, UBA and WWE domain
containing 1, E3 ubiquitin protein ligase), NF1 (Neurofibromin
1), PHF6 (PHD finger protein 6) and TTN (Titin). Altogether,
recurrent mutations were identified in 26 genes expressed in
haematopoietic cells (Fig. 1d). Constitutive truncating mutations
in TTN gene were recently validated as a cause of dilated
cardiomyopathy20 and the variants identified in CMML samples
were validated by an independent method. Except this very large
gene, the whole coding sequence of the 6 other genes, whose
recurrent mutation in the context of CMML had not been
described previously, was deep sequenced in an additional cohort
of 180 patients (Supplementary Table 3). Of the 229 studied
patients, the most frequently mutated gene was PHF6 (N¼ 17;
7.4%). NF1 was altered in 14 (6.1%) patients. DOCK2 and ABCC9
mutations were detected, respectively, in five samples (2.1%),
HUWE1 mutations in three samples (1.3%) and ASXL2 mutations
in two samples (Supplementary Table 4). On average, each
patient had 3.1 alterations (range: 1–7) among the 26 recurrently
mutated genes identified in this series. Combinations are
summarized in Supplementary Fig. 3 and relationships with
clinical and biological features in Supplementary Table 5.

We extended this analysis by performing WGS of paired
tumour–control DNA from 17 patients. Of the 8,077 somatic
variants identified (Fig. 2a, Supplementary Table 6 and
Supplementary Data 2), 207 were located in coding regions or
splice sites (11.8 per patient; Fig. 2b) and the combination of WES
and WGS identified two additional recurrently mutated genes
that are actively transcribed in haematopoietic cells, ten-eleven
translocation 3 (TET3) and proline-rich coiled-coil 2B (PRRC2B).
All these additional recurrent abnormalities may contribute to
CMML phenotype heterogeneity.

TET3 loss of function mutation. TET3 mutations are very
infrequent in haematologic diseases21,22 and were not detected in
myeloid malignancies so far23. In the two patients with a mutated
TET3 gene, the two alleles of TET2 were also mutated. We further
explored the functional consequences of TET3R148H identified
in UPN22. Genetic analyses of CD14þ cells at the single cell
level (N¼ 21) identified a complex repartition of TET2 and TET3
mutations, with TET2S1708fs being either alone or in combination
with TET3R148H, whereas TET2L1819X was detected in only
one TET3 wild-type cell (Fig. 3a). Expression of wild-type and
TET3R148H alleles in HEK293T cells (Fig. 3b) demonstrated
that TET3R148H mutation impaired the enzyme ability to
promote 5-methylcytosine hydroxylation (Fig. 3c). Since many
functional redundancies have been identified between TET2 and
TET3 dioxygenases (for review see ref. 24), future studies are
necessary to elucidate a potential cooperative interaction between
TET2 and TET3 mutated alleles in diseased cells.

Genetic alterations in non-coding regions. Further analysis of
WGS data indicated that, on average, CMML cells carried 475
(range: 27–854) somatic variants in their DNA (Fig. 2a), 6.3%
being short insertions and deletions. These variants were mostly
in intergenic (63.5%) and intronic (31.5%) regions (Fig. 2b).
Somatic SNVs (93.7%) were mostly transitions (66.3%; Fig. 2c),
and synonymous base changes represented 24.1% of the identified
variants (Fig. 2d). Our computational framework for extracting
mutational signatures25 identified the signatures of three
mutational processes (Fig. 2e). Two (signatures 1 and 5) were
previously observed26 and believed to be due to clock-like
mutational processes operative in normal somatic tissues.
Interestingly, we identified in two cases a novel mutational
signature (signature 31) characterized by C:G4T:A mutations at
CpCpC and CpCpT (mutated based underlined) and exhibiting a
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strong transcriptional strand bias (Supplementary Fig. 4). We did
not detect any recurrent alteration in non-coding regions, as
described in other tumour types27–29. We identified 21 potential
hotspot regions with at least 2 variants in distinct samples being at

most 250 bp far (Fig. 2f). Nine were in the coding sequence of
recurrently mutated genes, and 3 in non-coding regions of genes
transcribed in haematopoietic cells (PDS5A, ZFP36L2 and
NHLRC2). Finally, we detected 147 variants in promoters and 37
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Figure 1 | Somatic variants in coding regions identified by whole-exome sequencing. WES was performed in 49 chronic myelomonocytic leukaemia

samples. (a) Number and type of somatic mutations identified in each patient designated as UPN, showing a majority of nonsynonymous variants. (b)

