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ABSTRACT Laboratory models have been invaluable for the field of microbiology
for over 100 years and have provided key insights into core aspects of bacterial
physiology such as regulation and metabolism. However, it is important to identify
the extent to which these models recapitulate bacterial physiology within a human
infection environment. Here, we performed transcriptomics (RNA-seq), focusing on
the physiology of the prominent pathogen Staphylococcus aureus in situ in human
cystic fibrosis (CF) infection. Through principal-component and hierarchal clustering
analyses, we found remarkable conservation in S. aureus gene expression in the CF
lung despite differences in the patient clinic, clinical status, age, and therapeutic
regimen. We used a machine learning approach to identify an S. aureus transcrip-
tomic signature of 32 genes that can reliably distinguish between S. aureus tran-
scriptomes in the CF lung and in vitro. The majority of these genes were involved in
virulence and metabolism and were used to improve a common CF infection model.
Collectively, these results advance our knowledge of S. aureus physiology during hu-
man CF lung infection and demonstrate how in vitro models can be improved to
better capture bacterial physiology in infection.

IMPORTANCE Although bacteria have been studied in infection for over 100 years,
the majority of these studies have utilized laboratory and animal models that often
have unknown relevance to the human infections they are meant to represent. A
primary challenge has been to assess bacterial physiology in the human host. To ad-
dress this challenge, we performed transcriptomics of S. aureus during human cystic
fibrosis (CF) lung infection. Using a machine learning framework, we defined a “hu-
man CF lung transcriptome signature” that primarily included genes involved in me-
tabolism and virulence. In addition, we were able to apply our findings to improve
an in vitro model of CF infection. Understanding bacterial gene expression within
human infection is a critical step toward the development of improved laboratory
models and new therapeutics.

KEYWORDS Staphylococcus aureus, RNA-seq, transcriptomics, machine learning,
virulence, cystic fibrosis, human infection, virulence factors

Staphylococcus aureus was first observed in pus from a surgical abscess in 1880 by
surgeon Sir Alexander Ogston (1–3). Soon after its discovery, it was quickly appre-

ciated that S. aureus was a formidable pathogen (4–8), and it is still a leading cause of
bacterial infection worldwide. This versatile pathogen is well adapted to mammalian
hosts (4, 5, 9–11). S. aureus is able to infect nearly every tissue in the body (4, 6, 7, 10),
ranging from mild skin and soft tissue infections to potentially fatal and/or chronic
conditions such as sepsis, osteomyelitis, endocarditis, and cystic fibrosis (CF) lung
infection (4–8). In addition, S. aureus is a frequent human commensal, with �30% of the
human population persistently colonized in the nasal cavity (12, 13).
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Studies of S. aureus have centered on understanding mechanisms of virulence,
regulation, and physiology and have typically been performed in liquid culture in a test
tube or in animal infection models. These studies have collectively uncovered complex
regulatory networks that integrate quorum sensing, two-component systems, and
sensing of both internal (e.g., metabolite levels) and external (e.g., host substrates) cues
(14–21). In addition, an impressive arsenal of �50 virulence factors and immune
evasion strategies has been described (5–7, 10, 22).

While in vitro and animal models collectively have provided insights into the ways
that S. aureus interacts with eukaryotic hosts and defined core aspects of S. aureus
metabolism and regulation, it is often not clear how well and in what ways model
systems replicate the physiology that occurs in human infection. For obvious ethical
reasons, infections in humans are difficult to study in situ. However, advances in -omics
techniques now allow for global assessments of gene transcription, protein levels, and
metabolite production by bacteria in their native environments (23–27).

CF is a recessive genetic disease caused by mutations in the gene encoding the
cystic fibrosis transmembrane conductance regulator, an ion channel that conducts
chloride and bicarbonate across epithelial cell membranes, resulting in the accumula-
tion of viscous mucus in the airways. Bacteria use this thick mucus as a growth
environment, and CF patients experience frequent lung infections that begin in early
childhood and persist throughout their life. These infections are the primary cause of
morbidity and mortality in individuals with CF (28). S. aureus is the most common
microbe isolated from expectorated CF patient sputum (29), and therefore, CF is a
relevant infection for studying S. aureus physiology in situ.

Here, we use transcriptomics (RNA-seq) to assess S. aureus physiology during human
CF lung infection. Building on a machine learning approach that was previously
developed to study Pseudomonas aeruginosa human infections (24), we identified a
transcriptomic signature of S. aureus during human CF lung infection. We defined a set
of 32 genes, many of which are involved in virulence and metabolism, that are sufficient
to distinguish between transcriptomes from human CF lung infection and in vitro
transcriptomes. We further showed how these data can help improve laboratory
models to better mimic human infection by adding a host molecule to a CF in vitro
model, which altered the expression of virulence genes and increased the similarity of
the S. aureus transcriptome in that model to that in CF sputum. Our ultimate goal is to
provide benchmark data on S. aureus transcription in situ and to develop a framework
for assessing bacterial physiology within human infection.