Repartition of the 680 validated somatic variants identified in the 49 patients. (c) Repartition of base changes with transitions in black and transversions in

grey. (d) Of the 36 recurrently mutated genes identified by WES, 26 are actively transcribed in CD14þ cells and CD34þ cells (according to Gene

Expression Omnibus at http://www.ncbi.nlm.nih.gov/geo/). These 26 recurrently mutated genes are classified according to their function, including

epigenetic regulation, pre-messenger RNA splicing, and signal transduction. Colours indicate the type of mutation. Two colours separated by a slash

indicate two distinct mutations in the same gene.
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Figure 2 | Somatic variants in coding and non-coding regions identified by whole-genome sequencing. WGS was performed in 17 chronic

myelomonocytic leukaemia samples (including one analysed by WES). (a) Number of somatic single-nucleotide variants and short insertions/deletions in

each patient. (b) Repartition of the 8077 somatic variants, expressed as numbers of variants per gigabase, identified across the genomic regions. Mean and

95% confidence intervals (n¼ 17) are shown. (c) Repartition of base changes with transitions in black and transversions in grey. (d) Repartition of the 207

somatic variants identified in coding regions. (e) Mutational signatures extracted from whole genomic analyses. (f) Potential hotspots of mutations (two

variants less than 250 bp apart) including nine in coding regions of driver genes (including TET2, ASXL1, SRSF2, CBL and NRAS), two in intronic regions of

PDS5A and NHLRC2, one in 3’UTR of ZFP36L2, six in intergenic regions and 1 in the mitochondrial chromosome. Numbers between comas indicate the

chromosome number.
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variants in permissive enhancers, of which 3 showed activity in
blood cells (Supplementary Data 3)30.

Serial whole-exome analyses. WES of sorted monocyte DNA was
repeated in 17 patients. The mean time between two analyses
was 14±8 months (range: 4–32). Six patients received supportive
care, whereas 11 were treated with either AZA (N¼ 5) or
decitabine (N¼ 6). The number of serial analyses per patient
ranged from two to five (Supplementary Fig. 1 and Table 7). The
mean duration of treatment was 21±13 months (range: 5–47).
One or two WES were performed before treatment, subsequent
analyses being performed on therapy in samples collected
immediately before the next cycle. Five of the treated patients
demonstrated a response at the time of sampling (‘responders’),
including one complete response (UPN32), three marrow
complete responses with haematological improvement and one
marrow complete response without haematological improvement
(UPN34). In the six other patients, the disease remained stable
on therapy, without haematological improvement (‘non-
responders’)18,31. In total, we performed 27 serial WES analyses.
In 17 cases, we did not detect any change in gene mutations as
compared with the previous analysis, the mutated allele burden
remaining stable in all patients but two (UPN23 and UPN47;
Fig. 4). In responding patients, hypomethylating agents did not
decrease the mutated allele burden in circulating monocytes.

In eight cases, we detected changes in the number of mutated
genes, including three untreated, three non-responders with a
stable disease and one responder (Fig. 4 and Supplementary
Fig. 5). The latter was a 74-year-old man (UPN34) with 12
somatic mutations at diagnosis who successively acquired
mutations in CNTN4 and RAD21 genes, then in KRAS, CNTN6
and PCDHGA6 genes while being in complete marrow response
without haematological improvement. The last exome analysis,
performed in acute transformation, identified an EZH2/ETV6
mutated subclone (Supplementary Fig. 5). UPN46 was analysed
first while being untreated, showing the disappearance of a
subclone with ARID2 and NRAS mutations while another clone
with NRAS, ROBO2, FAT1 and SGSM2 mutations expanded. This
patient was subsequently treated with decitabine and responded
to treatment, without change in mutation number and allele
burden (Fig. 4c, Supplementary Fig. 5 and Fig. 6).

In one additional patient who demonstrated a long and
complete response to AZA, then progressed to AML (Methods
section), serial WGS of bone marrow mononucleated cells32 was
performed. Before AZA therapy, somatic variants in TET2, EZH2
and CBL genes were identified. In a best response sample, a
striking stability of variant allele frequency was observed. At the
time of progression, a loss of heterozygocity of mutated EZH2
was detected, together with the acquisition of a mutation in
ASXL1, and a whole loss of chromosome 7, which was confirmed
by serial cytogenetic analysis (Fig. 5). This observation
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emphasizes the lack of genetic response to AZA and the
possibility to detect genetic progression on therapy, preceding
progression to acute leukaemia.

Gene expression and DNA methylation. In nine of these
patients, we performed serial RNA-Seq (Fig. 6, Supplementary
Tables 8 and 9), the first sample being collected before treatment.
Three remained untreated, and six were treated with a
hypomethylating drug, the second sample being collected on
therapy. Of the six treated patients, three were responders, the
three others remaining on therapy with stable disease
(non-responders). We measured the effect of time on gene
expression. We noticed a strong impact of treatment in
responders, with 513 differentially expressed genes, whereas only
63 genes were differentially expressed in treated patients with
stable disease (non-responders), and none in untreated patients
(Table 1, Fig. 6a,b and Supplementary Data 4). The proportions
of significantly differentially expressed genes between the groups
were all significantly different (Po10� 10, w2-test). Quantitative
reverse transcription–PCR analysis validated all the tested
upregulated genes in an extended cohort of 6 responders
compared with 10 patients with stable disease (Fig. 6c and
Supplementary Fig. 7 and Fig. 8).

Finally, we explored the effect of time on methylation status in
the same samples by using the enhanced reduced-representation
bisulfite sequencing assay (Fig. 7). Differentially methylated
regions (DMRs) between the two time points were defined by a
more than 25% change in methylation and a false discovery rate
(FDR) r10%. Differential methylation was detected almost
exclusively in the three responding patients (Fig. 7b,d,e).
The number of DMRs remained low in non-responding patients
with a stable disease under therapy (Fig. 7a,c,e) and no change
was identified in untreated patients (Table 1, Supplementary
Fig. 9 and Supplementary Data 5). Changes observed in

responding patients were predominantly demethylation, whereas
changes detected in treated patients with a stable disease included
both gains and losses of DNA methylation (Supplementary
Fig. 9). In responders, DMRs were significantly depleted in
promoters and in CpG islands while being enriched in generic
enhancers (Supplementary Fig. 10). Some overlap was detected
between DMRs and changes in gene expression in responders,
which was not observed in non-responders (Fig. 8).

Discussion
This first comprehensive analysis of genetic alterations in CMML
cells demonstrates that azanucleosides, although inducing
dramatic changes in DNA methylation and gene expression in
responding patients, do not reduce the mutated allele burden, nor
permit the re-expansion of wild-type haematopoietic cells.

Previous screening of candidate genes identified somatic
mutations in TET2, ASXL1 and SRSF2 genes as the most frequent
recurrent events in CMML cells4. Our comprehensive analysis
validates this molecular fingerprint and identifies additional
recurrent abnormalities that may contribute to the disease
phenotype heterogeneity. Several of the most recurrent
mutations identified in leukaemic cells were associated with
age-related clonal haematopoiesis33–35 or ‘silent’ pre-leukaemic
clones36–38. The bias in myeloid differentiation towards the
granulomonocytic lineage that characterizes CMML could be
related to the expansion of such a clone, for example, due to early
clonal dominance of TET2 (refs 4,39). In this setting, the
occurrence of an additional mutation resulting in a stringent
arrest of differentiation leads to acute-phase disease38,40, as
illustrated by sequential analyses in UPN34 who partially
responded to decitabine for 2 years until the emergence of an
EZH2/ETV6 mutated subclone and an acute leukaemia
phenotype. Importantly, this observation indicates that the
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Figure 5 | Serial whole-genome sequencing in a 5-AZA exceptional responder. WGS was performed before 5-azatidine treatment (baseline), in complete

response (remission) and at disease progression (relapse). (a,b) Scatter plot of somatic variants identified at baseline, remission, and progression.

Chromosomal location is color coded and the size of the object denotes its predicted impact on protein function. High impact variants are those that are
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Chromosomal location is color coded. (e) Copy number changes as identified from whole-genome sequencing data using Sequenza.
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response to a hypomethylating agent does not prevent the
accumulation of genetic damage in the leukaemic clone.

The number of genetic alterations identified in the genome of
CMML cells was close to that observed in other haematological
malignancies26. Most somatic variants identified were transitions,
with a predominance of C:G-4T:A, and a mutational signature
suggesting that the historical mutational process was
related mostly to ageing26. Accordingly, the number of variants
identified in juvenile CMML, another myeloproliferative
neoplasm/myelodysplastic disease that occurs in young
children, is much lower than that measured in CMML41.