RESULTS
Transcriptomes used in this study. In this work, we performed RNA-seq on S.

aureus from both human clinical samples and in vitro cultures. The human clinical
samples are primarily from expectorated CF sputum and are the focus of this paper. CF
sputum samples were collected from the Emory Cystic Fibrosis Center (n � 9) or from
Denmark (n � 1) from adult patients who were classified as clinically stable (Table 1).
We did not target a particular cohort of patients, other than CF patients who can
expectorate sputum, as our goal was to define the core ways that S. aureus human
transcriptomes differ from in vitro transcriptomes. One limitation of clinical samples is
that the strains that comprise the reads in our samples are unknown; however, we can
make broad classifications, such as whether the S. aureus strains are methicillin sensitive
(MSSA) or methicillin resistant (MRSA). To do this, we determined if the strains in our
samples were MRSA or MSSA by assessing how many S. aureus reads mapped to mecA.
We found that 8/10 sputum samples were likely dominated by MRSA (Table 1) with �10
reads mapping to mecA (mean read count per gene in the sputum samples was 66 �

20, standard error of the mean).
In addition to the CF sputum transcriptomes that we collected, we also included two

non-CF transcriptomes from human S. aureus infections, one from a previously pub-
lished joint infection (30) and the other from a chronic wound; these additional samples
allow us to make comparisons for human infections outside the CF lung. Our in vitro

Ibberson and Whiteley ®

November/December 2019 Volume 10 Issue 6 e02774-19 mbio.asm.org 2

https://mbio.asm.org


data are composed of 22 RNA-seq data sets from our and other laboratories (30–32)
during growth under a variety of conditions, including rich complex medium (tryptic
soy broth [TSB], lysogeny broth [LB], brain heart infusion broth [BHI]) and chemically
defined medium with either glucose or amino acids as a primary carbon and energy
source. In addition, a number of different S. aureus isolates were used in the in vitro
studies, including the USA300 community-associated methicillin-resistant strain LAC*
(33), the closely related USA300 strains JE2 (34) and UAMS-1790 (35), the USA200 strain
UAMS-1 (17), the laboratory strain SH1000 (36), and the clinical isolate SAU060112 (30).
A complete list of the in vitro samples used in this study is included in Table 2.

The S. aureus human CF transcriptome is distinct from in vitro models. When
assessing gene expression in clinical samples, one concern is biasing the results due to
the presence/absence of genes resulting from differences in strain background when
making comparisons between conditions. To address this, we constructed a reduced
gene set consisting of only 1,960 genes (�70% of the total genes in an S. aureus
genome) that are conserved across a set of 15 genetically diverse S. aureus strain
backgrounds (see Table S1 in the supplemental material) and mapped transcriptomes
to this reduced gene set (9). In addition, we removed reads mapping to tRNAs and
rRNAs from our data sets, since any potential differences in rRNA depletion during
library preparation can affect normalization and fold change calculations. A principal-
component analysis (PCA) based on this resulting data set shows that the human CF
sputum samples cluster distinctly from our in vitro models (Fig. 1A and Fig. S1A), and
they cluster remarkably closely across all 10 patients despite differences in coinfecting
microbes, patient status, therapeutic regimen, and geographic location of the clinic. In
fact, S. aureus sputum transcriptomes from different patients are more closely associ-
ated on the PCA than in vitro samples during different growth phases (Fig. 1A and
Fig. S1A). In addition to the CF sputum samples, we also included S. aureus transcrip-
tomes from 1 human joint infection (30) and 1 human chronic wound infection in this
analysis to determine if S. aureus transcription in human infection in general was similar.
We found these samples clustered with the CF sputum samples in our PCA (Fig. S1A),
indicating similarities in gene expression that may be shared across different infection
types. Additional principal components (PC) are shown in Fig. S2 as well as a scree plot
of the first 20 PCs. We have also included a PCA using only those genes that have reads
mapping to them in all of our clinical samples (1,046 common genes) to control for the
potential presence/absence of genes in the samples impacting the clustering (Fig. S3).
We find similar patterns of clustering with this methodology. In addition to principal-
component analysis, we assessed the similarity of S. aureus gene expression across our
sample types with hierarchal clustering (Fig. 1B). Through this analysis, we found that

TABLE 1 CF sputum samples used in this study

Human
sputum
sample Source

Total no. of
reads

No. of reads
mapped to:

MSSA or
MRSAa

Recent sputum
microbiologybS. aureus mecA

EM3 GA, USA 54,478,195 2,569,031 4,674 MRSA MSSA, P. aeruginosa
EM13 GA, USA 77,035,116 990,342 474 MRSA P. aeruginosa
EM15 GA, USA 110,756,562 622,666 15 Likely MRSA Achromobacter, MSSA
EM18 GA, USA 50,839,416 456,406 38 Likely MRSA Achromobacter, MSSA
EM22 GA, USA 29,554,488 405,887 6 MSSA MSSA
EM47 GA, USA 49,914,107 1,288,259 128 MRSA MSSA
EM48 GA, USA 56,958,617 1,239,803 28 Likely MRSA MSSA, P. aeruginosa
EM58 GA, USA 123,479,263 960,385 22 Likely MRSA Burkholderia cepacia,

MRSA, P. aeruginosa
EM61 GA, USA 78,248,618 193,333 5 MSSA MSSA, P. aeruginosa
G Denmark 78,869,961 624,172 48 Likely MRSA P. aeruginosa,

S. aureus
aMRSA and MSSA designations were determined by the number of S. aureus reads mapping to mecA in a
pangenome of 12 S. aureus strains. Strains were designated “likely MRSA” if �10 reads mapped to mecA
and MRSA if �100 reads mapped.

bRecent sputum microbiology is the associated clinical microbiology culture metadata for the sample.
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the human CF sputum samples cluster independently from the in vitro model systems,
confirming the PCA results. Interestingly, while we find that the human wound sample
clusters with the CF sputum, the human joint infection sample clusters with the in vitro
samples by this measure.