Although these results do not exclude some cytotoxic effect of
azanucleosides, their epigenetic activity appears to play a
central role in restoring a more balanced haematopoiesis in the
30–40% of CMML patients who respond to these drugs17,18.
Immunophenotyping analyses already suggested that these drugs
could eliminate bulk blast cells without eradicating leukaemia
stem and progenitor cells in AML patients42 and did not
correct CD34þ cell immunophenotypic aberrancies in CMML
patients43. Mutations in epigenetic genes observed in almost
every CMML case lead to DNA hypermethylation44 and
epigenetically controlled changes in gene expression contribute
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Figure 6 | Evolution of gene expression pattern on hypomethylating agent therapy. Gene expression was analysed at two time points in sorted

peripheral blood monocytes from 9 chronic myelomonocytic leukaemia patients, including three untreated and six treated with either azacytidine or

decitabine. These cases were randomly selected in each group. Three treated patients remained stable on therapy (non-responders) whereas the three

others were responders. In treated patients, the first sample was collected before treatment, the second one after at least 5 drug cycles and just before the

next cycle. Volcano plots of genes differentially expressed between these two time points are shown in non-responders (a) and in responders

(b). The name of the most differentially deregulated genes is indicated. No significant change in gene expression was detected in untreated patients

analysed twice at an at least 5-month interval (see also Table 1). Each dot (N¼ 24,563) represents a gene; green dots, padj r0.05, orange dots, abs (log2
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(d) Significant changes in pathways detected by analysing RNA sequencing data with Ingenuity (www.ingenuity.com/products/ipa).
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to the disease phenotype, as demonstrated for transcription
intermediary factor-1g (TIF1g) gene whose epigenetic
downregulation was identified in a fraction of patients, and
whose deletion in the myeloid compartment induces a CMML
phenotype in the mouse45. Clinical response to hypomethylating
drugs is associated with a re-expression of this gene when
initially downregulated45, indicating that hypomethylating
drugs can suppress epigenetic changes that contribute to
the disease phenotype. This epigenetic effect could decrease the
competitiveness of the most mutated cells in the progenitor and
stem cell compartment4,40 but not the mutated allele burden in
the mature cell compartment. Also, although we have shown
before that the number of subclones in the immature
compartment was usually low in CMML patients, we cannot
rule out that an impact of treatment on clonal architecture in the
bone marrow participates to the generation of a more balanced
haematopoiesis.

Clinical trials have shown that 30–40% of CMML patients
respond to azanucleosides2,18. Since epigenetic changes were
observed only in responders, specific patterns of epigenetic
changes may be amenable to reversion by azanucleosides17.
We have shown that differentially methylated non-promoter
regions of DNA at baseline distinguished responders from
non-responders to decitabine46, whereas the pattern of somatic
mutations did not18. Some epigenetic patterns could also prevent
the activity of hypomethylating drugs by either decreasing the
expression of human nucleoside transporters and metabolic
enzymes needed for their activation such as cytidine and
deoxycytidine kinases and cytidine deaminase16,47 or increasing
the expression of genes encoding cytokines such as CXCL4 and
CXCL7 that, when released, could antagonize the drug effects46.
In two responding patients, prolonged administration of
azanucleosides, although improving haematopoiesis, did not
prevent the accumulation of genetic events, ultimately leading
to acute transformation, indicating that these drugs do not
prevent genetic evolution of the leukaemic clone. Further analyses
are needed to determine whether they could even promote such
genetic evolution.

The present findings have clinical implications. First,
prolonged administration of hypomethylating drugs may not
have any benefit in CMML patients when haematological
improvement is not observed after a few cycles. Second, these
drugs could increase the survival of responding patients by
restoring a more balanced haematopoiesis, but they might not
prevent the occurrence of new genetic events leading to acute
transformation. Finally, better analysis of how these drugs

modulate the immunogenicity of mutated cells could lead to
combination of hypomethylating agents with immune checkpoint
blockers as nucleoside analogues render the cells more
immunogenic through inducing the expression of cancer testis
antigens48, promoting the demethylation of programmed
death-1 immune checkpoint molecule49, and inducing
retrovirus activation50,51, suggesting that an interaction of
epigenetic drugs and immunotherapeutic approaches52 might
be considered. Our results also raise the question on whether
epigenetic targeting molecules currently developed to treat
haematological malignancies53,54 will eradicate mutated cells or
erase the epigenetic consequences of these mutations, leading to
the transient restoration of a more balanced haematopoiesis.

Methods
Patients. Peripheral blood and bone marrow samples were collected on ethylene-
diaminetetraacetic acid from 245 patients with a CMML diagnosis according to the
World Health Organisation criteria1. When indicated, several peripheral blood
samples were collected sequentially from a given patient (Supplementary Fig. 1). We
initially performed WES in 49, WGS in 17 and validation of recurrent mutations by
deep sequencing in 180 cases. Serial WES were performed in 17 patients, including 6
untreated and 11 treated with either decitabine (N¼ 6; EudraCT 2008-000470-21
GFM trial; NCT01098084; https://www.clinicaltrials.gov/)18 or AZA (N¼ 5;
following the European Medicines Agency approval; EMEA/H/C/000978). Responses
were classified according to the International Working Group 2006 criteria31.
Patients with stable disease without haematological improvement remained treated
until progression17. When indicated, sequential RNA-Seq and DNA methylation
analysis46 were performed. In treated patients, samples were collected immediately
before the following drug cycle. All the procedures were approved by the institutional
board of Gustave Roussy and the ethical committee Ile de France 1, and written
informed consent was obtained from each patient. Data collected from French and
Japanese patients were analysed homogeneously. Patient characteristics are in
Supplementary Table 1, the flow chart of analyses in Supplementary Fig. 1.

Cell sorting. Bone marrow (N¼ 9) or peripheral blood (N¼ 7) mononucleated cells
were separated on Fycoll-Hypaque. Peripheral blood CD14þ monocytes were sorted
with magnetic beads and the AutoMacs system (Miltenyi Biotech, Bergish Gladbach,
Germany)45. Control samples were peripheral blood CD3-positive T lymphocytes
sorted with the AutoMacs system or buccal mucosa cells (N¼ 3) or skin fibroblasts
(N¼ 12). All the samples used in the validation cohort (N¼ 180) were sorted
peripheral blood CD14þ monocytes. DNA and RNA were extracted from cell
samples using commercial kits. Monocytes were sorted for DNA sequencing on the
basis of our previous analysis of CMML clonal architecture showing the growth
advantage to the most mutated cells4, and flow cytometry analysis of peripheral
blood monocytes showing limited phenotypic alteration in the classical monocyte
population in patients treated with hypomethylating drugs, even though responders
have more intermediate and non-classical monocytes19. In one patient, bone marrow
mononucleated cells were used for serial WGS. TET2 and TET3 gene sequencing in
UPN22 were performed in single CD14þ cells sorted using C1 (Fluidigm) after
whole-genomic DNA amplification.

Table 1 | Changes induced by hypomethylating agents in gene expression and DNA methylation.

Untreated Treated non-responders Treated responders

Number of patients 3 3 3
Time between analyses (months) mean±s.d. 17±10 9±3 27±17

Changes in gene expression
Up 0 12 343
Down 0 51 170
Total 0 63 513

Differentially methylated regions
Up 0 28 19
Down 1 75 35,895
Total 0 103 35,914

Genomic analyses were performed at two time points in sorted peripheral blood monocytes of nine chronic myelomonocytic leukaemia patients, including three left untreated and six patients treated with
either azacytidine or decitabine. Among treated patients, 3 had a stable disease under therapy (non-responders) and three demonstrated clinical response (Figs 4 and 5). The first sample was collected
before treatment, the second after at least five cycles of either azacytidine or decitabine, just before the next cycle. We measured the number of differentially expressed genes having abs(log2 (fold
change)) Z1 between T1 and T2, and the number of differentially methylated regions having Z25% difference between T1 and T2.
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Figure 7 | Evolution of DNA methylation pattern on hypomethylating drug therapy. Methylation was analysed at two time points in sorted monocytes

from nine chronic myelomonocytic leukaemia patients, including three untreated and six treated with either azacytidine or decitabine. Three treated patients

remained stable on therapy (non-responders) whereas the three others were responders. In treated patients, the first sample was collected before treatment,

the second one after at least five drug cycles and just before the next cycle. (a,b) Chromosome ideograms representing differentially methylated regions

(DMRs) in non-responders (a) and in responders (b) are shown. Reduction in DNA methylation is in green, whereas increased methylation is in pink. (c,d)

Barplots showing the percentage of genomic regions with significant changes in DNA methylation in non-responders (c) and in responders (d) are also shown.

No change was identified in the 3 untreated patients (Table 1). (e) Violin plots showing the evolution of global methylation change in each patient (untreated

patients in grey, treated with a stable disease (non-responders) in blue, treated responders in red with the lighter color indicating the earliest analysis.
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Functional analysis of mutated TET3. pcDNA3.1-TET3R1548H was generated
using Q5 site-directed mutageneis (New England Biolabs Evry, France) before
transfecting HEK293T cells with constructs encoding wild-type or mutated TET3.
After 2 days in culture, DNA was extracted and 5-hydroxymethylcytosine was
detected as previously described39.