Expression of virulence factors and metabolic genes differentiate in vivo and in
vitro samples. Since the human and in vitro samples clustered independently, we were
next interested in determining which functional categories differed between these
sample types. We performed differential expression analysis with DESeq2 (37) compar-
ing our in vitro conditions collectively to S. aureus expression in CF sputum to make
broad assessments about in vitro versus in vivo growth. We focused on those genes
with the largest changes between the two groups to make robust observations
(adjusted P value of �0.05, �4-fold change [Data Set S1]), and 271 genes were
differentially expressed by this measure. To determine functional relationships, genes
were annotated with TIGRFAM categories (38). However, as the TIGRFAM categories did
not include virulence factors, annotations for these genes were curated from the
literature (6–8, 18, 22, 39–41). Some of the most differentially expressed genes in
humans compared to in vitro were virulence factors, the majority of which had
increased expression in CF sputum, and included gamma-hemolysin (hlgABC),
superantigen-like proteins (ssl1, ssl2, ssl3, ssl5, ssl9, ssl10, ssl12, ssl13, and ssl14), leuko-
cidins (lukG), extracellular matrix binding proteins (emp, scc, and fnbA), and exopoly-
saccharide (icaABC). In fact, virulence factors as a category were enriched (Fisher’s exact
test, adjusted P value of �0.05) in the differentially expressed genes in CF sputum

TABLE 2 In vitro samples used in this study

Sample Growth medium Growth phase Strain
Source or
reference

Samples used for all assays
1 CDM � 20 mM glucose Mid-logarithmic LAC* This study
2 CDM � 20 mM glucose Mid-logarithmic LAC* This study
3 CDM � 20 mM glucose Early stationary LAC* This study
4 CDM � 20 mM glucose Early stationary LAC* This study
5 CDM � 20 mM glucose Early stationary LAC* This study
6 CDM � no additional carbon Mid-logarithmic LAC* This study
7 CDM � no additional carbon Mid-logarithmic LAC* This study
8 CDM � no additional carbon Early stationary LAC* This study
9 CDM � no additional carbon Early stationary LAC* This study
10 BHI Mid-logarithmic LAC* This study
11 BHI Mid-logarithmic LAC* This study
12 BHI Mid-logarithmic LAC* This study
13 BHI Mid-logarithmic LAC* This study
14 LB Mid-logarithmic SAU060112 30
15 LB Mid-logarithmic SAU060112 30
16 LB Mid-logarithmic SAU060112 30
17 TSB Early stationary JE2 32
18 TSB Early stationary JE2 32
19 TSB Early stationary JE2 32
20 TSB Early stationary UAMS-1790 31
21 TSB Mid-logarithmic SH1000 31
22 TSB Mid-logarithmic UAMS-1 31

Samples used for only machine learning
and model improvement analyses

23 SCFM2 Mid-logarithmic LAC* This study
24 SCFM2 Mid-logarithmic LAC* This study
25 SCFM2 Mid-logarithmic LAC* This study
26 SCFM2 Mid-logarithmic LAC* This study
27 SCFM2 Late logarithmic LAC* This study
28 SCFM2 Late logarithmic LAC* This study
29 SCFM2 Late logarithmic LAC* This study
30 SCFM2 Late logarithmic LAC* This study
31 SCFM2 Late logarithmic LAC* This study
32 SCFM2 � HNP-1 Mid-logarithmic LAC* This study
33 SCFM2 � HNP-1 Mid-logarithmic LAC* This study
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FIG 1 S. aureus transcriptomes from human infection cluster independently from in vitro samples. (A) Principal-component analysis of variance
stabilizing transformation (VST)-normalized reads from S. aureus RNA-seq. Transcriptomes from human infection are shown in red, with closed
circles representing human CF sputum from Emory (n � 9), open circle representing human CF sputum from Denmark (n � 1), square
representing human joint infection (n � 1), and triangle representing human chronic wound infection (n � 1). Transcriptomes from in vitro
conditions are shown indicating the type of medium in which they were grown, with black representing rich medium (LB, TSB, or BHI; n � 13)
and gray representing chemically defined medium with two separate carbon sources (CDM; n � 9). (B) Hierarchal clustering of sample types using
normalized reads per gene for each condition. Under conditions with replicates (in vitro), replicates were averaged and the mean counts for each
gene were used. Black indicates samples from rich medium, gray indicates samples from CDM, and red indicates samples from human infection
(solid, sputum; diagonally striped, chronic wound; horizontally striped, joint). For in vitro samples, “CDM glc log” is samples 1 and 2, “CDM glc stat”
is samples 3 to 5, “CDM noC log” is samples 6 and 7, “CDM noC stat” is samples 8 and 9, “BHI 1” is samples 10 and 11, “BHI 2” is samples 12 and
13, “LB” is samples 14 to 16, “TSB 1” is samples 17 to 19, and “TSB 2” is samples 20 to 22 listed in Table 2.
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samples compared to in vitro. Normalized read counts for all S. aureus virulence factors
conserved across the 15 strain backgrounds are shown in Fig. S4.

In addition to virulence factors, many metabolic genes were differentially expressed
in vivo compared to in vitro (adjusted P value of �0.05, �2-fold change [Data Set S1]).
However, it can be challenging to infer host nutritional levels by comparison to S.
aureus transcriptomes from complex conditions with unknown metabolite levels such
as those found in rich culture media like BHI, TSB, and LB. Since many of our in vitro data
sets were from these rich medium conditions, to better understand the in vivo nutri-
tional environment, we wanted to also compare the human transcriptomes to a
well-controlled in vitro condition under which the metabolite levels are known. We
decided to compare the CF sputum transcriptomes to exponential growth in chemically
defined medium (CDM) with glucose as a primary carbon source. We found that 183
genes were differentially expressed (adjusted P value of �0.05, �2-fold change in
expression) between these conditions, and a complete list of these genes is included
in Data Set S2. Some notable pathways that were differentially expressed are shown in
Fig. 2 and include purine biosynthesis, amino acid catabolism, nitrate reduction, and
transporters.

When taken together, these two comparisons (human sputum versus all in vitro and
human sputum versus CDM glucose) allow us to make general insights into the
nutritional status of S. aureus in the CF lung. (i) S. aureus is likely respiring oxygen and
not fermenting. S. aureus gene expression under anaerobic conditions has been
carefully measured through transcriptomics and proteomics (42). We find the transcrip-
tomic metabolic profile of S. aureus in the CF lung is nearly opposite that of S. aureus
grown anaerobically, with low expression of genes involved in fermentation and
acquisition of the alternative electron acceptor nitrate, even compared to aerobic
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conditions (Fig. 2; Data Sets S1 and S2). Therefore, it is likely that oxygen is available and
is being used by S. aureus. However, oxygen is likely relatively low as the high-affinity
cytochrome bd oxidase (cydAB) has increased expression in vivo compared to in vitro
growth (Fig. 2; Data Set S3 [these data have been derived and reformatted from Data
Sets S1 and S2]). (ii) S. aureus is able to acquire iron in the CF lung, although its
concentration is likely low. The biosynthetic pathway for the S. aureus siderophore
staphyloferrin B had increased expression in human infection (Data Set S3), indicating
that the CF lung is a low-iron environment where S. aureus is likely scavenging Fe3�.
However, there was no change in expression for any of the Fe2� transporters, and a
number of heme uptake genes actually showed reduced expression in the CF lung (43).
(iii) Other key metals such as manganese and zinc are likely limiting in vivo as, in
general, transporters for these have increased expression in CF lung infection com-
pared to in vitro (Fig. 2; Data Set S3). Additionally, in vivo, the expression of genes
involved in the biosynthesis of the broad-spectrum metallophore staphylopine (44) are
also increased.

Identification of a transcriptional signature of S. aureus in human CF infection.
One goal of this work was to evaluate the ways in which model systems recapitulate
human infection. While basic comparisons between our conditions are insightful,
machine learning approaches can be more useful for probing differences between in
vitro and human S. aureus transcriptomes. Therefore, we were next interested if we
could determine with a machine learning approach a transcriptional signature that
could differentiate between S. aureus CF sputum and in vitro transcriptomes. We trained
our model with 9 human CF sputum samples from the Emory CF clinic and our 22 in
vitro data sets. We used a filter wrapper in the mlr R package to select 50 genes that
resulted in the largest information gain (FSelectorRcpp_information.gain) and best
differentiated between data types in a support vector machine (SVM) model. We
performed both 10-fold cross-validation and leave-one-out cross-validation of the SVM
training process and feature selection using our test data set and had 100% accuracy
with both methods. This identified 32 features (genes) that were used by the SVM to
differentiate human and in vitro S. aureus transcriptomes and were conserved across all
iterations of our validation methods (Fig. 3A). These genes are involved in a variety of
functions for S. aureus, including metal acquisition (sirA, sbnI, isdC, isdE, htsA, and cntF),
metabolism (uhpT, bshA, htsA, eutD, fbaA, glnA, ptaA, cidC, ldh1, and lctP2), and virulence
(hlgC and ssl9). Figure 3A shows the normalized read counts for these genes. A key
point is that these are not necessarily all of the important genes that can differentiate
between the sample types, nor are they necessarily the most differentially expressed.
However, they are effective in discriminating between human CF sputum and in vitro
samples when used together. Of note, although some of these genes are coregulated
(ldh1 and lctP2; fur, sbnI, and sirA; and isdE and isdC), the performance of this gene set
is not reliant on coregulated genes (Table S2).