Whole-exome sequencing. We performed WES in 49 patients at diagnosis. In 17
of them, 2–5 serial analyses were done. 1mg of genomic DNA was sheared with the
Covaris S2 system (LGC Genomics, Molsheim, France). DNA fragments were
end-repaired, extended with an ‘A’ base on the 30-end, ligated with paired-end
adaptors and amplified (six cycles) using a Bravo automated platform (Agilent
technologies). Exome-containing adaptor-ligated libraries were hybridized for 24 h
with biotinylated oligo RNA baits, and enriched with streptavidin-conjugated
magnetic beads using SureSelect (Agilent technologies, Les Ulis, France). The final
libraries were indexed, pooled and paired-ends (2� 100 bp) sequenced on Illumina
HiSeq 2000 (San Diego, CA). In nine cases, WES was performed in Japan following a
previously described protocol55. The mean coverage in the targeted regions was
112� (Supplementary Table 2). Two individual cases have been reported in
our previous studies4,8. Sequencing data are deposited at the European
Genome–Phenome Archive (EGA), hosted by the European Bioinformatics Institute
(EBI), under the accession number EGAS00001001264.

WES analysis. Raw reads were aligned to the reference human genome hg19
(Genome Reference Consortium GRCh37) using BWA 0.5.9 (Burrows–Wheeler
Aligner) backtrack algorithm with default parameters. PCR duplicates were removed
with Picard (http://picard.sourceforge.net) version 1.76. Local realignment around
indels and base quality score recalibration were performed using GATK 2.0.39
(Genome Analysis ToolKit). Statistics on alignment and coverage are given in
Supplementary Table 2. SNVs and indels were called with VarScan2 somatic 2.3.2
(ref. 56). Reads and bases with a Phred-based quality score r20 were ignored.
Variants with somatic P value below 10� 4 (or 10� 3 for samples with mean coverage
o100� or contamination 415% in CD3þ control sample) were reported. In
addition to the Fisher’s exact test of VarScan, we required (variant allele frequency in
the tumour sample–variant allele frequency in the normal sample) Z15% to dis-
tinguish somatic from germline variations. Variants were annotated with Annovar.
Mutations were searched in 1000G (April 2012) and Exome Sequencing Project
(ESP5400). Conservation of the position was predicted by PhyloP and the effect of
the mutation was predicted by SIFT, Polyphen2, LRT and MutationTaster. We
excluded variants reported in dbSNP version 129, filtered variants located in
intergenic, intronic, untranslated regions and non-coding RNA regions, and
removed synonymous SNVs and variants with mapping ambiguities. A mutation
was reported as present if variant allele frequency (VAF) Z4%.

Targeted deep sequencing. Regarding exome validation, Ion AmpliSeq Custom
Panel Primer Pools were used to perform multiplex PCR for preparation of amplicon
libraries. Briefly, 20 ng of DNA per primer pool quantified using a Qubit Fluo-
rometer (Invitrogen, Carlsbad, CA) were used in the multiplex PCR. Unique indexed
libraries per sample were generated, quantified by Qubit, pooled and run on an Ion
318 Chip using the Ion PGM Sequencer (Life Technologies). Seventy one per cent of
the candidates for somatic mutation were confirmed by deep resequencing at a mean
coverage of 759� . In total, we validated 680 somatic mutations (Supplementary
Table 3). Also, the whole coding regions of genes found mutated in at least two
patients and expressed in myeloid cells were deep sequenced (mean coverage,
690� ) in a cohort of 180 CMML patients (Supplementary Table 4 and Table 5).

Ion AmpliSeq Custom Panel Primer Pools were used (10 ng of genomic DNA per
primer pool) to perform multiplex PCR. Libraries were generated with addition of
paired-end adaptors (NEXTflex, Bioo Scientific) before paired-end sequencing
(2� 150 bp reads) using an Illumina MiSeq flow cell and the onboard cluster
method (Illumina, San Diego, CA). Quality of reads was evaluated using FastQC
(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/). Raw reads were filtered
with Trimommatic 0.30 (ref. 57) to remove adaptors, truncate any read whose
average quality on a sliding window (six bases) was r20, remove the start and the
end of a read if r20 and any read with an average quality r20 or a length o36.
Statistics on alignment and coverage are given in Supplementary Table 2 and
detailed analysis of each studied variant in Supplementary Table 3. Targeted
resequencing was analysed similarly to WES except the suppression of PCR
duplicates. We added the following public databases: ESP 6500, dbSNP 138,
COSMIC 68 (Catalogue Of Somatic Mutations In Cancer) and ClinVar (20140303).

Prediction of driver genes. We applied DrGaP (driver genes and pathways)58 to
synonymous and nonsynonymous somatic variants (889 in 694 genes) to measure
the probability of each variant to occur by chance. Among the 22 genes with FDR
r10%, 20 were mutated in at least 2 patients and actively transcribed in myeloid
cells (MIER and FIBIN genes carried 2 variants in a unique patient, respectively).
Six of the 26 recurrently mutated and actively transcribed genes were mutated in
only 2 patients: SH2B3 (FDR¼ 0.22), PHF6 (FDR¼ 0.22), DOCK2 (FDR¼ 0.30),
ABCC9 (FDR¼ 0.36), HUWE1 (FDR¼ 0.78) and TTN (FDR¼ 0.88).