Using the SVM model to classify human and in vitro model transcriptomes. In
the SVM model, we used only the CF sputum transcriptomes obtained from Emory
samples and did not include the human CF sputum sample from Denmark or the
human joint and chronic wound infection samples. The rationale was that restriction to
these transcriptomes would allow us to test the robustness of our predictive models on
human transcriptomes from different clinics and different infection sites. We found the
Denmark CF sputum sample was classified correctly as being a transcriptome from
human CF sputum (Fig. 3B) using our model. This supports that our model is accurate
in classifying S. aureus CF transcriptomes even from different countries and clinics.
However, our model appears to be specific to human sputum as it classified the human
joint and chronic wound infections as in vitro (Fig. 3B).

Model systems are often used to study human infections, including those in CF. Over
the past decade, our laboratory has developed a synthetic sputum medium (SCFM2)
that is meant to mimic the physical and chemical properties of CF sputum (45, 46). This
model has been valuable for studying P. aeruginosa physiology in the CF lung but has
not been evaluated in a comprehensive manner for studying S. aureus CF infection.
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Therefore, we used our SVM classification scheme to classify S. aureus SCFM2 transcrip-
tomes as human sputum or in vitro. We found that transcriptomes from S. aureus grown
in SCFM2 at two growth phases (mid- and late exponential) were classified as in vitro
(Fig. 3B).

As the human samples outside the CF lung and SCFM2 were not classified as human
CF sputum by our classification scheme, we were interested in the ways that these
transcriptomes “failed” to be classified as CF sputum. It is important to note that the
SVM classification scheme utilizes only the 32 genes that were identified as most
discriminatory between CF sputum and in vitro transcriptomes. Thus, we next asked
which of these 32 genes were not expressed similarly to CF sputum in the human
infections outside the CF lung and in SCFM2, with the rationale that this comparison
will provide insight into why these transcriptomes were classified as in vitro. To have
increased statistical power, we treated the two non-CF human chronic infections as
replicates. Figure 3C shows that while some genes in the non-CF human and SCFM2
transcriptomes have similar expression levels as our CF sputum transcriptomes (e.g.,
isdC, sirA, lctP2, and glnA), many genes involved in metabolism (typA, bshA, htsA, eutD,
fbaA, ptaA, cidC, and ldh1) and iron acquisition (isdE and sirA) had a different expression
profile than that in the CF sputum and were more similar to in vitro conditions.
Additionally, the fold change of a number of genes for S. aureus grown in SCFM2

CB

A

FIG 3 A subset of 32 genes is sufficient to distinguish S. aureus transcriptomes from human CF lung infection and those grown in vitro. (A) The x axis lists the
32 genes used to build our SVM model. VST-normalized read counts are plotted on the y axis. Black bars are samples grown in vitro (n � 22), and red bars are
samples from human CF sputum (n � 9). Bars indicate the range of counts with a line that indicates the mean within the group. (B) Table showing the
probability of the transcriptome from each condition to be from a human infection when classified by our SVM model. The standard deviation of the probability
for either 4 replicates (mid-logarithmic) or 5 replicates (late logarithmic) is shown for the SCFM2 conditions. (C) Heat map showing the log2 fold change of S.
aureus transcriptomes in human sputum, non-CF human chronic infection, mid-logarithmic growth in SCFM2, or late-logarithmic growth in SCFM2 compared
to in vitro growth for the 32-gene transcriptomic signature used in the SVM model.
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showed the opposite trend from the human sputum samples or was more similar to the
in vitro value (Fig. 3C). A complete gene list containing the results of these comparisons
is shown in Data Set S4.

Addition of human neutrophil peptide 1 improves the accuracy of SCFM2. Can
we use our gene expression comparisons and SVM approach to improve SCFM2 as a
model of S. aureus CF? One of the most striking outcomes of our in vitro-CF sputum
comparisons and the SVM was that genes encoding a number of virulence factors were
significantly reduced during in vitro growth, including growth in SCFM2. Many of these
virulence factors are controlled by the SaeRS system. SaeRS is a two-component
regulatory system composed of a membrane-bound histidine kinase and cognate
response regulator (47) and has been shown to be activated by components of the
innate immune system, particularly neutrophils and a human antimicrobial alpha-
defensin peptide (16). Upon infection, the most prominent cell type recruited to the CF
lung is neutrophils. As neutrophils produce an alpha-defensin referred to as human
neutrophil peptide (HNP-1), we hypothesized that addition of HNP-1 to SCFM2 might
induce the SaeRS system and thus improve the ability of the model to mimic S. aureus
transcription in CF sputum. To test this hypothesis, we added HNP-1 (16) to SCFM2 at
a relevant physiological concentration and grew the samples to mid-exponential phase
for transcriptomic analysis. The addition of HNP-1 to SCFM2 increased expression of
secreted and surface-associated factors to levels more similar to those in the CF lung,
reducing the number of differentially expressed genes in SCFM2 containing HNP-1
versus SCFM2 alone compared to human sputum (Fig. 4). Genes whose expression
became more similar to that in the CF lung included lukGH (encoding a leukocidin), nuc
(encoding nuclease), efb (encoding a fibrinogen binding protein), and fnbA (encoding
fibronectin binding protein A), which have all been shown to be directly controlled by
the SaeRS system (47) (Fig. 4).

DISCUSSION

It is critical to study the physiology of organisms within their natural environment.
However, until recently, studying bacterial pathogens within human infection has been
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FIG 4 (A) Heat map showing the variance stabilizing transformation-normalized read counts of S. aureus in SCFM2 at mid-logarithmic phase or
SCFM2 plus HNP-1 at mid-logarithmic phase or in human sputum for virulence factors known to be directly regulated by the SaeRS two-component system
(47). Blue indicates higher read counts. (B) Differential gene expression of S. aureus virulence factors from transcriptomes grown in SCFM2 at mid-logarithmic
phase or SCFM2 plus HNP-1 at mid-logarithmic phase compared to transcriptomes from human sputum. Categories that shifted with the addition of HNP-1
are highlighted in blue. The percent differentially expressed genes (�2-fold change in expression, adjusted P value of �0.05) in each category was calculated.
SCFM2 experiments were performed at mid-logarithmic phase.
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technically prohibitive. Our goal was to expand the S. aureus human transcriptomic
data from one sample with high sequencing coverage (30) as well as to provide
benchmark data and a framework to assess S. aureus physiology in situ within human
infection. To do this, we performed RNA-seq analysis on 10 human CF lung infection
samples containing S. aureus and analyzed these samples in the context of 22 in vitro
transcriptomes from a variety of conditions. We used RNA-seq data for this study as it
is a quantitative, highly robust technique that can be performed with human-derived
infection samples. In addition, mRNA levels can be used to infer S. aureus functions from
clinical samples, thus providing mechanistic insights into the human growth environ-
ment. We found that the S. aureus CF sputum sample transcriptomes were highly
similar to one another (Fig. 1), even more so than the in vitro transcriptomes (see Fig. S1
in the supplemental material), despite differences in clinic location, antibiotic regimen,
and comorbidities (Fig. 1). This indicates that S. aureus has a definable functional
repertoire during CF infection, suggesting that one can make informed a priori assump-
tions about the physiology of S. aureus in most CF lung infections.

We found that many metabolic pathways were differentially expressed in CF sputum
than under the in vitro conditions. In general, biosynthetic pathways were reduced in vivo,
while transporters and catabolic pathways often had increased expression (Fig. 2; Data Sets
S1 and S2). Collectively, this indicates that the CF lung is nutrient rich; therefore, S. aureus
does not need to synthesize a number of precursor metabolites. An interesting finding was
that genes involved in fermentation were reduced in CF sputum (Fig. 2; Data Set S1). It is
generally accepted that S. aureus is pushed toward a fermentative metabolism in vivo in CF
sputum, particularly when in the presence of P. aeruginosa (48, 49). The clinical microbiol-
ogy of our sputum samples indicates that 8 of these 10 patients harbor P. aeruginosa along
with S. aureus in their lungs (Table 1); thus, it is intriguing that S. aureus exhibits reduced
expression of fermentative pathways in the CF lung compared to monoculture planktonic
growth in the lab. These data provide support for the hypothesis that P. aeruginosa and S.
aureus do not interact by these in vitro observed mechanisms in the CF lung. One possible
explanation is that although both of these species are present in the CF sputum samples,
they could be spatially segregated, thus preventing sustained interactions (50), or that the
number of these bacteria, which are not known in these samples, are not sufficient to support
an interaction. Regardless, our approach provides benchmark human infection transcriptomic
data to begin to approach such questions in complex environments such as CF lung infections.

Using a machine learning approach, we identified a subset of 32 genes that could
reliably distinguish between CF sputum transcriptomes and those from in vitro (Table 3).
While this transcriptomic signature of human CF lung infection could accurately classify a
CF sputum sample from another clinic and country (Fig. 3B), it classified S. aureus transcrip-
tomes from a human joint infection as well as a human chronic wound infection as more
likely to be in vitro (Fig. 3B). The genes that most differentiated the non-CF human
infections from those in CF sputum in this transcriptomic signature were involved in
metabolism and iron acquisition (Fig. 3C). These data indicate that S. aureus has a distinct
metabolic profile in different human infections, which is important to consider as the
metabolic status of bacteria has been shown to impact the efficacy of antibiotics (51).
Additionally, this demonstrates that there are easily distinguished gene expression patterns
that can differentiate CF S. aureus lung infections from human infections at other sites. This
could be due to the unique infection dynamics of the CF lung, in which microbes colonize
the lung where they can evolve for years in the presence of therapeutic treatments. It
should be pointed out that while one can discriminate between CF lung and non-CF lung
in human infection transcriptomes, expression levels of many genes were highly similar,
supporting that there are many S. aureus functional similarities during human infection.
Thus, while we can discriminate among S. aureus human infection types using SVM, this
does not imply that these conditions do not have functional similarities.