Whole-genome sequencing. We performed WGS in 17 patients at diagnosis,
including one already studied by WES. Genomic DNA (1 mg) was sheared to
300–600 bp (average size¼ 398±14 bp) using a Covaris E210 (Covaris, Woburn,
Massachusetts, USA). Libraries for 101 bp paired-end sequencing were prepared
according to the Truseq PCR free protocol (Illumina). Library quality was
evaluated by quantitative PCR for quantification (Kapa Biosystems Ltd., London,
UK) and by low output sequencing on Miseq (Illumina) for clusterisation effi-
ciency. Samples were loaded on HiSeq 2000 and sequenced. Quality of reads was
evaluated using FastQC. Sequences were filtered with Trimommatic. Reads were
aligned to the reference genome hg19 using BWA MEM algorithm 0.7.5a with
default parameters. The PCR duplicates were removed with Picard 1.94. Local
realignment and base quality score recalibration were performed using GATK
2.7.4. The mean coverage of all the samples was 31� . Detailed statistics on
alignment and coverage are given in Supplementary Table 6. Somatic SNVs were
identified by SomaticSniper 1.0.3 (ref. 59), VarScan2 2.3.7 and Strelka 1.0.14
(ref. 60). We conserved somatic variants with Z15� in normal, Z6� in tumour
and Z3 reads supporting the variant. We used a SomaticScore Tumour Z30 for
SomaticSniper, a Somatic P value r0.01 for VarScan2 and a QSS_N/QSI_NTZ15
for Strelka. We ran Strelka with the following parameters: ssnvNoise¼
0.000000005, sindelNoise¼ 0.00000001, ssnvPrior¼ 0.001, sindelPrior¼ 0.001 and
extraStrelkaArguments: -used-allele-count-min-qscore 20 and min-qscore 20. The
other parameters were set by default. We removed SNVs annotated as SpanDel,
BCNoise or DP in FILTER field. We excluded INDELs reported as OVERLAP or
defined as Repeat, iHpol, BCNoise or DP in the FILTER field. In addition, we
required (variant allele frequency in the tumour sample–variant allele frequency in
the normal sample) Z20% and excluded the variants whose allele frequency in the
normal sample was Z15% to differentiate somatic from germline mutations.
We removed the variants located in low complexity regions, immunoglobulin loci
(as reported in http://www.genecards.org/ for TCRA, TCRB, TCRG, IGH, IGL
and IGK) and genes in which false positives have been frequently detected by
new-generation sequencing61. By removing low complexity regions, as
defined in the masked genome chromOut.tar.gz generated by repeatMasker
(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/), we removed 45% of
the genome, thereby eliminating 74, 69 and 71% of the SNVs detected by using
SomaticSniper, VarScan2 and Strelka, respectively, and 87 and 77% of the indels
identified by VarScan2 and Strelka, respectively. In subsequent analyses, the SNVs
and indels identified by combining these stringent algorithms were used.
Sequencing data are deposited at the EGA hosted by the EBI under the accession
number EGAS00001001264.

Potential hotspots in promoters and enhancers. First, sequential windows were
used to calculate the probability for a 250-bp region to carry at least two variants in
two distinct patients among 17 patients. The probability to find at least 2 mutations
in one of the 6.82� 106 windows of 250 bp defined in non-repeated regions of the
genome among 17 patients was 10� 3. Second, we defined a potential hotspot
region as a region in which, in a sequence shorter than 250 bp, two variants were
identified in at least two patients. With that method, from the 8,077 variants
detected (Supplementary Data 2), we identified 21 clusters of variants on a same
chromosome at most 250 bp far, defining potential hotspots (Supplementary
Data 3). We detected 147 variants in 144 distinct promoter regions (from
� 2,000 bp before to þ 200 bp after the translation starting site obtained from
UCSC website on 07 November 2014) and 37 variants in the 43,011 enhancer
regions reported in ref. 30, of which three were located in the 3,795 enhancers
whose activity is Z5% in blood and Z5% in monocytes.
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Independent case report from Lee Moffitt Cancer Center. A 57-year-old female
patient progressed B10 months after diagnosis of a type-1 CMML according to the
World Health Organization definition with normal cytogenetics, prompting the
initiation of 5-azacitidine therapy. After four cycles of therapy, the patient had a
complete remission that persisted for 30 cycles. Disease progression was suspected
because of a declining platelet count and confirmed by an increase in bone marrow
myeloblasts. 5-azacitidine was discontinued and the patient transformed to AML
8 months later. Bone marrow mononucleated cells32 were collected before the
treatment start, during complete response and at progression. The following part of
the study was approved by the H. Lee Moffitt Cancer Center institutional review
boards and the patient provided informed consent before initiating sequencing
procedures under the Total Cancer Care protocol. WGS was performed on five
lanes for each leukaemia sample, and two lanes for the CD3þ germline on the
Illumina HiSeq X platform. The goal was to achieve 125 and 60� depth,
respectively. Sequencing data was aligned to b37d5 reference genome with BWA
MEM, and duplicates were marked, and multiple lanes merged using novosort.
Somatic SNV and INDEL variant calling was performed using Strelka for tumour
normal pairs. Somatic copy number variants, loss of heterozygosity regions, ploidy
and purity were determined using Sequenza. Freebayes with minimum VAF¼ 0.01
was used to generate variants from individual samples, and to assess the number of
clones. Variants were annotated using Variant Effect Predictor. Phylosub was used
to reconstruct the evolutionary lineage of samples, using either high, or medium-
and high-impact variants (loss of function vs missense, respectively).