Our results also revealed that our current in vitro models underrepresent the level
of virulence factor expression that occurs during human infection, with many virulence
factors showing significantly higher expression in vivo than in vitro (Data Set S1). Many
of these virulence factors are directly regulated by the SaeRS two-component system
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regulon (16, 47), which is known to be responsive to host stimuli such as neutrophils
and alpha-defensin (16). It is likely that the reduced expression of these factors in vitro
is therefore due to the absence of an environmental cue. Importantly, we were able to
increase the expression of virulence factors in the model system SCFM2 with the
addition of an alpha-defensin (HNP-1), improving this model (Fig. 4). Although this led
to only a modest improvement in the model, it is important as it indicates that one can
target and improve key aspects of in vitro models to better mimic infection using
transcriptomics. We focused on improving SCFM2 as it is a model that has been
specifically developed to mimic the CF sputum environment. In addition to the
supplementation of host molecules, another way one could potentially improve this
model is with the use of CF clinical isolates instead of the skin and tissue isolates that
comprised the majority of our in vitro samples. Finally, our data indicate that S. aureus
is in a fermentative state under many of the in vitro conditions used. S. aureus requires
vigorous shaking during in vitro culture to prevent it from entering fermentation;
therefore, another possible way to improve these in vitro models is by increasing the
aeration, preventing this switch to fermentation. Together, this work highlights the
importance of choosing conditions that most closely mimic the aspects of the infection
environment to be studied and indicate key areas in which models can be improved.

S. aureus has been studied for over �135 years (2), and in that time researchers have
developed in vitro models with the goal of understanding S. aureus physiology within
infection. While these models have been invaluable, we still do not fully understand
how well and in what ways these models mimic the human infection environment. This
study contributes to this long line of work as the largest assessment of global S. aureus

TABLE 3 Thirty-two genes that comprise a transcriptional signature that can reliably
distinguish between S. aureus transcriptomes from in vitro growth and those from human
CF sputum

Locus tag Gene Functiona

SAUSA300_RS00540 AraC family transcriptional regulator
SAUSA300_RS00605 sirA Iron ABC transporter substrate-binding protein
SAUSA300_RS00650 sbnI Siderophore biosynthesis protein
SAUSA300_RS01135 uhpT Hexose phosphate transporter
SAUSA300_RS01250 ldh1 L-Lactate dehydrogenase
SAUSA300_RS01655 PTS sugar transporter subunit IIC
SAUSA300_RS02160 ssl9 Staphylococcal superantigen-like protein 9
SAUSA300_RS02600 Hypothetical protein
SAUSA300_RS02770 23S rRNA [guanosine(2251)-2’-O]-methyltransferase
SAUSA300_RS03050 eutD Phosphate acetyltransferase
SAUSA300_RS03080 Dihydrolipoamide dehydrogenase
SAUSA300_RS03585 Hypothetical protein
SAUSA300_RS04015 lgt Prolipoprotein diacylglyceryl transferase
SAUSA300_RS04025 Putative PEP-CTERM system TPR-repeat lipoprotein
SAUSA300_RS04580 Pyridine nucleotide-disulfide oxidoreductase
SAUSA300_RS05430 typA Translational GTPase
SAUSA300_RS05545 isdC Iron-regulated surface determinant protein C
SAUSA300_RS05555 isdE Heme uptake system protein
SAUSA300_RS06485 glnA Glutamine synthetase
SAUSA300_RS07355 bshA N-Acetyl-alpha-D-glucosaminyl L-malate synthase
SAUSA300_RS07900 xerD Tyrosine recombinase
SAUSA300_RS07905 fur Ferric uptake regulator
SAUSA300_RS09130 ptaA PTS glucose transporter subunit IIBC
SAUSA300_RS11445 fbaA Fructose-bisphosphate aldolase
SAUSA300_RS11760 htsA ABC transporter substrate-binding protein
SAUSA300_RS12210 AcrB/AcrD/AcrF family protein
SAUSA300_RS12780 lctP2 L-Lactate permease
SAUSA300_RS13075 hlgC Gamma-hemolysin component C
SAUSA300_RS13330 cntF ABC transporter ATP-binding protein
SAUSA300_RS13355 cntM Staphylopine synthase
SAUSA300_RS13745 cidC Pyruvate oxidase
SAUSA300_RS14605 DNA-binding protein
aAbbreviations: PTS, phosphotransferase system; PEP, proline-glutamate-proline; CTERM, C terminal; TPR,
tetratricopeptide repeats.
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transcription in human infection. Future research will build on these results and assess
the ability of polymicrobial or spatially structured systems to better mimic the in vivo
infection environment.

MATERIALS AND METHODS
Strains and culture conditions. The USA300 community-associated methicillin-resistant Staphylo-

coccus aureus strain LAC* (33) was used in this study. Isolates were routinely grown on brain heart
infusion agar incubated at 37°C in ambient air. Chemically defined medium (CDM) was prepared as
previously described (52) with the following modification for S. aureus: the amino acid and nucleotide
stock solution was added at 0.25� to allow the primary carbon source to be exchanged as S. aureus can
grow on amino acids. S. aureus was grown in SCFM2 as previously described (24). Briefly, 750 �l of SCFM2
in four-well microchamber slides from Nunc was inoculated at an optical density at 600 nm (OD600) of
0.05 of S. aureus strain LAC*, grown for either 3 or 7 h, and then immediately added to 5 volumes of
RNAlater (ThermoFisher). Two technical replicates were combined for each biological replicate. For the
addition of HNP-1 to SCFM2, 2.4 �M HNP-1 (Sigma-Aldrich) was added to SCFM2 at the time of
inoculation and S. aureus was grown in four-well microchambers as described above. After 3 h of growth,
samples were immediately added to 5 volumes of RNAlater. Planktonic cultures were grown at 37°C with
shaking at 225 rpm and a flask-to-volume ratio of 5:1.

RNA extraction and preparation of sequencing libraries for RNA-seq. In vitro and human samples
were prepared as previously described (24) with a few modifications for the human samples. For the
human sputum samples, expectorated sputum was collected from adult patients who were clinically
stable, immediately added to RNAlater, and stored at 4°C overnight and then at 	80°C. Samples in
RNAlater were thawed on ice and centrifuged at 4°C for 30 min at 10,000 � g. RNAlater was removed
from the sample, and sputum was transferred to bead-beating tubes containing a mixture of large and
small beads (2-mm zirconia and 0.1-mm zirconia-silica, respectively). In vitro cultures stored in RNAlater
were pelleted, resuspended in 1 ml RNA-Bee, and transferred to bead-beating tubes. Samples were
resuspended in RNase- and DNase-free TE buffer (Acros Organics), and lysozyme (1-mg/ml final concen-
tration) and lysostaphin (0.17-mg/ml final concentration) were added to each sample. Samples were
incubated at 37°C for 30 min to enzymatically lyse cells. RNA-Bee was added to each sample, and samples
were lysed mechanically by bead beating three times for 30 s, placing the tubes on ice for �1 min
between each homogenization. Amounts of 200 �l of chloroform per 1 ml of RNA-Bee were added, and
the tubes were shaken vigorously for 30 s and incubated on ice for 5 min or overnight to allow phases
to partition. Samples were centrifuged at 12,000 � g for 15 min at 4°C to separate the aqueous and
organic phases. The aqueous phase from each tube was transferred to a new microcentrifuge tube to
which 0.5 ml isopropanol per 1 ml of RNA-Bee was added in addition to 20 �g of linear acrylamide, and
the tubes were incubated at 	80°C overnight. Samples were thawed on ice and centrifuged at
12,000 � g for 30 min at 4°C. Pellets were washed with 1 ml 75% ethanol, air dried for 5 min, and
resuspended in 100 �l of RNase-free water. The RNA concentration for each sample was determined with
a NanoDrop spectrophotometer (Thermo Fisher Scientific). rRNA was depleted using the RiboZero Gold
bacterial kit (Illumina) for the in vitro samples and the RiboZero Gold epidemiology kit (Illumina) for the
human samples and purified by ethanol precipitation using linear acrylamide to help precipitate the RNA.
The depleted RNA was fragmented for 2 min with the NEBNext Magnesium RNA fragmentation module
kit, and cDNA libraries were prepared using the NEBNext Multiplex small RNA library prep kit (New
England Biolabs) per the manufacturer’s instructions. Libraries were sequenced at the Molecular Evolu-
tion Core at the Georgia Institute of Technology by Illumina NextSeq500 75-bp single-end runs.

Bioinformatic analysis of RNA-seq data. RNA-seq reads were trimmed using Cutadapt 1.18 with a
minimum read length threshold of 18 bases (53). Reads were mapped to a pangenome and collapsed
onto orthologs in the S. aureus reference strain genome USA300_FPR3757 (accession number
GCF_000013465.1) downloaded from the National Center for Biotechnology Information using Bowtie
2.3.2 with the default parameters for end-to-end alignment (54). Reads were tallied and assigned to only
those genes common to all strains in the S. aureus 15-strain pangenome (1,960 genes [see Table S1 in
the supplemental material) using the htseq-count function in the HTSeq package (55) (v. 0.11.2-0). Reads
mapping to rRNAs and tRNAs were removed from the analysis. The remaining raw reads were normalized
using the estimateSizeFactors() function and transformed using the varianceStabilizingTransformation()
function in the DESeq2 package prior to analysis. Principal components were determined using the
prcomp() function. In addition to this methodology, we also performed this analysis using a subset of
genes where all human samples had at least 1 read in all of the genes used, leading to a common set
of 1,046 genes. Principal components were determined in the same way as described above. Differential
expression was determined with DESeq2 (37) with betaPrior set to true. The hierarchal clustering was
performed in the heatmap3 R package (56). Heatmaps were generated from varianceStabilizing-
Transformation normalized read counts using Prism 7 (GraphPad). For the machine learning component
of the paper, the R package mlr was used (57). Feature selection and validation were performed using
a wrapper and the “FSelectorRccp_information.gain” filter to select 50 features, and this was combined
with 10-fold cross-validation and leave-one-out cross-validation methods. We chose 32 features that
were used in all iterations of cross-validation to build and train the SVM model.

Ethical statement. Expectorated CF sputum samples for this study were collected from Emory �
Children’s Center for Cystic Fibrosis and Airways Disease Research as previously described by our group
(24) with IRB approval (Georgia Tech approval no. H18220).

Ibberson and Whiteley ®

November/December 2019 Volume 10 Issue 6 e02774-19 mbio.asm.org 12

https://www.ncbi.nlm.nih.gov/assembly/GCF_000013465.1/
https://mbio.asm.org


Data availability. The raw sequencing files from this study are available at the NCBI Sequence Read
Archive (SRA) under accession number SRP222773. The accession numbers for previously published
samples used are listed here: in vitro (SRP178123, SRP048673, and SRP066096) and human (SRP048673
and SRP135669).
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