RNA sequencing. Sequential RNA-Seq was performed on 18 samples (9 patients)
with high-quality RNA (RNA Integrity Score Z7.0 as determined by the Agilent
2100 Bioanalyzer). RNA was quantified using a Qubit Fluorometer (Invitrogen,
Cergy-Pontoise, France). RNA-Seq libraries were prepared using the SureSelect
Automated Strand Specific RNA Library Preparation Kit as per manufacturer’s
instructions (Agilent technologies) and a Bravo automated platform (Houston,
TX). Briefly, 150 ng of total RNA sample was used for poly-A mRNA selection
using oligo(dT) beads and subjected to thermal mRNA fragmentation. The
fragmented mRNA samples were subjected to complementary DNA synthesis and
further converted into double stranded DNA that was used for library preparation.
The final libraries were bar-coded, purified, pooled together in equal concentra-
tions and subjected to paired-end (101 bp) sequencing on HiSeq2000 (San Diego,
CA). Two separate samples were multiplexed into each lane. Quality of reads was
evaluated using FastQC.

RNA-Seq analysis. Sequences were filtered with Trimommatic and alignment was
performed with Tophat2 version 2.0.9 (ref. 62) and Bowtie2 version 2.1.0 (ref. 63).
The filtered reads were aligned to a reference transcriptome (downloaded from UCSC
website on 20 December 2013). The remaining reads were split and segments were
aligned on the reference genome, as described62. In average, 88.95% of reads were aligned
(Supplementary Table 9) and counted with HTSeq (v0.5.4p5) (ref. 64) using the following
parameters: --mode¼ intersection-nonempty --minaqual¼ 20 --stranded¼ no.
Differential expression analysis was performed using DESeq2 package version 1.6.3
(ref. 65) with R statistical software version 3.1.2. To study the effect of time in each of the
three groups (Supplementary Data 4), we used a generalized linear model to explain the
counting Yi: YiBGroup:PatientþTimeþGroupþGroup:Time where Group indicates
the status (untreated, responders and stable disease). We used independent filtering to
set aside genes that have no or little chance to be detected as differentially expressed.
To test the effect of time in each group, we used three contrasts defined as linear
combinations of factor level means. Validation of RNA-Seq data was performed by
quantitative PCR analysis in a selection of eight genes, using three independent genes
as reporters (Supplementary Fig. 8).

Genome-wide DNA methylation by ERRBS. Twenty-five nanograms of
high-molecular weight genomic DNA were used to perform the ERRBS assay as
previously described66 and sequenced on a HiSeq2000 Illumina sequencer. 50 bp
reads were aligned against a bisulfite-converted human genome (hg19) using
Bowtie and Bismark67. Downstream analysis was performed using R version 3.0.3,
Bioconductor 2.13 and the MethylSig 0.1.3 package. Only genomic regions with
coverage between 10 and 500� were used for the downstream analysis
(Supplementary Data 5). DMR were identified by first summarizing the
methylation status of genomic regions into 25-bp tiles and then identifying regions
with absolute methylation difference Z25% and FDR o10%. DMRs were
annotated to the RefSeq genes using the following criteria: (i) DMRs overlapping
with a gene were annotated to that gene, (ii) intergenic DMRs were annotated to all
neighbouring genes within a 50-kb window, and (iii) if no gene was detected within
a 50-kb window, then the DMR was annotated to the nearest TSS.
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